3-10-1982

Influence of Photoperiod and Nutrition on Food Composition, Body Condition and Reproduction in the Pine Vole

J. J. Hasbrouck
Virginia Polytechnic Institute and State University

A. R. Tipton
Virginia Polytechnic Institute and State University

R. L. Kirkpatrick
Virginia Polytechnic Institute and State University

Jack A. Cranford
Virginia Polytechnic Institute and State University, jcranfor@vt.edu

Follow this and additional works at: http://digitalcommons.unl.edu/voles

Part of the [Environmental Health and Protection Commons](http://digitalcommons.unl.edu/voles)

http://digitalcommons.unl.edu/voles/41
Influence of Photoperiod and Nutrition on Food Consumption, Body Condition and Reproduction in the Pine Vole

J. J. Hasbrouck, A. R. Tipton, R. L. Kirkpatrick
Department of Fisheries and Wildlife Sciences
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

J. A. Cranford
Department of Biology
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Introduction

Previous field studies in Virginia reported a longer breeding season in pine voles in maintained apple orchards than in abandoned orchards and attributed the difference to nutrition (Cengel et al. 1978, Noffsinger 1976). The maintained orchard was theorized to have better quantity and quality of forage in fall due to mowing, fertilizing and the presence of apple drops. Hasbrouck et al. (1981) found adult male pine voles snap-trapped in November and December in an orchard where apples were present had significantly heavier reproductive organs and higher spermatozoa counts than those trapped in an area of the orchard where apples had been removed.

Noffsinger (1976) speculated an interaction between a declining or short photoperiod and level of energy intake determined length of the breeding season in pine voles in autumn. Noffsinger (1976) and Merson (1979) suggested studies be conducted to determine the effects of a declining photoperiod on reproduction. The objective of this study was to determine the influence of photoperiod and nutrition on food consumption, body condition and reproduction in the pine vole.

Methods and Materials

The experiment was conducted in a metal frame building with skylight panels in the ceiling allowing sunlight into the building. One to two inches of soil were placed in the bottom of concrete troughs inside the building and each trough was partitioned into four equal sections 2.3m² in area.

Voles were live-trapped from an orchard in late July and immediately placed in the troughs. During the first week of September, 2 males and 5 females were placed at random into 12 of 16 sections of the troughs. Half of the groups were fed a diet of ad libitum amounts of Purina Rabbit Chow (66% digestible energy, Servello 1981) which had been ground in a Wiley Mill. The remaining groups were given the same diet supplemented with apples. In mid-September fluorescent lights and black plastic were suspended from the rafters of the building so that half of the groups were kept on a constant 14L:10D photoperiod and the other half maintained on a natural declining photoperiod. Thus, the treatment groups were those on a 14L:10D light regime with a group fed...
apple and chow and a group fed only chow, and those on a natural declining
photoperiod with a group given apple and chow and a group given only
chow. In subsequent discussion, these groups will be denoted as LA
(Long photoperiod-Chow diet), SA (Short photoperiod-Apple and chow diet),
and SC (Short photoperiod-Chow diet).

The experiment was run for 12 weeks. The natural photoperiod was
approximately 12L:12D at the beginning of the experiment and 9.5L:14.5D
at the end. Food consumption was determined for apple and chow sepa-
rately and converted to kcal digestible energy consumed per vole per
week. Body weight was measured every two weeks. Dead voles were re-
placed during the first half of the experiment, but no voles were added
during the last six weeks. Because of complications due to replacing
voles, food consumption and body weights taken biweekly were analyzed
statistically for only the last six weeks.

The voles were sacrificed in mid-December and frozen until necropsy.
After thawing, reproductive organs and adrenal glands were removed from
the animals, placed in fixative solutions for two weeks and weighed.
Testes removed from males were frozen and sperm counts were done later.
All remaining organs were then removed from the carcass, stripped of
excess fat and the fat returned to the carcass. The carcass was homo-
genized and crude body fat determined by ether extraction.

Results and Discussion

Intake of digestible energy ranged from 90-135 kcal DE/vole/week. Voles
on the chow diet consumed significantly (P<0.001) more digestible
energy than those fed apple and chow. Apples comprised 50-65% of the
digestible energy intake in groups with access to apples.

There was a significant (P<0.03) effect due to diet for change in
body weight from week 6 to week 12. Voles on the chow diet lost weight,
while those fed apple and chow maintained body weight.

Voles given apple and chow had significantly (P<0.01) more body fat
than those fed chow. Female voles tended (P<0.09) to have higher mean
final body weights and had significantly (P<0.04) more body fat than
males. Females on the apple and chow diet had mean body fat levels
around 40%.

Voles on the 14L:10D photoperiod had significantly heavier seminal
vesicles (P<0.004), paired testes (P<0.008) and uteri (P<0.04), and
tended to have more sperm/mg testes (P<0.06) and heavier paired ovaries
(P<0.07) than those on the declining light regime. Males on the apple
and chow diet had higher mean values for reproductive characteristics,
but only paired testes weight was significantly (P<0.05) higher. Diet
had no effect on the reproductive organ weight in females.

Field studies have found a peak in reproductive activity during
summer and little or no activity during the short days of late fall and
winter (Noffsinger 1976, Cengel et al. 1978). These studies also re-
lated higher reproductive activity in maintained orchards to higher
quality and/or quantity of forage. In this study voles on the declining
or short photoperiod had lower values for reproductive characteristics than those on the long photoperiod. Males on the apple and chow diet consistently had heavier reproductive organs and higher sperm counts than those on the chow diet.

At first glance the effects of diet in this experiment appear contradictory. Voles fed apple and chow consumed less digestible energy, but maintained body weight, had more body fat and, in males, had higher values for reproductive characteristics than those on the chow diet. The digestible dry matter (DDM) in the stomach of voles trapped in an orchard in an area with apples available was not different from the DDM of those in an area with apples removed (Servello 1981). However, reproductive organs and sperm counts were higher in voles trapped in the area with apples available (Hasbrouck et al. 1981). Thus, apples do not appear to increase digestible energy intake, but do affect the reproductive physiology of pine voles.

In an orchard environment, perhaps both photoperiod and nutrition have additive effects on reproductive activity and length of the breeding season. When some aspect of nutrition reaches a low or critical level in fall, reproduction ceases. In areas where food quality and/or quantity is not limiting, reproduction may continue to occur in fall and even into winter, but at reduced levels due to the inhibitory effects of a declining or short photoperiod. The availability of apples may be important in determining how quickly a declining photoperiod curtails the breeding season in pine voles.

LITERATURE CITED

