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CYCLE TIME ESTIMATION FOR SIMULATING A TANDEM QUEUEING  

SYSTEM USING AGGREGATION TECHNIQUES 

 

ABSTRACT 

One approach to simulating a single-server tandem queuing system is to explicitly model each of 

the production stages.  In this paper, we apply queueing theory, a recursive algorithm, and 

composite random number sampling to develop an equivalent aggregate representation consisting 

of only a single production stage.  Preliminary test results indicate that the aggregation works 

well for estimating the mean and variability of the total cycle time. 
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1 MODEL DESCRIPTION 

 We consider a tandem queueing system consisting of a series arrangement of a finite number 

of production stages or resources.  The machine component of each resource has one server and 

each server can operate on one part at a time and has internal storage for that part.  The 

parameters of this tandem queueing or flow line system can be summarized as follows: 
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 A flow line (FL) consists of three primary components, a receiving area (R), a shipping area 

(S), and N production stages or resources (Ri).  This relationship is illustrate in Figure 1.  The 

receiving area (R) is described by the mean time between arrivals (1 λ ), where λ  is the arrival 

rate, and Z, which is the maximum number of parts that can arrive from the storage area.  The 

shipping area (S) is characterized by its storage capacity (U).  Assume parts arrive according to a 

Poisson process and that Z and U are infinite. 

<<<< Figure 1 Approximately Here >>>> 

 
Each resource (Ri) consists of a queue (Qi) and a machine (Mi) which is to service (i.e., process, 

inspect, or machine) a part.  The queue component is the waiting space proceeding the process 

where a part waits on a first-in-first-out basis until the single-server (ci = 1) becomes available to 

process it.  Assume the buffer capacity (xi) is infinite and that vi is the variability of the time 

between part arrivals to the queue. The time to service a single part for each of the machines is 
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specified by a probability distribution (fi) and its corresponding mean (mi) and standard deviation 

(si). 

 Friedman (1965) proposes a reduction procedure for tandem queues based on the dominance 

of a queue’s impact on the other queues of the flow line.  Applying his procedure results in 

modeling only the dominant queues of the system.  The other, less dominant queues are 

represented by only their service means.  In comparison, we propose that in a reduced 

representation of a single-server tandem queuing system, all resources are aggregated together to 

form a single aggregate resource, AR1.  Figure 2 illustrates the resulting aggregation flow line. 

<<<< Figure 2 Approximately Here >>>> 

 
 An aggregate flow line consists of the receiving area (R), the shipping area (S), and one 

aggregation resource (AR1).  The queue (Q1
*) of the aggregation resource is assumed to have 

infinite storage capacity.  The machine, M1
*, represents all the single-server machines of the 

original system.  The machine is characterized by its service time distribution (f1
*) and its 

corresponding service mean (δ 1
* ).  Note that f1

* represents all the aggregated service time 

distributions.  Developing a process for estimating this aggregate service time distribution is the 

objective of our analysis.   

 One approach for determining the aggregate resource service time distribution is to develop a 

combined or joint probability distribution using the original service time distributions (fi).  

Unfortunately, since general (i.e., non-exponential) service time distributions are allowed, a 

combination may be infeasible, inefficient, or impossible to develop.  Our solution is to represent 

this unspecified service time distribution not as a single mathematical function, but rather as a 

relationship between the original service time distributions using a procedure known as the 
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composition or mixture method (Law and Kelton 1991).  Kronmal and Peterson (1979) explain 

that some continuous distributions are efficiently generated by representing them as mixtures of 

several other (continuous) distributions that are easy to generate. As such, we propose to never 

specify the aggregate resource service time distribution (fi
*), but rather, to sample values from it 

during the execution of the aggregate simulation model.  The advantage of our approach over 

Friedman’s is that the variability for each of the individual service time distributions remains 

represented.  This is significant in that the service time variability is often one of the key 

characteristics of a system (Pegden et al. 1990). 

 Pritsker (1986) summarizes that composite sampling assumes that “the density function must 

be written as a weighted sum of component distribution functions with the sum of the weights 

totaling one.” That is, to sample from the unknown aggregate resource service time distribution 

(f1
*) requires determining a weighting relationship between the original service time distributions 

(fi).  To find the distribution weights requires a three-step process. The first step, explained in 

Section 2, estimates the total waiting time represented by an aggregation resource.  The second 

step, discussed in Section 3, computes the average service mean for the aggregate resource.  The 

final step, explained in Section 4, determines the relative strength or weight of each of the 

original service time means towards the aggregate resource service mean.  Special issues 

involved in specifying the aggregate simulation model are presented in Section 5.   Preliminary 

results from aggregating a series of test scenarios are presented in Section 6.  Section 7 provides 

a brief summary and discusses a limitation of the current methodology. 
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2  ESTIMATING CYCLE TIME 

 The first step in determining the distribution weights is to estimate the cycle time of the 

original flow line system.  Since our analysis assumes that parts arrive to the first resource, R1, by 

a Poisson process, the cycle time for a part at R1 can be estimated by the Pollaczek-Khinchine 

formula for an M/G/1 queue (Kleinrock 1976): 

[ ] ( )
( )
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where: E[T1] Expected cycle time for the first resource (R1) 

 λ   Arrival rate to R1 

 m1   Average service time of R1 

 s1
2
  Service time variation for R1 

 ρ1   Traffic intensity at resource R1: ρ λ1 = mi  
 

 Burke (1956) showed that the output of an M/M/S queue is Poisson.  If the service time 

distribution of R1 is exponential, its output process (arrival process to R2) will also be Poisson 

with the same parameter values.  The cycle time for subsequent resources in the flow line can be 

computed using the M/G/1 formula until the cycle time is computed for a non-exponential 

resource.  Subsequent resource cycle time estimates would use a G/G/1 (general arrival and 

general service) queueing formula.  Kumura (1991) proposes the following approximation: 
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where: E[T1] Expected cycle time of resource Ri (i = 2,...,N) 

 λ    Mean arrival rate 

 cvai

2  Coefficient of variation of the time between arrivals for Ri 

 µ i   Average service rate for resource Ri (i = 2,...,N) 
 cvmi

2   Coefficient of variation of the service time for resource Ri (i = 2,...,N) 
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 ρ i   Traffic intensity at resource Ri: ρ
λ
µi
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To estimate the cycle time using the above formula requires knowing the squared coefficient of 

variation of the arrival process.  To determine this variation, it is necessary to explore the output 

process of a single-server queue.  Marshall (1968) shows that, in steady-state, the time between 

the arrival of parts to subsequent resource in the flow line is the same as the arrival process.  

Hence, the mean time between arrivals does not change and remains constant throughout the 

flow line.  Unfortunately, since general service time distributions are allowed, the variability of 

the arrival time does change. 

 To estimate the change in variability, Marshall (1968) explored the arrival time variability for 

subsequent resources of a tandem queuing system and defined a formula for estimating the 

variance of the interdeparture interval (output process).  Rewriting this formula in terms of the 

flow line terminology results in the following estimator of the arrival variability to a resource: 

[ ]E v v s
T

i i i
i

i+ = + − −1
22

2
1

λ
ρ( )

            (1)
 

where: [ ]E vi+1  Variability of the output process of resource Ri+1 (i = 1,...,N) 
 vi   Variability of the arrival process to resource Ri (i = 2,...,N) 

 si
2   Variability of resource Ri’s service time (i = 1,...,N) 

 ρ i   Traffic intensity at resource Ri: ρ
λ
µi

i

=  (i = 1,...,N) 

 λ   Arrival rate to the flow line 
 µ i   Average service rate at resource Ri (i = 1,...,N) 
 Ti  Expected waiting time for resource Ri (i = 1,...,N) using the  G/G/1 formula.   
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Since parts arrive to the flow line according to a Poisson process, v1, the arrival variability to the 

first resource, R1, is always equal to 1 2λ . 

 Using the M/G/1, G/G/1 and variance estimating formulas allows for the estimation of the 

cycle time of each resource.  With these estimates, the average cycle time ( )T *  represented by 

the aggregation resource can be defined as follows: 

[ ]E T
T

N

j
j

N

* = =
∑

1  

Thus, the average cycle time of an aggregation resource is the sum of all resource cycle times  

aggregated by the aggregation resource divided by the number of resources aggregated.     

 

3  AGGREGATION RESOURCE SERVICE MEAN 

 The second step in determining the distribution weight is to compute the service mean needed 

to model an aggregate resource with the given average aggregate cycle time and arrival rate. The 

procedure for accomplishing this involves applying queueing formulas backwards, in that the 

mean service time of an aggregation resource is estimated from the average cycle time.  Using an 

M/G/C queueing formula (Hokstad 1978; Stoyan 1976) and solving for δ 1
*  generates the 

following estimator for the aggregation resource service mean: 
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where: [ ]E δ 1
*   Mean service time of aggregate resource one (AR1) 

  λ   Arrival rate of parts to the flow line 
  cv

δ1

2
*  Squared coefficient of variation of the unknown service time δ 1

*  
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With values for T1
* (the average aggregate resource cycle time) and λ  (the arrival rate) known, 

the only unknown in the above equation is the squared coefficient of variation ( cv
δ1

2
* ) of the 

aggregate resources service mean (δ 1
* ).  Since the aggregate resource service mean is unknown 

(it is the quantity that this procedure is attempting to compute), a value of cv
δ1

2
*  must itself be 

estimated.  Let the squared coefficient of variation for the aggregation resource, be a weighted 

average of the squared coefficient of variation of each of the service distributions aggregated by 

the aggregation resource.  Mathematically this is: 

[ ]E cv
T
T

s
m

j j
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N
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2

1

2

2
1

* *=



















=
∑  

Note that the weighting is a resource’s relative contribution toward the aggregation resource’s 

total cycle time.  Using (2) and solving for the positive value of δ 1
*  results in an estimate of the 

aggregate resource’s service mean.  This service mean will be used in the next section as the 

basis for determining the weights of the original service time distributions. 

 

4  DISTRIBUTION WEIGHTS 

 To use composite sampling to represent the aggregation resource service time distribution, 

two conditions must be met: (1) the sum of all the resource weights multiplied by their respective  

original resource mean service time must equal the average service time of the aggregation 

resource (δ 1
* ) and, (2) the weights must sum to one and be positive.  More formally, these two 

conditions are: 

(1) w mj j
j

N
* *=

=
∑ δ 1

1

and     (2)  w wj
j

N

j
* *,= ≥

=
∑ 1 0

1
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This convex relationship determines the proportional weight that each resource service mean 

contributes towards the average service time of the aggregation resource.  

 The easiest case for which to determine distribution weights is a flow line in which the 

aggregation resource represents a single resource.  The single resource would be called R1.  As a 

single resource, the aggregate service mean (δ 1
* ) is merely the resource’s service mean, m1.  

Thus, the distribution weight for the resource service mean, w1
* of resource R1, is 1.0, which 

clearly satisfies the two weighting conditions. 

 Determining the distribution weights for two aggregated resources (e.g., R1 and R2) is 

similarly easy.  Recall that our objective in determining the weights is to decide how to weight 

the two individual service resource means (m1 and m2) in such a way that they equal the 

aggregate service mean (δ 1
* ).  Applying the two weighting conditions results in the following 

equations: 

( ) ( )* * *w m w m1 1 2 2 1× + × = δ  
w w1 2 1* *+ =  

 
Since values of m1, m2, and δ 1

*  are known, the task of solving for w1
* and w2

* simply involves 

applying standard algebraic procedures for solving two equations with two unknowns. 

 Following similar logic, considers what occurs when the aggregation resource consists of 

three resources.  To determine the distribution weights requires solving two equations with three 

unknowns.  For example:  

 ( ) ( ) ( )* * * *w m w m w m1 1 2 2 3 3 1× + × + × = δ        (3) 
w w w1 2 3 1* * *+ + =  
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In this instance, the solution can only be reduced to a set of relationships among the variables.  

Determining a more specific solution requires much trial and error.  Consider an aggregation 

resource that represents (say) ten resources.  Here, the current solution technique involves 

solving two equations with ten unknowns (the weight for each of the ten resource service means).  

Quite a difficult, if not impossible task! 

 The technique to determine the service time weights must be expanded for those cases when 

three or more resources are represented by an aggregation resource.  The solution is to combine 

the techniques of determining total cycle time and deriving the average aggregate resource 

service mean with a recursive algorithm to reduce (by aggregating) the N resources of the 

aggregation resource to only two resources.  In essence, the technique aggregates within the 

aggregation resource to reduce the resources represented by the aggregation resource to only two.  

As demonstrated, determining the distribution weights for an aggregation resource representing 

two resources is easily derived by solving a set of two equations with two unknowns. 

 The complete algorithm is summarized in Savory (1993).  As an illustration, consider a flow 

line consisting of three single-server resources (R1, R2, and R3).  The first step is to estimate the 

average cycle time represented by the aggregation resource and to compute an estimated service 

mean for the aggregation resource.  This is illustrated in part (a) of Figure 3.  As discussed 

previously, solving for the distribution weights in equation (3) results in having to solve a system 

of two equations with three unknowns.  To reduce the number of resources represented by the 

aggregation resource, aggregate two resources (e.g., R1 and R3) within the aggregation resource.  

This is done by summing the cycle time of two resources (T1 and T3) and dividing this by two to 

find the average cycle time of the “new” aggregate resource.  That is, the average cycle time of 
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aggregate resource, A1|3 (an aggregate resource within an aggregation resource) is T1 3|
* , where T1 3|

*  

= ( )T T1 3 2+ .  Next, compute the mean service time (δ 1 3|
* ) for a resource with average cycle time 

T1 3|
* .  This is demonstrated in part (b) of Figure 3. 

<<<< Figure 3 Approximately Here >>>> 

 

 The aggregation step reduces the number of distinct resources represented by the aggregation 

resource by one (since two were aggregated together).  Thus, determining the weights is reduced 

to solving the following two equations: 

 ( ) ( )w w m1 3 1 3 2 2 1|
*

|
* * *× + × =δ δ         (4) 

w w1 3 2 1|
* *+ =  

where w1|3
* is the weight and δ 1 3|

*  is the average service time computed for the aggregate resource 

resulting by aggregating R1 and R3.  For larger problems, the aggregation process would continue 

until only two resources are represented by AR1. 

 Since the value for m2 is known and the values of δ 1 3|
*  and δ 1

*  will have been computed, (4) 

can easily be solved using standard algebraic techniques for solving two equations with two 

unknowns.  Doing so results in distribution weights which represent the proportional weight of 

each service time distribution to generate an aggregate service mean of δ 1
* .  For instance, the 

value computed for w2
* is the distribution (or percentage) weight that m2 contributes towards an 

aggregate resource service mean of δ 1
* .  The value for w1|3

* is the percentage weight of all the 

other (aggregated) resources of the aggregation resource. 
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 The reason this approach has been termed recursive is that now that the problem has been 

reduced to a point in which it can be solved, the procedure works incrementally backwards using 

its current and subsequent solutions to solve the previous level of resource aggregation.  For 

example, once (4) has been solved, (3) can be solved to find values for w1
* and w3

*.  In a more 

complex example, the backward process of the algorithm would continue until all original 

resources represented by the aggregation resource have distribution weights.  The result of 

applying this algorithm is a set of weights representing the relative significance of each service 

time distribution to be used for the composite sampling scheme. 

 

5  SIMULATION MODEL SPECIFICATION 

 After determining the distribution weights, a final task it to develop the aggregate simulation 

model.  The objective of this model is to estimate the average cycle time for a part to be 

processed by all stages of the tandem queuing system.  By modeling the arrival process, the 

single production step, and the leaving process of the aggregation resource, the average cycle 

time can be collected by running the simulation model. The service time of the single production 

station uses composite random number generation structured around the original service time 

distributions and the computed distribution weights.  Be aware that since the aggregate resource 

is an average of all the original resources (Ri), the true cycle time of a part through an aggregation 

flow line is N (the number of resources aggregated) multiplied by the average simulation 

estimate.  The Appendix demonstrates the application of the aggregation methodology for three 

single-server resources in tandem. 
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6 PRELIMINARY RESULTS 

 To test the effectiveness of applying the aggregation methodology, ten single-server flow line 

scenarios were randomly generated by a Mathematica program (Savory 1993).  Table 1 describes 

each of these test scenarios.  For example, Scenario 1 is a flow line consisting of nine resources, 

with the service time distribution of the first resource being uniform and the second resource 

having an exponential service time distribution.  The average utilization of the nine resources is 

35.47%.  Using the techniques of this paper, these nine single-server resources are combined into 

a single aggregation resource (AR1).     

 The full flow line model and its aggregate equivalent was written in the SLAM II simulation 

language (Pritsker 1986) for each of the test scenarios. Thirty replications of each of the 

simulation models were run under steady-state conditions.  A complete description of the service 

time parameters and the results from running the full and aggregate simulation models can be 

found in Savory (1993).    Table 2 summarizes the results.  The average relative error,  

RE = ×








100%

 Average aggregate cycle time -  Average full model cycle time 
Average full model cycle time

 

of the aggregate simulation model’s estimate of the cycle time is only 4.8735%.  A 95% 

confidence interval computed on the average relative error of the cycle time for the ten scenarios 

is: (4.3333%, 5.4137%).  To explore the output variability of the cycle time estimates, Table 1 

also illustrates the difference between the full and aggregate simulation model’s coefficient of 

variation.  The average difference in the variation for all scenarios is .00062164 or .06%.  

Overall, it appears the aggregation procedure closely estimates the average cycle time.  In 
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addition, it appears that the variability of the output distribution generated by the aggregate and 

full model are similar for the single-server system.   

<<<< Table 1 Approximately Here >>>> 
  

7 FINAL COMMENTS 

 The paper presents a procedure for aggregating a single-server tandem queueing system.  It 

proposes that all resources or stations are combined into a single processing step or aggregation 

resource.  The aggregation process uses queueing theory to estimate the cycle time of the flow 

line and to find the service mean of an aggregation resource.  It applies a recursive algorithm for 

determining the weight or relationship between each of the service time distributions.  Using 

these weights, it uses composite random number sampling to replicate the service distribution of 

the aggregation resource.  Testing reveals that the aggregation works well for estimating the 

mean and variability of the cycle time of a part and does not effect the output process of the 

tandem queuing system.  The results allow for simulation models of tandem queueing systems to 

be executed more effectively. 

 Future areas for expansion include incorporating finite capacity waiting areas, allowing for 

multiple server resources, and permitting part rework or rejects.  Our research currently has a 

limitation.  The aggregation approach depends on estimating a resource’s cycle time using the 

G/G/1 queueing formula in combination with the formula for estimating arrival variability.  We 

correctly conclude that a Poisson arrival process to an exponential resource results in the 

departure process being Poisson.  Hence, subsequent resources will also “see” a Poisson arrival 

process.  Once the arrival process experiences a non-exponential resource, however, subsequent 

arrival processes will not only not be Poisson, they will in general also not have independent 
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interarrival times.  Several papers (Patuwo et al, 1991; Szekli 1995; and Szekli et al. 1993), have 

shown that, beyond variability, correlation in the arrival process can drastically affect the 

occupancy and waiting time distributions.  Our approach assumes independence.  While this 

assumption is not necessarily true, we feel future research will show it is has minimal impact on 

our results.     
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APPENDIX 

 Consider three single-server resources in tandem.  Parts arrive to the flow line following an 

exponential distribution with a mean time between arrivals of 100 minutes.  The services time (in 

minutes) for each of the resources is given below: 

  •  Resource 1 (R1):  Uniform(75,85) 
  •  Resource 2 (R2) : Triangular(32,43,60) 
  •  Resource 3 (R3):  Uniform(64,80) 
 
For example, the service distribution of resource R2 is the triangular distribution with parameter 

values of 32, 43, and 60 representing the minimum, mode, and maximum, respectively. 

 In the aggregation representation of this flow line, resources R1, R2, and R3 are aggregated 

together to form aggregation resource AR1 (the aggregation of all single server resources).  AR1 is 
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represented by Q1
* and machine M1

*.  The specification for representing f1
* (the aggregate service 

time distribution) is the objective of the remainder of this example. 

 Table 2 presents the results from computing summary statistics for the three resources.  For 

instance, resource R1 has a mean service time of 80 minutes, and a service time variance of 

8.3333 minutes2.  As such, the squared coefficient of variation is computed to be .00130208.  

Applying the M/G/1 queuing formula results in R1 having an estimated cycle time (T1) of 

240.208 minutes:   

( )
( )

( )
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m
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1
2 2

1
1

2
1

2 1

1 100 80 8 3333

2 1 8
80 240 2083=

+

−
+ =

+

−
+ =

λ σ

ρ

.

( . )
.

 

That is, on average, a part will spend 240.208 minutes waiting for service and being service by 

R1.  The variability of the arrival process to R2, v1, can be estimated by equation (1), which 

computes the variability of resource R1’s output process: 
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Thus, the arrival process to R2 has a mean of 100 (since the mean time between arrivals remains 

constant throughout the flow line) and a variance of 3608.33333.  Therefore, the squared 

coefficient of variation of the arrival variation is 3608 33333
100

3608332

.
.= .  Using the G/G/1 formula, 

the expected cycle time of R2 can be estimated: 
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 With an estimate of the cycle time for R2, the arrival variability to R3 (output variability of R2) 

can be computed: 
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Thus, the arrival process to R3 has a mean of 100 and a variance of 3358.62.  The squared 

coefficient of variation of the arrival variation is 3358 62
100

3358622

.
..= .  Using the G/G/1 formula, the 

expected cycle time of R3 can be estimated: 
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 With all cycle times computed, the average cycle time of the aggregation resource, AR1, can 

be determined: 
T T T T

T

1
1 2 3

1

3
240 2083 47 8732 94 4827

3
382 564

3
127 521

*
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=
+ +

=
+ +

= =
 

  
 

<<<< Table 2 Approximately Here >>>> 
 

 Before computing the mean service time, the squared coefficient of variation of the service 

time for AR1 must be estimated.  This involves weighting the squared coefficient of variation of 

each resource’s service time by the percentage of that resource’s cycle time toward the overall 

total cycle time of the aggregation resource.  For AR1, the estimate of cvδ 1

2  is: 
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cvδ 1

2 240 208
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Using this result, the mean service rate of AR1 (δ1
* ) can be found.  Solving (2) results in δ1

*  being 

equal to 65.4155. 

 This third step of the aggregation methodology uses the mean service time of a resource to 

determine its contribution towards the aggregate service time mean.  Since aggregation resource 

AR1 represents three resources, determining the weights involves applying the recursive 

procedure.  Specifically, it is necessary to solve: 

80 45 72 65 4155

1
1 2 3

1 2 3

w w w
w w w

* * *

* * *

.+ + =

+ + =  

The first task in applying the recursion is to aggregate two of the resources within the aggregation 

resource.  Thus, aggregating (say) R1 and R3 yields a new aggregation resource: AR1|3 = {R1, R3}.  

Logic in determining which resources to aggregate is presented in Savory (1993).  The total cycle 

time of this aggregate resource is: 

T1|3
* = T1 + T3 = 240.208+94.4827 = 334.69070 

The average cycle time of AR1|3 is:  

T
T

1 3
1 3

2
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2
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To determine the mean service time needed to generate an average cycle time of 167.34535 

requires estimating the squared coefficient of variation:  
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Using this value, the mean service time of AR1|3 is computed to be δ 1 3|
*  = 72.3469. 
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 Now that R1 and R3 have been aggregated, the explicit number of resources represented by 

aggregation resource AR1 is reduced to only AR1|3 and R2.  Thus, the aggregation resource 

represents two resource, AR1|3 which has a service mean of 72.3469 and R2 with a service mean 

of 45.  With only two resources represented, the weights can be determined: 

72 3469 45 65 4155

1
1 3 2

1 3 2

. .|
* *

|
* *

w w

w w

+ =

+ =  

Solving yields w1|3
* = .746538 and w2

* = .253462.  Thus, the contribution of m2 towards the 

aggregation resource service time is 25.3462%, while the other (currently aggregated) resources 

contribute 74.6538%.   

 With w2
* known, the next step is to go to the previous level of aggregation and plug this value 

into the equations: 

80 45 253462 72 65 4155

253462 1
1 3

1 3

w w
w w

* *

* *

(. ) .

.

+ + =

+ + =  

These equations reduce to: 

80 72 54 00971

746538
1 3

1 3

w w
w w

* *

* *

.

.

+ =

+ =  

Solving yields the values: w1
* = .0323717 and w3

* = .714166.  Note that the sum of w1
*, w2

*, and 

w3
* is 1.00.  These weights will next be used to develop the aggregate simulation model of the 

flow line system.  Each weight will represent the weight of the resource service time distribution 

in estimating the aggregation resource service time distribution. 

 The final task is to specify the composite random number sample schemes for representing 

AR1.  Recall that the resources R1, R2, and R3 are characterized by their service time 

distributions, f1 = Uniform(75,85), f2 = Triangular(32, 43, 60), and f3 = Uniform(64, 80), and 
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their distribution weights, w1
* = .0323717, w2

* = .253462, and w3
* = .714166.  Hence, the 

composite sampling distribution for representing AR1 is: 

f I
Uniform I

Triangular I
Uniform I

1

75 85 0 0323717
32 43 60 0323717 2858337
64 80 2858337 1

*( )
( , ) .
( , , ) . .
( , ) .

=
≤ <

≤ <
≤ ≤









 

where I is a Uniform(0,1) random number that is generated when a sample from f1
* is needed.  

Figure 4 displays a subset of the SLAM II simulation model for representing this example.  Note 

that ATRIB(3) records the service time and ATRIB(4) records the average cycle time.  The final 

attribute, ATRIB(5), records the total cycle time by multiplying the average cycle time by three 

to account for the fact that three resources were aggregated by the aggregation resource.   

 

<<<< Figure 4 Approximately Here >>>> 
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Figures  
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Figure 1. A tandem queueing system consisting of N resources. 
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Figure 2.  An aggregate representation of a single-server tandem queueing system. 
 
 
 
 

R R R

AR
1|3

R

(a)

(b)

AR1

2

21 3

 

 

Figure 3. Example of the recursive procedure to determine the distribution weight for an   
  aggregation resource consisting of three resources. 
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  CREATE,EXPON(100),,1; 
; 
  GOON,1; 
   ACT,,.0323717,A11; 
   ACT,,.2534620,A12; 
   ACT,,.7141660,A13; 
A11 ASSIGN, ATRIB(3)=UNFRM(75,85); 
   ACT,,,D1; 
A12 ASSIGN, ATRIB(3)=TRIAG(32,43,60); 
   ACT,,,D1; 
A13 ASSIGN, ATRIB(3)=UNFRM(64,80); 
   ACT,,,D1;            
; 
D1 Queue(1); 
   ACT(1)/1,ATRIB(3); 
; 
  ASSIGN,ATRIB(2)=TNOW-ATRIB(1)-ATRIB(3); 
  ASSIGN,ATRIB(4)=ATRIB(2)+ATRIB(3); 
  COLCT,ATRIB(3),AR1 SERVICE TM; 
  COLCT,ATRIB(4),AR1 CYCLE TM; 
  ASSIGN,ATRIB(5)=ATRIB(4)*3; 
  COLCT,ATRIB(5),AR1 TOTAL CYCLE; 

 

Figure 4.  SLAM II code for modeling the aggregation resource representing the three tandem  
     resources. 
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Tables 
 
 

Table 1: Test case scenarios.  The service time distributions are: UN = uniform, EX = 
exponential, LN = lognormal, TR = triangular, RN = normal.  The average 
utilization for the test scenarios is given in Average Utilization.  Relative Error is 
the relative difference between comparing the aggregate simulation model 
estimate of cycle time to the full model simulation results.  The Difference of CV 
measures the difference in the coefficient of variation of the cycle time estimates. 

 
Scenario Number of 

Resources 
Service time Distributions of Resources 

flow line (in order) 
Average 

Utilization 
Relative  

Error 
Difference 

of CV 
1 9 UN, EX, LN, UN, TR, RN, RN, TR, EX .3547 0.0931% -.0000014 
2 8 EX, RN, LN, RN, EX, LN, RN, EX .4881 2.0166% .0019032 
3 8 TR, EX, TR, LN, EX, EX, TR, TR .5902 4.6510% .0014228 
4 8 RN, RN, LN, LN, EX, EX, UN, UN .4210 3.6070% .0015125 
5 7 UN, EX, RN, RN, TR, UN, UN .4731 9.0020% .0001701 
6 6 TR, LN, UN, EX, UN, LN .5315 6.8706% .0011038 
7 8 TR, EX, TR, EX, LN, UN, RN, TR .4231 7.3859% -.0000071 
8 7 TR, TR, RN, TR, EX, UN, TR .3484 5.6569% .0012286 
9 5 TR, UN, TR, RN, LN .3874 7.5506% .0004253 

10 10 TR, TR, RN, LN, RN, EX, TR, EX, TR, UN .5228 1.9013% -.0014644 
 
 
 
Table 2: Summary statistics for the three resources of the flow line system.  The variance,  
               squared coefficient of variation, and cycle time has been computed for each of the 
               resources. 
 

 R1 R2 R3 
Mean (mj) =  80  45  72 

Variance (σ mj

2 ) =  8.3333  33.1667  21.3333 

 Square  COV ( cvmj

2 ) =   .00130208  .0163786  .00411523 

Arrival Mean =   100  100  100 
Arrival Variability (vi) =   1002 = 10,000  3608.3333  3358.62 

Est. Cycle Time (Tj) =   240.208  47.8732  94.4827 
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