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Cluster computing has become an important paradigm for solving large-scale prob-

lems. However, as the size of a cluster increases, so does the complexity of resource

management and maintenance. Therefore, automated performance control and re-

source management are expected to play critical roles in sustaining the evolution of

cluster computing. The current cluster scheduling practice is similar in sophistication

to early supercomputer batch scheduling algorithms, and no consideration is given to

desired quality-of-service (QoS) attributes. To fully avail the power of computational

clusters, new scheduling algorithms that provides high performance, QoS assurance,

fault-tolerance, energy savings and streamlined management of the cluster resources

needs to be developed.

The challenge, however, in developing real-time scheduling algorithms for cluster

and grid computing is to support various types of applications. Broadly speaking,

computational loads submitted to a cluster can be categorized into three types: se-

quential, modularly divisible and arbitrarily divisible. An arbitrarily divisible work-

load model is a good approximation of many real-world applications, e.g., distributed

search for a pattern in text, audio, graphical, and database files; distributed pro-

cessing of big measurement data files; and many simulation problems. All elements

in such an application often demand an identical type of processing, and relative to

the huge total computation, the processing on each individual element is infinites-

imally small. As such applications become a major type of cluster workloads and



thus providing QoS to arbitrarily divisible loads becomes a significant problem for

cluster-based research computing facilities.

The problem of providing performance guarantees to divisible load applications

has not been studied systematically. The objective of this dissertation is to provide

assured QoS performance to cluster and grid applications through the development

of new real-time scheduling theory and algorithms, particularly, real-time divisible

load scheduling algorithms for cluster computing. We develop and apply real-time

scheduling algorithms for cluster computing, providing QoS for the gird and High

Performance Computing (HPC) applications. In this dissertation, we address the

aforementioned challenges by investigating and developing 1) real-time scheduling al-

gorithms for divisible loads, 2) a real-time scheduling algorithm for divisible loads

with advance resource reservation, 3) an efficient real-time divisible load scheduling

algorithm for large clusters and 4) feedback-control based real-time divisible load

scheduling algorithms that provide predictable performance in unpredictable envi-

ronments.
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Chapter 1

Introduction

Cluster computing has become an important paradigm for solving large-scale prob-

lems. However, as the size of a cluster increases, so does the complexity of resource

management and maintenance. Therefore, automated performance control and re-

source management are expected to play critical roles in sustaining the evolution of

cluster computing. Current cluster batch scheduling algorithms do not consider de-

sired quality-of-service (QoS) attributes. To fully avail the power of computational

clusters, new scheduling algorithms that provides high performance, QoS assurance,

and streamlined management of cluster resources needs to be developed.

Real-time scheduling theory has been very successful in providing deterministic

QoS in desktop systems [11, 13, 49]. A significant challenge in developing real-time

scheduling algorithms for cluster computing, however, is to support various types of

cluster applications. Broadly speaking, computational loads submitted to a cluster

can be structured in three primary ways: indivisible, modularly divisible, and arbi-

trarily divisible. An indivisible load is essentially a sequential job which cannot be

further divided, and thus must be assigned to a single processor. Modularly divisible

loads can be divided a priori into a certain number of subtasks and are often described
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by a task (or processing) graph. Arbitrarily divisible loads, also called embarrassingly

parallel workloads, can be partitioned into an arbitrarily large number of indepen-

dent load fractions. This workload model is a good approximation of many real-world

applications [26], e.g., distributed search for a pattern in text, audio, graphical, and

database files; distributed processing of big measurement data files; and many sim-

ulation problems. Quite a few scientific applications conform to this divisible load

task model. Examples of arbitrarily divisible loads can be easily found in high energy

and particle physics as well as biometrics. For example, the CMS (Compact Muon

Solenoid) [29] and ATLAS (A Toroidal LHC Apparatus) [6] projects, which are as-

sociated with the LHC (Large Hadron Collider) at CERN (European Laboratory for

Particle Physics), execute cluster-based applications with arbitrarily divisible loads.

Usually all elements in such computational loads demand an identical type of pro-

cessing, and relative to the huge total computation, the processing on each individual

element is infinitesimally small. The problem of providing QoS or real-time guarantees

for sequential and modularly divisible jobs in distributed systems has been studied

extensively. However, despite the increasing importance of arbitrarily divisible ap-

plications [68], to the best of our knowledge, the real-time scheduling of arbitrarily

divisible loads has not been systematically investigated.

Scheduling of arbitrarily divisible loads represents a problem of great significance

for cluster-based research computing facilities such as the U.S. CMS Tier-2 sites [76].

For example, one of the management goals at the University of Nebraska-Lincoln

(UNL) Holland Computing Center (a CMS Tier-2 site) is to provide a multi-tiered

QoS scheduling framework in which applications “pay” according to the response time

requested for each job [76]. By monitoring the CMS mailing-list, we have learned that

CMS users always want to know task response times when they submit tasks to clus-

ters. However, without a good QoS mechanism, current cluster sites cannot provide
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these users good response time estimations. Existing real-time cluster scheduling

algorithms assume the existence of a task graph for all applications, which are not

appropriate for arbitrarily divisible loads. To better manage these high-end clus-

ters and control their performance, we propose to develop new real-time scheduling

algorithms that support arbitrarily divisible applications.

Divisible Load Theory (DLT) provides an in-depth study of distribution strategies

for arbitrarily divisible loads [68, 9, 79]. The goal of DLT is to exploit parallelism in

computational data so that the workload can be partitioned and assigned to several

processors such that execution completes in the shortest possible time [9]. DLT

has been previously applied to and implemented in Grid computing [84, 42, 78].

Complimentary to that work, we apply DLT in the design of real-time scheduling

algorithms for cluster computing; specifically, DLT is applied in the partitioning of

applications, such as CMS [29] and ATLAS [6], that execute on a large cluster.

Recently, there has been some study on real-time divisible load scheduling. Lin

et al. proposed a real-time divisible load scheduling algorithm and investigated the

problem of providing deterministic QoS to arbitrarily divisible applications executing

in cluster environments in [45]. They applied DLT to guide task partitioning, to

derive task execution function, and to compute the minimum number of processors

required to meet its deadline. The proposed algorithm EDF-DLT-MN can optimally

partition the workload on allocated nodes so that all subtasks of a task complete

at the same time. This algorithm requires that all allocated nodes are available

at the same time. If the required number of processors are not available, the task

waits for some currently running jobs to finish and free additional processors. This

causes a waste of processing power as some processors are idle when the system is

waiting for enough processors to become available to start the waiting task. This is

called the Inserted Idle Time (IIT) problem. Lin et al. investigated this drawback
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in [46], where they solved the IIT problem by casting the homogeneous cluster to

a heterogeneous cluster. Lee et al. investigated scheduling algorithms for “scalable

real-time tasks” running on a multiprocessor system and proposed MWF (Maximum

Workload Derivative First) algorithm in [43]. Like divisible load, it assumes that

a task can be executed on multiprocessors and as more processors are allocated its

pure execution time decreases. Chuprat and Baruah proposed an algorithm that

can utilize the IIT, and employed a linear programming approach to compute task

execution times [17, 18].

The proposed algorithms in [45, 46, 43, 17, 18], however, have the following limi-

tations:

1. These approaches did not consider the setup cost of divisible loads. The setup

cost could come from the delay for starting a remote process; It may also in-

clude the time to initiate a network connection and physical network latency

etc. It has also been shown that the setup cost for computation can be up to 25

seconds in practice, which is significant for small tasks. When there are setup

costs, task execution time no longer decreases monotonically as the number of

allocated processors increases. Therefore, in order to avoid waste of resources,

the scheduling algorithm has to decide the optimal number of allocated pro-

cessors that minimizes execution time of a task. Existing approaches did not

consider these setup costs and their effects.

2. Previous approaches did not consider the advance reservation of resources. For

grid applications that require simultaneous access to multi-site resources, sup-

porting advance reservations in a cluster is important. At the cluster level, some

debugging applications, or interactive applications require a specified number of

processors to be available at predefined time intervals. Scheduled maintenance

and processor down times can also be treated as advance reservations. Existing
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Table 1.1: Sizes of OSG Clusters.

Host Name No. of CPUs
fermigrid1.fnal.gov 41863
osgserv01.slac.stanford.edu 9103
lepton.rcac.purdue.edu 7136
cmsosgce.fnal.gov 6942
osggate.clemson.edu 5727
grid1.oscer.ou.edu 4169
osg-gw-2.t2.ucsd.edu 3804
osg.rcac.purdue.edu 3535
pg.ihepa.ufl.edu 3324
cmsgrid01.hep.wisc.edu 3297
u2-grid.ccr.buffalo.edu 2104
red.unl.edu 1140

divisible load scheduling algorithms do not consider the scenarios where some

processors are not available for some period of time due to advance reservations.

3. Previous algorithms do not scale well. Clusters are becoming increasingly bigger

and busier. In Table 1.1, we list the sizes of some OSG (Open Science Grid)

clusters. As we can see, all of these clusters have more than one thousand

CPUs, with the largest providing over 40 thousand CPUs. Figures 1.1 and 1.2

show the number of tasks waiting in the OSG cluster at University of California,

San Diego for a 20-hour period, demonstrating that at times there could be as

many as 37 thousand tasks in the waiting queue of a cluster. As the cluster

size and workload increase, so does the scheduling overhead. For a cluster with

thousands of nodes and/or thousands of waiting tasks, the scheduling overhead

could be substantial and existing divisible load scheduling algorithms are no

longer applicable due to the lack of scalability. For example, to schedule the

bursty workload in Figure 1.1, the previously best-known real-time scheduling

algorithm [17] takes more than 11 hours to make admission control decisions on

the 14,000 tasks that arrive in an hour. This is certainly not acceptable.
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Figure 1.1: Status of a UCSD Cluster (Bursty Arrival).
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Figure 1.2: Status of a UCSD Cluster (Large Queue).
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4. Existing algorithms assume that the task execution time is accurately known

or can be derived based on the data size prior to execution. Furthermore, these

are “open-loop” scheduling algorithms. Once schedules are created, they are

not adjusted based on continuous feedback from the system. While they per-

form well in predictable environments, their performance in open and dynamic

environments could be unacceptably poor. In an open environment like a gen-

eral purpose cluster, where workloads are unknown and may vary at run-time,

we need adaptive solutions that can maintain desired performance by handling

system variations dynamically.

To address aforementioned limitations, in this dissertation, we propose to investigate:

• Real-time divisible load scheduling with setup costs, where we investigate the

algorithms that schedule arbitrarily divisible load with setup costs and analyzed

the effects of setup costs on the scheduling decisions and their performance.

• Real-time divisible load scheduling that supports advance reservations, where

we develop a multi-stage algorithm that can schedule both advance reservation

tasks and regular aperiodic tasks. We not only enforce the real-time agreement

but also address the under-utilization concerns raised by advance reservations.

We systematically study the impact of advance reservations on system perfor-

mance.

• Efficient real-time divisible load scheduling algorithms, where we provide a scal-

able scheduling algorithm by decoupling the admission controller and the dis-

patcher. The proposed algorithm is linear in the number of processors in the

cluster and the number of waiting tasks and incurs little scheduling overhead

even on large clusters with long waiting queues.
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• Feedback control based real-time divisible load scheduling algorithm, where we

integrate control theory into the real-time scheduling of divisible loads. By

dynamically handling workload and system variations, our algorithm provides

predictable QoS guarantees for soft real-time divisible loads in unpredictbale

environments.

By integrating the real-time theory and divisible load theory into cluster scheduling,

the proposed algorithms in this dissertation can provide QoS assurance and fault

tolerance and facilitate automated management of cluster resources. The results can

also be extended to a grid of clusters, and integrated into grid-level schedulers to

provide grid-level service guarantees. This research contributes significantly to the

area of real-time divisible load scheduling.

This dissertation is organized as follows: In chapter 2, we discuss the related work

and in chapter 3, we present task and system models. In chapter 4, we describe

the real-time divisible load scheduling algorithm that considers setup costs and the

real-time divisible load scheduling algorithm that supports advance reservations is

presented in chapter 5. In chapter 6 we present the efficient real-time divisible load

scheduling algorithm. In chapter 7, we present the feedback-control based real-time

divisible load scheduling. Chapter 8 concludes the dissertation.
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Chapter 2

Related Work

The previous chapter briefly introduces the four challenges that we address in this dis-

sertation. In this chapter, we summarize the work related to these four challenges. In

Section 2.1, we discuss existing real-time divisible load scheduling algorithms for clus-

ter computing. We describe the related work to the real-time divisible load scheduling

with advance reservations in Section 2.2. In Section 2.3, we discuss the complexity of

existing real-time divisible load scheduling algorithms. In Section 2.4, we summarize

the related work on the feedback-control based real-time scheduling.

2.1 Real-time Divisible Load Scheduling

The real-time scheduling models investigated for distributed or multiprocessor sys-

tems often (e.g., [67, 66, 38, 1, 64, 34, 4, 41]) assume periodic or aperiodic sequential

jobs that must be allocated to a single resource and executed by their deadlines. In

recent years, researchers have begun to investigate real-time scheduling of parallel

applications on clusters [85, 65, 27, 2, 3]. However, most of these studies assume

the existence of some form of task graph to describe communication and precedence

relations between computational units called subtasks (i.e., nodes in the task graph).
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Netto and Buyya [62] consider the scheduling of parallel bag-of-tasks applications,

where each application is formed of a bag of independent sequential tasks that need

to be completed by a deadline. Because bag-of-tasks applications are not arbitrarily

divisible, they are different from the divisible loads investigated in our research.

The most closely related work [43] to this research is scheduling algorithms for

“scalable real-time tasks” running on a multiprocessor system. In that work, like

divisible loads, it is assumed that a task can be executed on more than one processor

and as more processors are allocated, its pure computation time decreases monotoni-

cally. The paper notes that the decision on the number of processors allocated to tasks

is an important factor in the design of parallel scheduling algorithms. However, the

simulations described in the paper are limited. Their conclusions on comparing their

proposed MWF schemes with the EDF and FIXED algorithms [61, 7] hold true only

in certain scenarios [45]. The work on scheduling “moldable jobs” [8, 19, 35, 69, 74]

is also related, but only He et al. [35] have considered QoS support.

Lin et al. developed a real-time divisible load scheduling algorithm and investi-

gated the problem of providing deterministic QoS to arbitrarily divisible applications

executing in cluster environments in [45]. Their work in this research differs signifi-

cantly from previous work in real-time as well as cluster computing in both the task

model assumed and in the comprehensiveness of their study. In that work, unlike

previous study in [43], they do not assume task execution times are known a priori.

Instead, DLT is applied to guide task partitioning, to derive its execution function,

and to compute the minimum number of processors required to meet its deadline.

They identified three important and necessary design decisions: 1) workload parti-

tioning, 2) node assignment, and 3) task execution order. They also systematically

studied the effects of the different design parameters. The algorithm in [45], however,

ignores setup costs of divisible loads. We significantly extend that work, where we
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propose and evaluate new algorithms that can handle setup costs of divisible loads.

2.2 Real-time Divisible Load Scheduling with Ad-

vance Reservations

Real-time scheduling of parallel applications on a cluster has been studied exten-

sively [38, 85, 65, 27, 2, 3]. However, they either do not consider arbitrarily di-

visible loads or have no support for advance reservations. Due to the increasing

importance of arbitrarily divisible applications [68], a few researchers [43, 17, 18, 35]

have investigated the real-time divisible load scheduling. Lin et al. applied divisible

load theory [79] and developed several scheduling algorithms for real-time divisible

loads [45, 46, 44]. However, they do not support advance reservations.

To offer QoS support, researchers have investigated resource reservations for net-

works [22, 28, 82], CPUs [15, 72], and co-reservations for resources of different types

[20, 48]. The most well-known architectures that support resource reservations in-

clude GRAM [21], GARA [31, 32] and SNAP [20]. These research efforts mainly focus

on resource reservation protocols and QoS support architectures. Our work, on the

other hand, focuses on scheduling mechanisms to meet specific QoS objectives, which

could be integrated into architectures like GARA [31, 32] to satisfy Grid users’ QoS

requirements.

Advance reservation and resource co-allocation in Grids [72, 37, 30, 60, 32] assume

the support of advance reservations in local cluster sites. Cluster schedulers like PBS

PRO, Maui and LSF [57] support advance reservations. However, they are not widely

applied in practice due to under-utilization concerns. In [57, 12], backfilling is used

to improve system utilization. However, these results still show a significant waste

of system resources when advance reservations are supported. Furthermore, these
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schedulers do not provide real-time guarantees to regular tasks.

In this thesis, we investigate real-time divisible load scheduling algorithms that

support advance reservations, where we provide QoS guarantees for both advance

reservation and regular tasks. We also investigate the effect of advance reservations

on the system performance.

2.3 Efficient Real-time Divisible Load Scheduling

Real-time divisible load scheduling has been investigated in [45, 46, 43, 17, 18]. Focus-

ing on QoS, real-time guarantees, and better utilization of cluster resources, existing

approaches place little emphasis on scheduling efficiency. They assume that schedul-

ing takes much less time than the execution of a task, and thus ignore the scheduling

overhead. However, clusters are becoming increasingly bigger and busier. As the

cluster size and workload increase, so does the scheduling overhead. If we use N to

represent the number of processors and n to denote the number of tasks waiting in

the system, the time complexity of the most efficient algorithms proposed in [43] (i.e.,

MWF-FA and EDF-FA) is O(n2+nN). The time complexity of algorithms proposed

in [17, 18] is O(nNlogN) and the algorithm in [46] has a time complexity of O(nN3).

For a cluster with thousands of nodes or thousands of waiting tasks, the scheduling

overhead could be substantial and existing divisible load scheduling algorithms are

no longer applicable due to the lack of scalability.

In this dissertation, we address this deficiency of existing approaches and develop

an efficient algorithm for real-time divisible load scheduling. Our algorithm has a

time complexity that is linear in the number of tasks in the queue and the number of

nodes in the cluster. It is efficient and scales well to large clusters. In addition, the

algorithm performs similar to algorithms in [46, 17, 18], and it eliminates IITs.
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2.4 Feedback-Control Based Real-time Divisible Load

Scheduling

The existing real-time divisible load scheduling algorithms in [58, 44, 43, 17, 46, 45, 35]

are all “open-loop” scheduling algorithms. Once the schedules are created, they are

not adjusted according to the system status. They are designed based on worst-case

workload parameters to ensure task deadlines, which often result in extremely low

system utilization due to pessimistic estimates. Most real-time divisible applications

have soft real-time requirements: they have stringent timeliness requirements but can

nevertheless tolerate deadline misses to a certain pre-specified degree. Therefore, for

such applications, it is more cost effective not to design algorithms for the worst case.

Instead, we should make a proper tradeoff between the deadline guarantee and the

system utilization.

In an open environment like a computing cluster, workload changes and system

variations should be handled dynamically. To address this challenge, we need a

feedback-control based approach. Control theory provides us a scientific foundation

for designing feedback-control based computing systems [40, 14, 81, 39, 36]. Diao

et al. [24, 25] designed a controller to balance the resource demands in a database

management system. Liu et al. [50] developed an adaptive multivariate controller to

provide service differentiation in a multi-tier web site. QoS-driven workload man-

agement was presented using a nested feedback controller [86], where the inner loop

regulates the CPU utilization of a virtual container and the outer loop maintains

the application-level response time at its target. Control theory was also applied

in feedback-control based real-time scheduling of sequential tasks [75, 51, 53]. Sim-

ilar approaches were used for e-mail server queue management [63], web cache hit

ratio control [56, 55], and CPU utilization control in data centers [83]. Guarantees
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were made on power dissipation [71] with a control theoretic microprocessor thermal

management. In distributed real-time and embedded systems, researchers designed

model predictive controllers to regulate CPU utilization [54] and power consump-

tion [80]. Block et al. [10] applied control theory to design an adaptive framework for

multiprocessor real-time systems.

In recent years, the soft real-time applications in cluster environments have been

growing rapidly. Examples include web servers and real-time data base systems. For

those system, it is difficult to accurately model the workloads, and there is a tradeoff

between system utilization and deadline miss. It is more cost effective not to design

for the worst case, even if deadlines could be missed occasionally. Existing feedback-

control based approaches, however, focus on either single server systems or sequential

tasks. They are not applicable to control divisible loads. To provide QoS guarantees

for soft real-time divisible applications whose execution times cannot be accurately

derived from the data size, we need to find creative ways to apply feedback control

theory to the real-time divisible load scheduling. In this dissertation, we investigate

feedback control based real-time divisible load scheduling algorithms that maintain

low deadline miss ratios and high utilizations despite dynamic workload changes.
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Chapter 3

Models

In this chapter we describe our task and system models and state assumptions related

to these models. All of our work is based on theses models, unless specified otherwise.

3.1 Task Model

In this dissertation, we assume the workload may consist of two types of tasks: regular

tasks and reservation tasks.

3.1.1 Regular Task

For a regular task, a real-time aperiodic task model is assumed, in which each aperi-

odic task Ti consists of a single invocation specified by (Ai, σi, Di), where Ai is the task

arrival time, σi is the total data size of the task, and Di is its relative deadline [47].

The task absolute deadline is given by Ai +Di. Assuming Ti is arbitrarily divisible,

the task execution time is thus dynamically computed based on the total data size

σi, resources allocated (i.e., processing nodes and bandwidth) and the partitioning

method applied to parallelize the computation. There are many applications [26]
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conforming to this divisible load task model, e.g., distributed search for a pattern in

text, audio, graphical, and database files; distributed processing of big measurement

data files; and many simulation problems. For such applications, we often derive their

data sizes σi based on their input file sizes.

3.1.2 Reservation Task

A reservation task Ri is specified by the tuple (Ri
a, R

i
s, ni, R

i
e, IO

i
ratio), where Ri

a is

the arrival time of the reservation request, Ri
s and Ri

e are respectively the start time

and the finish time of the reservation, ni is the number of nodes to be reserved in

[Ri
s, R

i
e] interval, and IOi

ratio specifies the data transmission time relative to the length

of reservation. It is assumed that for a reservation, data transmission happens at the

beginning and computation follows. Let Ri
io = Ri

s + (Ri
e − Ri

s) × IOi
ratio. We have

data transmission in the interval [Ri
s, R

i
io] and computation in the interval [Ri

io, R
i
e].

3.2 System Model

A cluster consists of a head node, denoted by P0, connected via a switch to N process-

ing nodes, denoted by P1, P2, . . . , PN . We assume that all processing nodes have the

same computational power and all links from the switch to the processing nodes have

the same bandwidth. The system model assumes a typical cluster environment in

which the head node does not participate in computation. The role of the head node

is to accept or reject incoming tasks, execute the scheduling algorithm, divide the

workload and distribute data chunks to the processing nodes. Since different nodes

process different data chunks, the head node sequentially sends every data chunk to

corresponding processing node via the switch. We assume that data transmission

does not happen in parallel. For arbitrarily divisible loads, tasks and subtasks are
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independent. Therefore, when executing such applications processing nodes do not

communicate with each other.

According to the divisible load theory (DLT), linear models are used to represent

processing and transmission times [79]. In the simplest scenario, the computation

time of a load σ is calculated by a cost function Cp(σ) = σχ, where χ represents the

time to compute a unit of workload on a single processing node. The transmission

time of a load σ is calculated by a cost function Cm(σ) = στ , where τ is the time

to transmit a unit of workload from the head node to a processing node. For many

applications the output data is just a short message and is negligible, particularly

considering the very large size of the input data. Therefore, in this thesis we only

model transfer of application input data but not the transfer of output data. The

extension to consider the output data transfer using DLT is straightforward.

The following notations, partially adopted from [79], are used in the thesis.

• T = (A, σ,D): A divisible task, where A is the arrival time, σ is the data size,

and D is the relative deadline.

• α = (α1, α2, ..., αn): Data distribution vector, where n is the number of pro-

cessing nodes allocated to the task, αj is the data fraction allocated to the jth

node, i.e., αjσ is the amount of data that is to be transmitted to the jth node

for processing, 0 < αj ≤ 1 and Σn
j=1αj = 1.

• τ : Cost of transmitting a unit workload.

• χ: Cost of processing a unit workload.

• θcm: The setup time (cost) for the head node to initialize a communication on

a link.

• θcp: The setup time (cost) for a processing node to initialize a computation.
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Chapter 4

Real-Time Divisible Load

Scheduling with Setup Costs

4.1 Introduction

Arbitrarily divisible applications form an important category among the computa-

tional loads submitted to a cluster. Providing QoS or real-time guarantees for arbi-

trarily divisible applications executing in a cluster environment not only significantly

improves the user experience, but also reinforces the system performance. Lin et

al. investigated the problem of providing deterministic QoS for arbitrarily divisible

application for cluster computing [45]. They identified that when developing such

a scheduling algorithm, we need to make three important decisions: 1) scheduling

policy that determines the task execution order; 2) the number n of processors that

are allocated to each task; and 3) a strategy that partitions the task workload among

n allocated processors. However, the proposed approach did not consider the setup

costs of the divisible loads. The delay of starting a remote process or the time to

initiate a network connection etcetera all contribute to the setup costs. It has been
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shown that the setup costs are significant in some scenarios. As a result, task execu-

tion times no longer monotonically decreases as the number of processors increases,

which introduces new challenges to the real-time divisible load scheduling problem.

In this chapter, we significantly extend that work in [45], where we propose and

evaluate new algorithms that can handle setup costs of divisible loads. We also

conduct the analysis and experiments on large clusters to investigate the effects of

multiple design decisions and system parameters. Next, we present our algorithms.

In this chapter, all tasks follow the regular task model described in Section 3.1.1.

4.2 Algorithms

This section presents real-time scheduling algorithms for divisible loads with setup

costs. To develop the algorithms, we need to make three important decisions. The

first is to adopt a scheduling policy to determine the order of execution for tasks

(Section 4.2.1). The second decision is to choose a strategy to partition the task

(Section 4.2.2), that is, to partition the task data among a given number of computing

resources. The last decision is to determine the number n of processing nodes to assign

to each task (Section 4.2.3). Basically, for a real-time divisible task, the number of

the processing nodes assigned to it can be between the minimum number of nodes for

it to complete before its deadline and all available processing nodes in the system.

4.2.1 Scheduling Policies

Three scheduling policies to determine the execution order of tasks are investigated:

FIFO (First In First Out), EDF (Earliest Deadline First) and MWF (MaximumWork-

load derivative First) [43]. The FIFO scheduling algorithm executes tasks following

their order of arrival and is a common practice adopted by cluster administrators
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to manage a task queue. EDF, a well-known real-time scheduling algorithm, orders

tasks by their absolute deadlines. As a real-time scheduling algorithm for divisible

tasks, the main rules of MWF [43] are: 1) a task with the highest workload derivative

(δwi) is scheduled first; and 2) the number of nodes allocated to a task is kept as

small as possible (nmin) without violating its deadline. Node assignment is described

in Section 4.2.3. Here, we review how MWF determines task execution order and

defines the workload derivative metric, δwi.

δwi = wi(n
min
i + 1)− wi(n

min
i ), (4.1)

where wi(n) represents the workload (cost) of a task Ti when n processing nodes

are assigned to it. That is, wi(n) = n × E(σi, n), where E(σi, n) denotes the task

execution time (see Section 4.3 for E ’s calculation). Therefore, δwi is the derivative

of the task workload wi(n) at n
min
i (the minimum number of nodes needed by Ti to

meet its deadline).

4.2.2 Task Partitioning Methods

We apply a task partitioning method to divide a task among its allocated processing

nodes. Two different partitioning methods are investigated: Optimal Partitioning

Rule (OPR), and Equal Partitioning Rule (EPR). OPR is based on divisible load

theory (DLT), which states that the optimal execution time is obtained when all

nodes allocated to a task complete their computation at the same time [79]. For

comparison, we propose EPR, based on a common practice of dividing a task into

n equal-sized subtasks when the task is to be processed by n nodes. When different

partitioning methods are applied to parallelize a task’s computation, the task will

experience different execution time and may require varied minimum number nmin
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of nodes. In Section 4.3, we provide detailed analysis on these partitioning methods

and derive the task execution time and nmin for each of them.

4.2.3 Node Assignment Policies

Node assignment determines the number of processing nodes allocated to a task. In

this chapter, we study two primary strategies for node assignment. First, assign a

task all N or n∗ (i.e., min(N, n∗)) nodes to finish it as early as possible (see Section 4.4

for n∗’s description). Second, assign a task the minimum number nmin of nodes it

needs to meet its deadline and thereby save resources for new tasks. To guarantee

that a task finishes by its deadline, the real-time scheduler must know the minimum

number of nodes required by the task. Since nmin is determined by not only the task

data size, deadline and execution start time but also the applied partitioning method,

we derive nmin in Section 4.3 when partitioning methods are thoroughly analyzed.

4.2.4 Algorithm Framework

As is typical for dynamic real-time scheduling algorithms [66, 23, 59], when a new

task arrives, the scheduler dynamically determines if it is feasible to schedule the task

without compromising the guarantees for previously admitted tasks. The general

framework for a schedulability test is shown in Figure 4.1. It can be configured to

generate various real-time divisible load scheduling algorithms by giving the design

decisions on: 1) scheduling policy (FIFO, EDF or MWF), 2) task partitioning rule

(OPR or EPR), and 3) node assignment method (assigning a task min(N, n∗) or nmin

nodes). Upon completion of the test, if all tasks are schedulable a feasible schedule

is developed and the new task is accepted; otherwise, it is rejected.

By following the aforementioned framework, we generate ten algorithms: EDF-

OPR-MN, EDF-OPR-AN, EDF-EPR-MN, EDF-EPR-AN, FIFO-OPR-MN, FIFO-
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Data Structure:

• nmin
i (t) - the minimum number of processing nodes needed to finish Ti before its deadline,

assuming it is dispatched at time t.

• AvailableNodesList < tk, ANk > - a list of the number of available nodes along with the time,

where tk is the time and ANk is the number of available nodes.

Pseudocode:

boolean Schedulability-Test(T)

TempTasksList ← T + AdmittedTasksQueue

order TempTasksList /* EDF, FIFO or MWF (Decision 1) */

generate AvailableNodesList /* Obtain the available nodes information */

ScheduledTaskList ← ϕ /* Initialization */

while TempTaskList ! = ϕ

/* Trying to assign a task nmin or min(N,n∗) nodes (Decision 3)*/
identify the first task Ti and the earliest time tk where the available nodes

ANk ≥ nmin
i (tk) or identify the earliest time tk when ANk ≥ N

remove Ti(Ai, σi, Di) from TempTasksList

si ← tk /* Set the scheduled starting time */

ni ← nmin
i (tk) or ni ← min(N,n∗

i )

/* According to the chosen partitioning rule: OPR or EPR (Decision 2), set the

expected completion time following Eq. 8 or Eq. 19 */

ei ← E(σi, ni) + si

if ei > Ai +Di

return false /* Deadline misses */

put Ti(Ai, σi, Di, si, ni, ei) into ScheduledTaskList

update AvailableNodesList

end while

/* All tasks in the cluster are schedulable */

AdmittedTasksQueue← ScheduledTaskList

return true

end Schedulability Test()

Figure 4.1: Schedulability Test for the Algorithms.

OPR-AN, FIFO-EPR-MN, FIFO-EPR-AN, MWF-OPR-MN, and MWF-EPR-MN.

The nomenclature of the algorithms includes three parts corresponding to the three

design decisions. The first part denotes the scheduling policy adopted: EDF, FIFO

or MWF. The second part represents the choice of the partitioning rule: DLT-based
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OPR or heuristic EPR. In the third portion of the name, MN means the algorithm

assigns a task the minimum number of nodes needed to meet its deadline and AN

means the algorithm assigns allN or n∗ number of nodes. Since MWF always allocates

a task nmin nodes, the algorithm only has the MN version.

4.3 Analysis of Task Partitioning Methods

Section 4.2.2 has introduced the two partitioning methods that we will investigate

in this chapter. In this section, we analyze these methods in detail. Since different

partitioning methods lead to different task executions, we derive the task execution

time and nmin for each of these methods. These analysis provide essential ingredients

for the real-time scheduling algorithms (Figure 4.1).

In the analysis, depending on whether the task setup costs (i.e., θcm and θcp) are

negligible or not, we have two different scenarios. Similar to the previous work on

divisible loads [79], linear models are used to represent processing and transmission

times. When setup costs are negligible, the data transmission (or communication)

time on the jth link is Cm(αjσ) = αjστ and the data processing time on the jth node

is Cp(αjσ) = αjσχ; and when setup costs are significant, the data transmission and

processing costs are θcm + αjστ and θcp + αjσχ respectively. Lin et al. [45] have

considered the scenario where setup costs for initializing data transmission and data

processing are negligible. In the following two sections, scenarios with setup costs are

analyzed for the two partitioning methods (i.e., OPR and EPR). To analyze the task

execution time for OPR, a method proposed by Bharadwaj et al. [9] is adopted.
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4.3.1 Optimal Partitioning Rule (OPR) with Setup Costs

In this section, we present the analysis for the case where setup costs are significant.

For a given task, let E denote the Task Execution Time, which is a function of σ and

n. We first analyze the execution time function, E(σ, n), assuming n nodes are to be

allocated to process a total data size of σ. Then, we use it to derive the minimum

number, nmin, of nodes needed to meet the task deadline.

The setup cost of communication comes from physical network latencies, network

protocol overhead, or middleware overhead. In the TeraGrid project [77], the network

speed can be up to 40Gbps with a latency of around 100ms. That is, the latency

contributes to about 1/3 of the time required to send 1GB of data. It has also been

shown that the setup cost for computation can be up to 25 seconds in practice [16],

which is significant for small tasks.

P0

P1

P2

Pn

…...

σχα1

σχα2

cmθ στα1 στα2cmθ σταncmθ

cpθ σχαn

cpθ

cpθ

ε

Figure 4.2: Time Diagram for OPR-Based Partitioning with Setup Costs.

1-a) Task Execution Time Analysis: Taking the setup costs into consideration,

the data transmission time on the jth link is modeled as Cm(αjσ) = θcm + αjστ , and

the data processing time on the jth node is Cp(αjσ) = θcp + αjσχ. Figure 4.2 shows

an example task execution time diagram following OPR when n nodes are allocated
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to a task and setup costs are modeled. Analyzing the time diagram, we derive the

Task Execution Time E as follows

E(σ, n) = (θcm + α1στ) + (θcp + α1σχ) (4.2)

= 2θcm + (α1 + α2)στ + (θcp + α2σχ) (4.3)

= 3θcm + (α1 + α2 + α3)στ + (θcp + α3σχ) (4.4)

. . .

= nθcm + (α1 + α2 + α3 + ...+ αn)στ + (θcp + αnσχ).

From Eq. 4.2 and Eq. 4.3, we have α2 = α1β − ϕ, where

β =
χ

τ + χ
and ϕ =

θcm
σ(τ + χ)

. (4.5)

Similarly, from Eq. 4.3 and Eq. 4.4, we get α3 = α2β − ϕ, and therefore α3 =

α1β
2 − βϕ− ϕ, leading to the general formula

αj = α1β
j−1 − Σj−2

k=0β
kϕ. Thus

αj = α1β
j−1 − 1− βj−1

1− β
ϕ, for j = 2, 3, · · ·n.

Now, substituting αj with (α1β
j−1 − 1−βj−1

1−β ϕ) in equation
∑n

j=1 αj = 1, we get

α1 + Σn
j=2(α1β

j−1 − 1− βj−1

1− β
ϕ) = 1

i.e., α1 + Σn−1
j=1 (α1β

j − 1− βj

1− β
ϕ) = 1.
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A solution to the above equation leads to

α1 =
1− β

1− βn
+

nϕ

1− βn
− ϕ

1− β
.

Let B(n) = 1−β
1−βn + nϕ

1−βn − ϕ
1−β ,

it follows that

E(σ, n) = θcm + θcp + σ(τ + χ)B(n). (4.6)

1-b) Derivation of nmin: If task T = (A, σ,D) has a start time s, then to meet its

deadline, E(σ, n) ≤ A+D − s must be satisfied. That is

θcm + θcp + σ(τ + χ)B(n) ≤ A+D − s. (4.7)

This constraint can be solved numerically. The smallest integer n that satisfies the

constraint is the minimum number nmin of nodes that need to be assigned to task T

at time s to meet its deadline.

Note that the model without setup costs (Lin et al. [45]) is a special case of this

model, where θcm = θcp = 0 and accordingly ϕ = θcm
σ(τ+χ)

= 0. Thus, the constraint

Eq. 4.7 reduces to σ(τ + χ) 1−β
1−βn ≤ A+D − s.

4.3.2 Equal Partitioning Rule (EPR) with Setup Costs

In this section, we present the analysis of EPR when setup costs are significant.
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Figure 4.3: Time Diagram for EPR-Based Partitioning with Setup Costs.

2-a) Task Execution Time Analysis: Figure 4.3 shows an example task execution

time diagram following EPR when n nodes are allocated to a task and setup costs are

modeled. By analyzing the time diagram, we have E(σ, n) = nθcm + στ + θcp +αnσχ,

where αn = 1
n
. Thus

E(σ, n) = nθcm + στ + θcp +
σχ

n
. (4.8)

2-b) Derivation of nmin: Assuming that the task T = (A, σ,D) has a start time

s, then the task completion time C(n) = s + E(σ, n) must satisfy the constraint

C(n) ≤ A+D. That is

s+ nθcm + στ + θcp +
σχ

n
≤ A+D. (4.9)

Let ω = A+D − s− στ − θcp. We have

θcmn
2 − ωn+ σχ ≤ 0. (4.10)

Since θcm > 0, Y = θcmn
2−ωn+σχ is a parabola that opens upward. Figure 4.4 shows

three representative positions of the parabola, when ω2 − 4σχθcm exhibits different
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signs. Thus, to derive nmin three cases need to be considered.

σχ+ω−θ= nnY 2
cm σχ+ω−θ= nnY 2

cm σχ+ω−θ= nnY 2
cm

04 )c( cm
2 >σχθ−ω04 )b( cm

2 =σχθ−ω04 )a( cm
2 <σχθ−ω

Figure 4.4: Derivation of nmin: Y = θcmn
2 − ωn+ σχ Positions.

In the first case, when ω2 − 4σχθcm < 0, the parabola has no real axis intercepts,

which implies that Y = θcmn
2 − ωn + σχ will always be greater than 0. Therefore

constraint Eq. 4.10 cannot be satisfied for any real number n, meaning it is impossible

to meet the task deadline at time s.

In the second case, when ω2 − 4σχθcm = 0, the parabola has only one real axis

intercept where n = ω
2θcm

. This is the only possible value of n that satisfies constraint

Eq. 4.10. In addition, n, the number of processing nodes, must be a positive integer.

Thus, the task can meet its deadline at time s if and only if n = ω
2θcm

is a positive

integer.

In the third case, when ω2−4σχθcm > 0, the parabola has two real axis intercepts.

From Figure 4.4, we can see that in order to satisfy constraint Eq. 4.10, the value of

n should fall between the two real roots of equation θcmn
2 − ωn+ σχ = 0. That is

ω−
√

ω2−4θcmσχ

2θcm
≤ n ≤ ω+

√
ω2−4θcmσχ

2θcm
.

Since n must be a positive integer, in this case the minimum number of nodes needed

for the task to complete before its deadline is
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nmin =


N/A if

ω+
√

ω2−4θcmσχ

2θcm
< 1;

1 if
ω−
√

ω2−4θcmσχ

2θcm
< 1 and

ω+
√

ω2−4θcmσχ

2θcm
≥ 1;

⌈ω−
√

ω2−4θcmσχ

2θcm
⌉ if

ω−
√

ω2−4θcmσχ

2θcm
≥ 1.

4.4 Analysis of Node Assignment Policies

While scheduling, the number of nodes assigned to a real-time divisible task could be

between the minimum number nmin of nodes the task needs to meet its deadline and

all available N nodes. The two plots in Figure 4.5 show the relationship between the

task execution time E (Eq. 4.6) and n, the number of nodes assigned, when setup costs

are different. As demonstrated in Figure 4.5a, when setup costs are small assigning

a greater number of nodes to a task will always reduce its execution time. However,

Figure 4.5b shows when the setup costs are significant the execution time of a task is

no longer a monotonically decreasing function of the number of nodes assigned. That

is, there exists an optimal number n∗ such that when a task is assigned n∗ nodes the

task execution time is the shortest. For example, in Figure 4.5b n∗ = 63.
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Figure 4.5: Task Execution Time vs. Node Assignment.
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In this thesis, for the node assignment strategies, we only investigate the two

extreme cases, that is, assigning nmin or min(N,n∗) nodes to a task. When the setup

costs are negligible, to assign min(N, n∗) nodes means to allocate all availableN nodes

to a task. On the other hand, when setup costs are significant (such that n∗ < N) the

strategy to assign all N nodes to a task is not a useful strategy. Instead, assigning

n∗ nodes can save system resources as well as minimize the task execution time.

4.5 Performance Evaluation

In previous sections, we have proposed and analyzed various real-time cluster-based

scheduling algorithms for divisible loads. In this section, their performance relative to

each other and to changes of configuration parameters are experimentally evaluated.

We have developed a discrete simulator, called DLSim, to simulate real-time divis-

ible load scheduling in clusters. This simulator, implemented in Java, is a component-

based tool, where the main components include a workload generator, a cluster con-

figuration component, a real-time scheduler component, a task dispatcher, and a

logging component. The real-time scheduler component is implemented following our

algorithm framework proposed in Section 4.2.4, which can be configured to simulate

different scheduling algorithms with varied policies on task execution order, workload

partitioning and node assignment.

For each simulation, five parameters, N , τ , χ, θcm and θcp are specified for a

cluster. In this chapter, to evaluate the algorithms performance in processing different

streams of tasks, we generate synthetic workloads with parameters varying in wide

ranges. To generate task Ti = (Ai, σi, Di), similar to the work by Lee et al. [43], we

assume that the interarrival times follow an exponential distribution with a specified

mean of 1/λ and task data sizes σi are normally distributed with a specified mean
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of Avgσ and a standard deviation equal to the mean. Task relative deadlines are

assumed to be uniformly distributed in [AvgD
2

, 3AvgD
2

] range, where AvgD is the mean

relative deadline. To specify AvgD, a new term DCRatio is introduced. It is defined

as the ratio of mean deadline to mean execution time (cost), that is AvgD
E(Avgσ,N)

, where

E(Avgσ,N) is the task execution time computed with Eq. 4.6 assuming the task has

a data size equal to Avgσ and runs on all N processing nodes. Given DCRatio,

the cluster size N and the average data size Avgσ, AvgD is implicitly specified as

DCRatio×E(Avgσ,N). In this way, byDCRatio, task relative deadlines are specified

relating to the average task execution time. In addition, a task relative deadline Di

is chosen to be larger than its execution time E(σi, N).

Similar to the work by Lee et al. [43], we define another metric SystemLoad to

represent how loaded a cluster is:

SystemLoad =
E(Avgσ, 1)λ

N
, (4.11)

where E(Avgσ, 1) is the execution time of an average size task running on a pro-

cessing node and λ/N is the average task arrival rate per node. Sometimes, we

specify SystemLoad for a simulation instead of average interarrival time 1/λ. Con-

figuring (N, τ, χ, θcm, θcp, SystemLoad,Avgσ,DCRatio) is equivalent to specifying

(N, τ, χ, θcm, θcp, 1/λ, Avgσ,DCRatio), because

1/λ =
E(Avgσ, 1)

SystemLoad×N
. (4.12)

To evaluate the real-time performance, we use two metrics: Task Reject Ratio and

System Utilization. Task reject ratio is the ratio of the number of task rejections to

the number of task arrivals. The smaller the ratio, the better the performance. In

contrast, the greater the system utilization, the better the performance.
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For all figures in this chapter, a point on a curve corresponds to the average per-

formance value of ten simulations. In the ten runs, the same parameters (N,τ , χ, θcm,

θcp, 1/λ, Avgσ, DCRatio) are specified but different random numbers are generated

for task arrival times Ai, data sizes σi, and deadlines Di. For each simulation, the

total simulation time is 10,000,000 time units, which is sufficiently long.

We have identified three important scheduling decisions: Task Partitioning, Node

Assignment, and Scheduling Policy in designing real-time, cluster-based scheduling

algorithms for divisible loads (see Section 4.2). In the next three subsections, we

evaluate the effects of these decisions, compare the algorithms proposed in Section 5.2,

and respectively investigate the scenarios where each of these three decisions matters.

4.5.1 OPR vs. EPR Partitioning

We first evaluate the performance of the following real-time scheduling algorithms

with respect to the two proposed partioning rules (OPR and EPR): EDF-OPR-MN vs.

EDF-EPR-MN, EDF-OPR-AN vs. EDF-EPR-AN, FIFO-OPR-MN vs. FIFO-EPR-

MN, FIFO-OPR-AN vs. FIFO-EPR-AN, and MWF-OPR-MN vs. MWF-EPR-MN.

We only present the comparisons of EDF-OPR-MN vs. EDF-EPR-MN and EDF-

OPR-AN vs. EDF-EPR-AN here. The performance results for the other pairs are

similar.

Simulation Modeling. For our basic simulation model we chose the following

parameters: number of processing nodes in the cluster N = 256; unit data trans-

mission time τ = 1; unit data processing time χ = 1000; transmission setup cost

θcm = 500; processing setup cost θcp = 500; SystemLoad changes in {0.1, 0.2, · · · ,

1.0} range; Average data size Avgσ = 1000; and the ratio of the average deadline to

the average execution time DCRatio = 2. Our simulation has a three-fold objective.

First, we want to verify our hypothesis that it is advantageous to apply DLT in real-
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time cluster-based scheduling. Second, we study the effects of DCRatio, and third,

we want to investigate the effects of the processing speed.

Merits of DLT for Cluster Scheduling
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Figure 4.6: OPR vs. EPR: Merits of DLT.
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To study the merits of DLT we employ our basic simulation model without any

change. Figure 4.6 shows Task Reject Ratio and System Utilization of the four al-

gorithms: EDF-OPR-MN, EDF-EPR-MN, EDF-OPR-AN, and EDF-EPR-AN. Ob-

serve that EDF-OPR-MN always leads to a lower Task Reject Ratio and a higher

System Utilization than EDF-EPR-MN. Similarly, EDF-OPR-AN always performs

better than EDF-EPR-AN. These simulation results confirm our hypothesis that it

is advantageous to apply DLT in real-time cluster-based scheduling algorithms. The

reason is, compared to the partitioning heuristic EPR, the DLT-based OPR provides

an optimal task partitioning, which leads to minimum task execution times. As a

result, with an OPR scheduling algorithm (i.e., EDF-OPR-MN or EDF-OPR-AN),

the cluster can satisfy a larger number of task deadlines and be better utilized.

We carried out the same type of simulations by changing the following cluster

or workload parameters one at a time: cluster size N and average data size Avgσ.

Results are similar to Figure 4.6, where algorithms with OPR partitioning always

perform better than algorithms with EPR partitioning.

Effects of DCRatio

To study the effects of the DCRatio, we use the same configuration as the basic

simulation model except that we vary theDCRatio over {2, 4, 6, 10, 20, 50, 100} range.

For the sake of readability, Figure 4.7 only shows the performance of EDF-OPR-AN

and EDF-EPR-AN with DCRatio = 2, 10, and 100. Corresponding to different

combinations of algorithm and DCRatio, six curves are produced. Again, Figure 4.7

shows that the algorithm with OPR partitioning performs better. In addition, we

can see when SystemLoad is low (i.e., when SystemLoad < 0.8), the performance of

EDF-EPR-AN becomes closer to that of EDF-OPR-AN as DCRatio increases. This

is because the higher the DCRatio, the looser the task deadlines are. Consequently,
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when SystemLoad is low and cluster resources are plenty, the worse execution times

caused by a non-optimal partitioning rule, like EPR, will have less impact on the

algorithm’s performance.
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Figure 4.7: OPR vs. EPR: Effects of DCRatio.
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Figure 4.8: OPR vs. EPR: Effects of Processing Speed.

Effects of Processing Speed

To study effects of the processing speed, we vary χ over {100, 500, 1000, 5000, 10000}

range. The larger the χ, the slower the computation. Figure 4.8 shows the results

of EDF-OPR-MN and EDF-EPR-MN with χ = 100, 1000, and 10000 respectively.
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We observe that the OPR partitioning algorithm EDF-OPR-MN still outperforms

the EPR partitioning algorithm EDF-EPR-MN. However, as the processing speed

decreases, i.e., χ increases, the differences between the two algorithms become less

significant. In particular, when the computation is extremely slow (χ = 10000), the

curves for the two algorithms are almost the same, indicating non-differentiable Task

Reject Ratios and System Utilization. To demonstrate this point, let us assume χ is

so large that the ratio of τ to χ is approaching 0. As a result, β from Eq. 4.5 will

approach 1, causing the data fractions allocated to processing nodes α1, α2, · · · , αn,

to all be close to 1
n
for OPR. Therefore, OPR and EPR will perform the same in this

case.

Summary. From the aforementioned intensive experiments, we have the following

conclusions: a) No matter what the system parameters are, the algorithms with DLT-

based partitioning (OPR) always perform better than those with the equal-sized

partitioning heuristic (EPR). This demonstrates that it is beneficial to apply DLT

(divisible load theory) in real-time cluster-based scheduling; b) When SystemLoad

is low, the difference between OPR and EPR becomes smaller as DCRatio (i.e.,

deadline) increases; and c) As χ increases, that is, as node processing speed decreases,

the difference between OPR and EPR becomes negligible.

4.5.2 n∗ vs. nmin Node Assignment

In this subsection, we compare and analyze the real-time scheduling algorithms with

different node assignment methods. We investigate the performance difference in

algorithms assigning all N or n∗ nodes to every task (ALG-AN) vs. those assigning

the minimum number nmin of nodes needed to meet a task deadline (ALG-MN). The

relative performance of EDF-OPR-MN vs. EDF-OPR-AN is systematically studied.

It is noteworthy that in contrast to the results by Lee et al. [43] comparing MWF(-
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MN) and FIXED(-AN) algorithms, our initial data (see Figure 4.6) seem to indicate

that EDF-OPR-AN outperforms EDF-OPR-MN most of the time.

Effects of Transmission Cost

Figure 4.9a shows the relative performance of the two algorithms, i.e, Task Reject

Ratio (TRR) of EDF-OPR-MN − Task Reject Ratio (TRR) of EDF-OPR-AN. In

this simulation, we gradually increase the transmission cost τ . As we can see, when

τ is small EDF-OPR-MN leads to a bigger Task Reject Ratio than EDF-OPR-AN

and as τ increases EDF-OPR-MN begins to have a smaller Task Reject Ratio than

EDF-OPR-AN. This indicates that the relative performance of EDF-OPR-MN vs.

EDF-OPR-AN improves as τ gets larger.

In Section 4.4, we have discussed the rational behind the two different node as-

signment strategies: an algorithm of type ALG-AN tries to finish the current task as

soon as possible by assigning more processing nodes to a task, while an algorithm

of type ALG-MN tries to conserve resources for new tasks. For an ALG-AN, the

problem is it causes higher parallel execution overheads than the ALG-MN counter-

part, e.g., EDF-OPR-AN leads to higher overheads than EDF-OPR-MN. As shown

in Figure 4.2, the node idle time due to data transmission is one type of parallel ex-

ecution overhead. For the cluster model investigated (see Chapter 3), the higher the

transmission cost (τ) the greater the overhead. That explains why in the aforemen-

tioned simulation we observe that as τ increases, the performance of EDF-OPR-AN

is affected more than that of EDF-OPR-MN and EDF-OPR-MN begins to perform

better than EDF-OPR-AN.

The results shown in Figures 4.6 and 4.9a contradict the conclusion drawn by Lee

et al. [43] that the nmin node assignment strategy (ALG-MN) performs better than

the maximum node assignment strategy (ALG-AN). As we can see in Figure 4.9a,
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there are scenarios where ALG-MN performs better than ALG-AN, while in the other

scenarios the reverse is true.

Effects of DCRatio

In this subsection, we study effects of changing deadlines, where we vary the DCRatio

from 2 to 10. By increasing the DCRatio, we have longer relative deadlines compared

to the mean execution time. For an ALG-MN, a longer deadline leads to a smaller

nmin of nodes allocated to a task, thus smaller parallel execution overhead. While

for an ALG-AN, its node assignment and resulting overhead will not be affected by

deadlines, since a task is always assigned min(N, n∗) number of nodes. Therefore,

we believe, as DCRatio increases and ALG-MN’s overhead decreases, ALG-MN’s

performance relative to that of ALG-AN is going to improve. Figure 4.9b validates

our hyphothesis, where we observe that by increasing DCRatio from 2 to 10, the

Task Reject Ratio difference of EDF-OPR-MN and EDF-OPR-AN gets smaller.

Summary. From the aforementioned intensive experiments, we have the follow-

ing conclusions: a) Both ALG-MN and ALG-AN have their own advantages. One

outperforms the other under certain system configurations and workload scenarios;

b) As the transmission cost τ increases, the relative performance of ALG-MN vs.

ALG-AN improves; and c) As DCRatio increases and task deadlines become less

tight, ALG-MN’s performance gets better relative to that of ALG-AN.

4.5.3 FIFO, EDF vs. MWF Scheduling Policies

In this subsection, we examine different execution order policies and compare algo-

rithms FIFO-OPR-MN, EDF-OPR-MN vs. MWF-OPR-MN.
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Figure 4.11: FIFO, EDF vs. MWF: When τ = 10
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Figure 4.12: FIFO, EDF vs. MWF: When τ = 20

Recall that the MWF (Maximum Workload derivative First) algorithm proposed

by Lee et al. [43] executes the task with the highest workload derivative (δwi) first and

thus reduces the total workload (cost) of all scheduled tasks. In their paper [43] MWF

is compared with EDF and shown that MWF performs better than EDF. Moreover,

the authors claim that MWF is likely to be the best choice for on-line scheduling of
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divisible tasks.

We conducted intensive simulations and a systematic study of the three execution

order strategies. Our data cast some doubts on the conclusion drawn by Lee et al. [43]

that the MWF algorithm is the best choice. Our hypothesis is that MWF performs

well when task parallel execution overhead (workload) is significant compared to pure

task computation time. To test our hypothesis, a group of simulations is designed

to study how changing parallel overhead affects the performance of scheduling algo-

rithms. In the 20 simulations, we gradually change the data transmission cost (τ)

from 1 to 20, while keeping the data processing cost (χ) constant. Since the bigger

the τ the higher the parallel execution overhead, for the 20 simulations with τ chang-

ing from 1 to 20 the task overhead increases. According to our theory, MWF should

perform better than EDF and FIFO when τ increases.

Figures 4.10, 4.11, and 4.12 show the results for simulations where τ = 1, 10

and 20 respectively. As observed, when τ is small, the Task Reject Ratio curve of

EDF-OPR-MN lies below that of MWF-OPR-MN, indicating EDF execution order

performs better. As τ increases, the relative performance of the two algorithms begins

to change. When τ increases to 20, MWF-OPR-MN outperforms EDF-OPR-MN,

leading to smaller Task Reject Ratios for most SystemLoad conditions. These data

match our analysis and verify our hypothesis that MWF performs better than EDF

and FIFO as workload parallelization overhead increases.

Interestingly, for all 20 simulations with τ changing from 1 to 20, EDF-OPR-

MN always leads to smaller Task Reject Ratios than FIFO-OPR-MN. Another quite

interesting phenomenon is that among the three algorithms, MWF-OPR-MN always

results in the worst System Utilizations. MWF policy tries to schedule tasks with

bigger workload derivatives δwi first (see Eq. 4.1 for δwi’s calculation). The larger

the task size σi, the bigger δwi tends to be. Thus, this scheduling policy tries to
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schedule large tasks first. However, inserting those large tasks before small tasks often

causes deadline violations of small tasks. As a result, with MWF policy, large tasks

usually cannot pass the schedulability test and likely be rejected, which explains why

MWF-OPR-MN leads to the worst System Utilizations among the three algorithms,

even for cases when MWF-OPR-MN has the best Task Reject Ratios.

4.6 Summary

From the discussion above, we conclude that: a) the best choice of execution order

policy depends on the particular system and workload conditions; b) our results seem

to show that most of the time algorithms using EDF policy perform better than algo-

rithms using FIFO policy; c) when communication cost (τ) is small, algorithms using

MWF policy do not have any advantage, while τ increases, MWF algorithms begin

to perform better than their EDF and FIFO counterparts; and d) MWF algorithms

tend to reject large tasks and thus lead to smaller system utilizations.
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Chapter 5

Real-Time Divisible Load

Scheduling with Advance

Reservations

5.1 Introduction

For the grid applications that require simultaneous access to multi-site resources,

supporting advance reservations in a cluster is important. In the cluster level, some

debugging and interactive applications require a specified number of processors to

be available at predefined time intervals. The scheduled maintenance and processor

down times can also be treated as advance reservations. In a large-scale cluster, the

resource management system (RMS), which provides real-time guarantees or QoS, is

central to its operation. To support real-time applications at a Grid level, advance

reservations of cluster resources play a key role. However, advance reservations in a

cluster environment have been largely ignored due to the under-utilization concerns

and lack of support for agreement enforcement [70]. In this chapter, we investigate
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real-time divisible load scheduling with advance reservations and tackle its challenges.

In a cluster with no provision for reservations, resources are allocated to tasks until

they finish processing. If, however, advance reservations are supported in a cluster,

computing nodes and the communication channel could be reserved for a period of

time and become unavailable for regular tasks. Due to these constraints, it becomes

a very difficult task to efficiently count the available resources and schedule real-time

tasks.

We made two major contributions. First, we proposed a multi-stage real-time

divisible load scheduling algorithm that supports advance reservations. The novelty

of our approach is that we consider reservation blocks on both computing nodes and

communication channels. According to [73], many applications have huge deployment

overheads, which require large and costly file staging before applications start. To

provide real-time guarantees, it is therefore essential to take the reservation’s data

transmission into account. Second, the effects of advance reservations on system

performance are thoroughly investigated. Our study demonstrates that with our pro-

posed algorithm and appropriate advance reservations, we could avoid under-utilizing

the real-time cluster.

This chapter is organized as follows. The real-time scheduling with advance reser-

vation is investigated in Section 5.2. In Section 5.3, we establish correctness of our

approach. We evaluate and analyze the system performance in Section 5.4.

5.2 Scheduling with Advance Reservations

This section presents a real-time scheduling algorithm that supports advance reserva-

tions in a cluster. Here, tasks follow the regular task and the reservation task models

described in section 3.1.
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In [47], we investigated the problem of real-time divisible load scheduling in clus-

ters. Our previous work, however, does not address the challenges of supporting

advance reservations. Without advance reservations, computing resources are allo-

cated to tasks until they finish computation. If, however, advance reservations are

supported in a cluster, a computing node could be reserved for a period of time and

become unavailable for regular tasks. The reservations thus block the processing of

regular tasks and cast severe constraints on the real-time scheduling. In the following,

we use an example to illustrate the challenge.

Figure 5.1: Cluster Nodes with no Reservation.

In Figure 5.1, we show three processing nodes P1, P2 and P3 available at time

points S1, S2 and S3 respectively. Once available, they could be allocated to execute

a new task. Upon arrival of a new task, the real-time scheduler considers the system

status and determines if enough processing power is available to finish the task before

its deadline. The decision process is simple when there is no reservation block: for

node Pi, any time between Si and the task deadline could be allocated to the new task.

It, however, becomes a complicated process when there are advance reservations. For

instance, as shown in Figure 5.2, there is an advance reservation R occupying node

P2 from time Rs to time Re. During the reserved period, the time from Rs to Rio

is used for transmitting data to node P2 and the time from Rio to Re is used for

computation. Because of the reservation, node P2 becomes unavailable in the time

period [Rs, Re]. Furthermore, the reservation interferes with activities on other nodes.

During the time period [Rs, Re], nodes P1 and P3 could be used to compute tasks.

However, data transmission to P1 or P3 is not allowed in the interval [Rs, Rio] when
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data is transmitted to node P2. Because of these constraints, it becomes a challenge

to efficiently count the available processing power and schedule real-time tasks. The

remainder of this section discusses how we overcome this challenge and design an

algorithm that supports advance reservations in a real-time cluster.

Figure 5.2: Cluster Nodes with a Reservation.

5.2.1 Admission Control Algorithm

As is typical for dynamic real-time scheduling algorithms [23, 59, 66], when a task

arrives, the scheduler dynamically determines if it is feasible to schedule the new task

without compromising the guarantees for previously admitted tasks. The pseudocode

for the schedulability test is shown in Algorithm 1.

According to the newly arrived task’s type, the algorithm invokes an admission

test. For a reservation, it (Algorithm 2) first checks if enough processing nodes

are available to accommodate the reservation. Because data transmission does not

happen in parallel, we must then ensure that the new reservation will not cause any

I/O conflict. The function IO Overlap(Rk, R) verifies if data transmissions for Rk

and R overlap. If so, new reservation R is rejected. If the admission test is successful,

it proves that accepting R will not compromise the guarantees for previously accepted

reservations. Its impact on previously accepted regular tasks is yet to be analyzed,

which is the third step of the algorithm. For a regular task T , the admission test

(Algorithm 3) checks if T is schedulable with the accepted reservations. When a

new regular task T arrives, it is added to the waiting queue of regular tasks. We

adopt the EDF (Earliest Deadline First) scheduling algorithm and order the queue by
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Algorithm 1 boolean Schedulability Test(T)

1: if isResv(T) then
2: // Reservation admission control
3: if !ResvAdmTest(T) then
4: return false
5: end if
6: end if
7: // Reservation list
8: TempResvList ← ResvQueue
9: // Regular task list
10: TempTaskList ← TaskWaitingQueue
11: if isResv(T) then
12: TempResvList.add(T)
13: else
14: TempTaskList.add(T)
15: end if
16: // EDF scheduling of regular tasks
17: order TempTaskList by task absolute deadline
18: order TempResvList by reservation start time
19: while TempTaskList != ϕ do
20: TempTaskList.remove(T)
21: // Regular task admission control
22: if !AdmTest(T) then
23: return false
24: else
25: TempScheduleQueue.add(T)
26: end if
27: end while
28: TaskWaitingQueue ← TempScheduleQueue
29: ResvQueue ← TempResvList
30: return true

task absolute deadlines. The schedulability test (Algorithm 1) invokes the admission

test (Algorithm 3) for each task in the queue. If they are all successful, it proves

that accepting T will not compromise the guarantees for previously accepted tasks

including all reservations and regular tasks.

As mentioned, Algorithm 3 tests the schedulability of a regular task. We have

N processing nodes in the cluster, available at time points S1, S2, · · · , SN . Assume
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Algorithm 2 boolean ResvAdmTest(R(Ra, Rs, n, Re, IOratio))

1: // Check if the number of available nodes
2: // in [Rs, Re] time period is less than n
3: if MinAvailableNode(Rs, Re) < n then
4: return false
5: end if
6: for Rk ∈ ResvQueue do
7: if IO Overlap(Rk, R) then
8: return false
9: end if
10: end for
11: reserve n available nodes for R
12: return true

reservations are made on these nodes for specific periods of time. To determine

whether or not a regular task T(A, σ, D) is schedulable, the N nodes’ total processing

time that could be allocated to task T by its absolute deadline A +D is computed.

If the total time is enough to process the task, deadline D can be satisfied and task

T is schedulable. To derive the processing time, we first compute the blocking time

when a processing node cannot be utilized.

Blocking happens because data cannot be transmitted in parallel. Transmission

to a processing node blocks transmissions to all other nodes. There are three types

of blocking: 1) the blocking is caused by a reservation’s data transmission; 2) among

nodes allocated to a task, data transmission to a node blocks the other transmissions

of the same task; 3) the blocking is caused by another task’s data transmissions.

To count the available processing power and decide a task’s schedulability, we

have to consider all these blocking factors. However, the degree of blocking varies,

depending on node available times, task start times and reservation lengths. For in-

stance, a reservation with a long data transmission could lead to lengthy blocking. If

a reservation and a task start at the same time, the task is blocked during the reser-

vation’s data transmission. Computing the exact blocking time is complicated. Thus,
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to simplify the computation, the worst-case blocking scenario is initially assumed in

the admission test and only if a task is determined schedulable, will it be sent to the

task partition procedure to accurately compute the task’s schedule.

The worst-case blocking happens when all nodes become available at the same

time as the reservation’s data transmission. In this case, all nodes have to be blocked

the whole time during the reservation’s data transmission. Assuming this worst-case

blocking scenario, Algorithm 3 derives the amount of data σsum that can be processed

in the total available time. When σsum is larger than the task data size σ, enough

nodes are found to finish the task.

The algorithm sorts the N nodes in a non-decreasing order of node available

time, i.e., making S1 ≤ S2 ≤ · · · ≤ SN . Following this order, each node’s available

processing time µi is computed. First, µi is initialized to be A+D−max (Si, A), the

longest time that Pi could be allocated to task T by its absolute deadline A+D. Then

considering the effects of reservations, µi is adjusted. For the worst-case blocking,

a node Pi is assumed not utilized when data is transmitted for reservations. Let

t0 = max (A, S1). The total time (ResvIO) consumed by the reservation’s I/O in

the interval [t0, A + D] is computed, which is the blocking time relevant to task

T ’s schedule. If a reservation is on node Pi, task T cannot utilize Pi during the

reservation’s computation (ResvCPi). The algorithm thus reduces µi by ResvIO and

ResvCPi. After considering the type 1 blocking caused by reservations, the algorithm

considers the other two blocking factors. Bi−1 counts the type 2 blocking time on node

Pi, which is caused by the same task’s data transmissions to previously assigned nodes

(P1, P2, · · · , Pi−1). Again, the worst-case blocking is assumed, i.e., Pi is assumed to be

blocked for a time period of transmitting data to the first i−1 nodes. µi is, therefore,

reduced by Bi−1. This gives the final value of µi. The algorithm then derives the size

of data that can be processed in µi amount of time. The total sum of data that can
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be processed by the first i nodes are recorded in σsum. Once σsum is larger than the

task data size σ, enough nodes nmin are found for the task. The algorithm concludes

that task T is schedulable, assigns nmin number of nodes to it and invokes the task

partition procedure (MSTaskPartition, Algorithm 4) to accurately schedule the task.

Processing task T may block tasks scheduled in the future, which leads to type 3

blocking. Considering this factor, the algorithm properly adjusts node available time

Si in MSTaskPartition procedure (Algorithm 4).

5.2.2 Task Partitioning Algorithm

The previous section discusses how the real-time scheduling algorithm makes the

admission control decision. As mentioned, upon admitting a regular task T (A, σ,D), a

certain number (n) of nodes are allocated to it at certain time points (S1, S2, · · · , Sn).

According to the admission controller, these nodes can finish processing T by deadline

A + D. This section presents the next step of the scheduling algorithm: the task

partition procedure. How a task is partitioned and executed on the allocated n nodes

is described.

Figure 5.3: Multi-Stage Scenario 1.

Without loss of generality, the n nodes are assumed to be sorted in a non-

decreasing order of their available times. i.e., S1 ≤ S2 ≤ · · · ≤ Sn. Task T (A, σ,D)’s
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Algorithm 3 boolean AdmTest(T(A, σ,D))

1: σsum = 0
2: If a node Pi becomes available during a reservation’s data transmission, Pi’s avail-

able time Si is reset at the finish time of the data transmission
3: sort nodes in non-decreasing order of node available time
4: t0 = max (A, S1)
5: // Compute the total reservation I/O time (ResvIO) and the reservation compu-

tation time (ResvCPi) on node Pi in the period [t0, A+D]
6: ResvIO = 0
7: for i ← 1:N do
8: ResvCPi = 0
9: end for
10: for R(Ra, Rs, n, Re, IOratio) ∈ ResvQueue do
11: if Rs > t0 then
12: Rio = Rs + (Re - Rs) ×IOratio

13: if Rio > A+D then
14: ResvIO += A + D - Rs

15: else
16: ResvIO += Rio - Rs

17: end if
18: for Pi ∈ {nodes assigned to R} do
19: ResvCPi += Re - Rio

20: end for
21: end if
22: end for
23: B0 = 0
24: for i ← 1:N do
25: // Compute node Pi’s available processing time
26: µi = A + D - max (Si, A)
27: µi = µi - ResvIO - ResvCPi - Bi−1
28: // Compute the size of data that can be processed
29: σi =

µi

τ+χ

30: σsum = σsum + σi

31: if σsum ≥ σ then
32: nmin = i
33: assign the first nmin nodes to T at their corresponding available times

S1, S2, · · · , Snmin

34: MSTaskPartition(T(A,σ,D,nmin,S1, S2, · · · , Snmin))
35: return true
36: end if
37: υi = σi × τ
38: Bi = Bi−1 + υi
39: end for
40: return false
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processing on the n nodes should not interfere with reservations in the interval [t0,

A+D], where t0 = max (A, S1). Once accepted, a reservation R(Ra, Rs, k, Re, IOratio)

is guaranteed a certain number (k) of nodes at the specified start time (Rs). On the

reserved nodes, the processing of regular tasks must stop before the reservation starts

at Rs. If the reservation requires data transmission in the interval [Rs, Rio], where

Rio = Rs + (Re − Rs) × IOratio, data transmissions to other nodes cannot be sched-

uled in the same interval. The proposed algorithm considers these constraints when

partitioning and processing a task. To be applicable to a broader range of systems,

our solution does not require the support of task preemption.

Figure 5.4: Multi-Stage Scenario 2.

Assume during the interval [t0, A+D] there are m reservations, R1, R2, · · · , Rm,

in the cluster. According to each of these reservations’ data transmission interval

(denoted by [Ri
s, R

i
io], where Ri

io = Ri
s + (Ri

e − Ri
s) × IOi

ratio), we divide the interval

[t0, A + D] into M stages. The first stage starts at t0 and ends at R1
io (the data

transmission finish time of reservation R1). The second stage starts at R1
io and ends

at R2
io. In general, interval [Ri−1

io , Ri
io] is the ith stage when i is not the first or last

stage. The last M th stage ends at the task deadline A + D. If A + D is not in

the last reservation’s data transmission interval, i.e., A + D > Rm
io , M = m + 1

stages are generated, and there is no reservation’s data transmission in the last stage
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(Figure 5.3); otherwise, M = m and the last stage ends in the middle of Rm’s data

transmission (Figure 5.4).

After dividing the interval [t0, A+D], we form M stages and each stage includes

at most one reservation’s data transmission interval (i.e., the interval [Ri
s, R

i
io]), which

will occur at the the end of the stage. When partitioning task T into subtasks T i
j

for the jth node in the ith stage, where j = 1, 2, · · · , n and i = 1, 2, · · · ,M , the

following constraints must be satisfied. If reservation Ri is on node Pj, subtask T i
j

must finish its data transmission and computation before the reservation starts at Ri
s.

On the other hand, if Ri is not on Pj, subtask T i
j can continue its computation until

the end of the stage Ri
io but T i

j must finish its data transmission before Ri
s, when

Ri’s data transmission starts. The multi-stage task partition procedure is shown in

Algorithm 4.

5.3 Proof of Algorithm Correctness

In this section, we prove the correctness of the proposed real-time scheduling algo-

rithm. We start with proving the algorithm correctness in special scenarios and then

generalize the proof.

Case 1: A Group of Processors Are Available Simultaneously

For this case, we assume that a group of l (l ≤ N) processors {P1, · · · , Pl} are

available at the same time x (See Figure 5.5). During the closed time interval [Rs,

y], a reservation R is transmitting data. We consider admission and partitioning of

a task among l processors in the time interval [x, y] and prove that the workload

admitted to execute on the l processors in the time interval [x, y] can be completed.

Lemma 5.3.1 If the allocated processors are available at the same time, then the

task will meet the deadline.
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Algorithm 4 MSTaskPartition(T(A,σ,D,n,S1, S2, · · · , Sn))

1: // Input: task T and its allocated nodes M: number of stages in the interval [t0,
A+D], where t0 = max (A, S1)

2: // Output: task partition vector a[n,M ], where 0 ≤ a[j, i] ≤ 1 is the fraction of
data allocated to the jth node in the ith stage, and

∑n
j=1

∑M
i=1 a[j, i] = 1

3: σsum = 0
4: σlast = σ
5: // Initialize tj, Pj’s start time in current stage
6: for j ← 1 : n do
7: tj = Sj

8: end for
9: for i← 1 : M do
10: sort the n nodes by their start times
11: for j ← 1 : n do
12: if Pj ∈ {nodes assigned to Ri} then
13: // Fraction of data that can be processed before Ri

s

14: a[j, i] =
Ri

s−tj
σ(τ+χ)

15: else
16: // Fraction of data that can be transmitted
17: // before Ri

s and processed before Ri
io

18: tmp = min (Ri
s − tj, (R

i
io − tj)

τ
τ+χ

)

19: a[j, i] = tmp
στ

20: end if
21: // Update Pj+1’s start time, considering blocking
22: tj+1 = max (tj + a[j, i]στ, tj+1)
23: // Compute Pj’s start time in next stage
24: if Pj ∈ {nodes assigned to Ri} then
25: tj = Ri

e

26: else
27: tj = Ri

io

28: end if
29: σsum = σsum + a[j, i]σ
30: if σsum ≥ σ then
31: a[j, i] = σlast

σ

32: /* Record these multi-stage data transmissions in the n nodes. Update the other nodes’available times considering

the blocking caused by T ’s first stage data transmission. When scheduling other tasks in the future, a later stage data

transmission of T will be treated the same as a reservation’s data transmission. */

33: UpdateNodeStatus()
34: return
35: end if
36: σlast = σ − σsum

37: end for
38: end for
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Proof It is easy to see that the workload admitted by the admission controller is no

more than the workload that can be dispatched by the partitioning algorithm.
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Figure 5.5: Single-Stage Case 1: l Processors with the Same Available Time.

According to the admission control algorithm (Section 5.2.1), we estimate that in

the time interval [x, y], the available processing time on node Pk, k ≤ l, is µk = y−x−

ResvIO−Bk−1, where ResvIO represents the time consumed by the reservation’s I/O

and Bk−1 counts the blocking time caused by the regular task’s data transmissions to

nodes {P1, · · · , Pk−1}, leading to µk = Rs−x−Bk−1. That is, due to the reservation’s

I/O in [Rs, y], the admission control algorithm assumes that processors are only

available for processing regular tasks in the time interval [x, Rs].

We use σest and σact to respectively denote the workload estimated by the ad-

mission control algorithm and the actual workload that can be processed by the l

processors in the time interval [x, y]. As we have derived in our earlier work [45],

when simultaneously allocating l processors to a divisible task T of size σ, the task

execution time is

E =
1− β

1− βl
σ(τ + χ) (5.1)
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where

β =
χ

τ + χ
(5.2)

In addition, since the admission control algorithm assumes that the l processors are

only available in the time interval [x, Rs], we have

σest =
Rs − x

1−β
1−βl (τ + χ)

(5.3)

In contrast, the task partition algorithm leverages the fact that in the time interval

[Rs, y], although the data transmission cannot be done for regular tasks due to the

conflict with the reservation’s I/O, idle processors can still run computations for

regular tasks. Following the task partitioning algorithm, we distribute workload to

the l processors. There could be two typical cases for the actual workload processing.

Subcase 1.1: The transmission time of regular tasks is ≥ Rs (See Figure 5.6).

In this case, data has to be transmitted continueously till Rs. We want to prove that

σact ≥ σest.
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Figure 5.6: Actual Workload Processing: Typical Case 1.

The actual workload σact dispatched to the l processors is the maximum amount of
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workload that can be transmitted during the time interval [x, Rs]. Thus, we have

σact =
Rs − x

τ
(5.4)

According to Equations (5.3) and (5.2), we get

σest =
Rs − x

τ
1−βl

(5.5)

From Equation (5.2), we know 0 < β < 1. Thus, we have

1 > 1− βl (5.6)

⇒ τ <
τ

1− βl
(5.7)

⇒ Rs − x

τ
>

Rs − x
τ

1−βl

(5.8)

That is

σact > σest (5.9)

Subcase 1.2: The data transmission time of regular tasks is < Rs. (See Fig-

ure 5.7). This indicates that enough regular workload has been transmitted to fully

utilize idle processors in the time interval [x, y]. Consider a node Pk, k ≤ l, and that

Pk is not part of the reservation. Then Pk can process data in the entire interval [x, y].

For the node Pk, we denote the amount of workload that is processed in the time in-

terval [Rs, y] as σ∆k
and its data transmission time as t∆k

. Among the workload σk

for the processor Pk, the σ∆k
is processed in the interval [Rs, y], as demonstrated in

Figure 5.8. Then we have
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σ∆k
=

y −Rs

χ
(5.10)

and t∆k
= σ∆k

∗ τ (5.11)

If a node Pk is part of the reservation, in the closed interval [Rs, y] (like nodes

Pi, · · · , Pi+j in Figure 5.8), we have σ∆k
= 0.

 

 

 
R 

…       … 

P1 

Pi 

Rs y x 

…             … 

 
R 

 

 

Pl  

…             … 

:  workload transmission or reservation’s I/O   

Figure 5.7: Actual Workload Processing: Typical Case 2.

Figure 5.8: Demonstration of σ∆k
, t∆k

and σ[k,l].

We also define the following terms
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• σact
k : the workload dispatched to node Pk;

• σest
[k,l]: the workload that can be processed by nodes {Pk, Pk+1, · · · , Pl} in the

time interval [x+Bk−1, Rs];

• σ[k,l]: the workload that can be processed by nodes {Pk, Pk+1, · · · , Pl} in the

time interval [x+Bk−1 + t∆k
, Rs];

• σsum
[k,l] : σ[k,l] + σ∆k

. 
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Pk 

Pi 

Pi+j 

…    … 

Pl 

Rs y x+Bk-1 

…    … 

σest
[k+1,n] 
 

x+Bk 

σact
k 

 

:  workload transmission and processing 

:  workload transmission or reservation’s I/O   

Figure 5.9: Demonstration of σact
k and σest

[k+1,l].

We have
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σsum
[k,l] = σ[k,l] + σ∆k

=
Rs − (x+Bk−1 + t∆k

)
1−β

1−βl−k+1 (χ+ τ)
+

t∆k

τ

=
Rs − (x+Bk−1)

1−β
1−βl−k+1 (χ+ τ)

− t∆k

τ
1−βl−k+1

+
t∆k

τ

= σest
[k,l] −

t∆k

τ
1−βl−k+1

+
t∆k

τ

> σest
[k,l] (5.12)

In addition, since σsum
[k,l] = σ[k,l] + σ∆k

= σest
[k+1,l] + σact

k , we get

σest
[k+1,l] + σact

k > σest
[k,l] ⇒ (5.13)

σact
k > σest

[k,l] − σest
[k+1,l] (5.14)

It follows that

σact =
l∑

k=1

σact
k

>
l∑

k=1

(σest
[k,l] − σest

[k+1,l])

Thus σact > σest
[1,l] − σest

[l+1,l] (5.15)

Since we are considering the workload allocation to nodes {P1, P2, · · · , Pl}, σest
[l+1,l] = 0.

Substituting σest = σest
[1,l] into Equation (5.15), we have

σact > σest (5.16)
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Figure 5.10: Single-Stage Case 2: Multiple Same-Available-Time Processors Groups.

In the above, we have proved the algorithm correctness for Case 1 (Figure 5.5) when

l processors are available at the same time, by showing that the workload admitted

to execute on the l processors (i.e., σest) is never more than that can be processed by

the l processors (i.e., σact).

Case 2: A Group of Processors Are Available at Different Times

Lemma 5.3.2 If the allocated processors are available at different times, then the

task will meet the deadline.

Proof We prove Case 2, in a general scenario, where there are many processors

groups and each of which have same available time (Figure 5.10). That is, we prove

m∑
i=1

σact
g[i]
≥

m∑
i=1

σest
g[i]

(5.17)

The proof is based on induction. Base Case: since σact ≥ σest holds for Case 1

(Figure 5.5), we know the following inequality is true
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σact
g[1]
≥ σest

g[1]
(5.18)

Induction: We assume that Equation (5.17) holds for all j ≤ k, that is,

j∑
i=1

σact
g[i]
≥

j∑
i=1

σest
g[i]
, j = 1, 2, ...k (5.19)

Now we want to prove Equation (5.17) also holds for k + 1 groups. From Equa-

tion (5.19) when j = k, we have

σ∆g[k]
=

k∑
i=1

σact
g[i]
−

k∑
i=1

σest
g[i]
≥ 0 (5.20)

This workload difference σ∆g[k]
is caused by the admission control algorithm’s pes-

simistic behavior assuming that

1. Even though all processors are available but can not be used for regular tasks

in the time interval [Rs, y] and that

2. a processor experiences the worst-case blocking time, i.e, when nodes {P1, P2, · · · , Pk−1}

are transmitting data for regular workload, node Pk is blocked and thus assumed

unavailable.

On the other hand, the partition algorithm utilizes these idle resources and processes

σ∆g[k]
extra workload on the first k groups of processors. Due to this workload in-

crease, the blocking time encountered by group Gk+1 increases and its processors’

available time reduces by t∆g[k]
= σ∆g[k]

× τ .

We define the following terms:

• Best
g[k]

: the first k groups’ data transmission, i.e., group Gk+1’s blocking time

estimated by the admission control algorithm;
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• σg[k+1]: the workload that can be processed by group Gk+1 in the time interval

[x+Best
g[k]

+ t∆g[k]
, Rs] (see Figure 5.10);

• lg[k] : the number of processors in group Gk.

Since σ∆g[k]
=

t∆g[k]

τ
, we have

σ∆g[k]
≥

t∆g[k]

Cms

1−β
lg[k+1]

(5.21)

i.e., σ∆g[k]
≥

t∆g[k]

1−β
1−β

lg[k+1]
(τ + Cps)

(5.22)

(5.23)

Again, since σg[k+1]
=

Rs−(x+Best
g[k]

+t∆g[k]
)

1−β

1−β
lg[k+1]

(τ+χ)
, we get

σ∆g[k]
+ σg[k+1]

≥
Rs − (x+Best

g[k]
)

1−β
1−β

lg[k+1]
(Cms + Cps)

i.e., σ∆g[k]
+ σg[k+1]

≥ σest
g[k+1]

(5.24)

Considering that group Gk+1 has lg[k+1]
processors in the time interval [x + Best

g[k]
+

t∆g[k]
, y] and leveraging the result we have proved for Case 1 (Figure 5.5), we get

σact
g[k+1]

≥ σg[k+1]
(5.25)

From Equations (5.24) and (5.25), it follows that

σact
g[k+1]

≥ σest
g[k+1]

− σ∆g[k]
(5.26)

Substituting σ∆g[k]
by

∑k
i=1 σ

act
g[i]
−

∑k
i=1 σ

est
g[i]
, it becomes
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σact
g[k+1]

≥ σest
g[k+1]

− (
k∑

i=1

σact
g[i]
−

k∑
i=1

σest
g[i]
) (5.27)

i.e.,
k+1∑
i=1

σact
g[i]
≥

k+1∑
i=1

σest
g[i]

(5.28)

This completes the algorithm correctness proof, i.e., the induction-based proof of∑m
i=1 σ

act
g[i]
≥

∑m
i=1 σ

est
g[i]
, for Case 2 (see Figure 5.10). We conclude that σact ≥ σest

holds for the single-stage Case 2.

Combining lemma 5.3.1 and lemma 5.3.2, we have the following lemma.

Lemma 5.3.3 In a stage, tasks will meet their deadlines.

Case 3: Multi-stage Scenario Next, we present the proof for the multi-stage

case and show that σact ≥ σest holds for the multi-stage scenario, i.e., Case 3 shown

in Figure 5.11.

Lemma 5.3.4 The multi-stage dispatch algorithm’s actual dispatched workload is no

less than the estimated workload by the admission controller.
 

 

P1 

y x 

…    … 

Pn 

P2  R1 

 Rm 

 R2 

Stage 1 Stage 2 Stage M 
… 

:  workload transmission or reservation’s I/O   

Figure 5.11: Case 3: Multi-Stage Scenario.
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According to the proved result for the single-stage (Figure 5.10), we know that

for each stage k in Figure 5.11, we have σact
s[k] ≥ σest

s[k]. Therefore

M∑
k=1

σact
s[k]
≥

M∑
k=1

σest
s[k]

(5.29)

i.e., σact ≥
M∑
k=1

σest
s[k]

(5.30)

We now prove that σest =
∑M

k=1 σ
est
s[k]

holds. if σest =
∑M

k=1 σ
est
s[k] were true, we can

conclude σact ≥ σest.

According to the admission control algorithm (Algorithm 3), σest =
∑n

i=1 σ
est[i]

where σest[i] is the estimated workload for node Pi in the time interval [x, y]. We

use σest[i, k] to represent the estimated workload for node Pi in stage k and prove by

induction that ∀j ∈ {1, 2, · · · , n},
∑j

i=1 σ
est[i] =

∑j
i=1

∑M
k=1 σ

est[i, k] is true.

We define the following terms

• Is[k]: the reservation I/O in stage k;

• C[i, k]: the reservation’s computation on node Pi in stage k;

• µ[i, k]: node Pi’s available time in stage k;

• L : y − x.

According to Algorithm 3, we have σest[i] = µi

τ+χ
and

µi = y − x−ResvIO −ResvCPi −Bi−1

= L−
M∑
k=1

(Is[k] + C[i, k])−Bi−1 (5.31)
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Base case: since B0 = 0, we get

µ1 = L−
M∑
k=1

(Is[k] + C[1, k])

⇒ µ1 =
M∑
k=1

µ[1, k]

⇒ µ1

τ + χ
=

∑M
k=1 µ[1, k]

τ + χ

i.e., σest[1] =
M∑
k=1

σest[1, k] (5.32)

Induction: we assume
h∑

i=1

σest[i] =
h∑

i=1

M∑
k=1

σest[i, k] (5.33)

We prove
∑h+1

i=1 σest[i] =
∑h+1

i=1

∑M
k=1 σ

est[i, k] holds. Algorithm 3 assumes that Bh =∑h
i=1 σ

est[i]× τ . According to the assumption made in Step 2, we have

Bh =
h∑

i=1

M∑
k=1

σest[i, k]× τ (5.34)

Substituting the above equation into Equation (5.31), it becomes
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µh+1 = L −
M∑
k=1

(Is[k] + C[h+ 1, k]

+
h∑

i=1

σest[i, k]× τ) (5.35)

⇒ µh+1 =
M∑
k=1

µ[h+ 1, k]

⇒ µh+1

τ + χ
=

∑M
k=1 µ[h+ 1, k]

τ + χ

i.e., σest[h+ 1] =
M∑
k=1

σest[h+ 1, k] (5.36)

Adding Equations (5.33) and (5.36), we have

h+1∑
i=1

σest[i] =
h+1∑
i=1

M∑
k=1

σest[i, k] (5.37)

which completes the induction-based proof of ∀j ∈ {1, 2, · · · , n},
∑j

i=1 σ
est[i] =∑j

i=1

∑M
k=1 σ

est[i, k]. Therefore,

n∑
i=1

σest[i] =
n∑

i=1

M∑
k=1

σest[i, k]

i.e., σest =
n∑

i=1

M∑
k=1

σest[i, k]

⇒ σest =
M∑
k=1

σest
s[k] (5.38)

With Equations (5.30) and (5.38), we conclude that σact ≥ σest holds for Case 3 and

the multi-stage real-time scheduling algorithm is correct.

Theorem 5.3.5 The proposed multi-stage algorithm is correct.
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Proof The proof follows from lemmas 5.3.1, 5.3.2, and 5.3.3.

5.4 Performance Evaluation

In the previous section, we presented a real-time scheduling algorithm that supports

advance reservations. In this section, we experimentally evaluate the performance of

the algorithm.

5.4.1 Simulation Configurations

We develop a discrete simulator to simulate a wide range of clusters. Three parame-

ters, N , τ and χ are specified for every cluster.

For a set of regular tasks Ti = (Ai, σi, Di), Ai, the task arrival time, is specified by

assuming that the interarrival times follow an exponential distribution with a mean

of 1/λ; task data sizes σi are assumed to be normally distributed with the mean and

the standard deviation equal to Avgσ; task relative deadlines (Di) are assumed to

be uniformly distributed in the range [AvgD
2

, 3AvgD
2

], where AvgD is the mean relative

deadline. To specify AvgD, we use the term DCRatio defined in [45]. It is defined as

the ratio of mean deadline to mean minimum execution time (cost), that is AvgD
E(Avgσ,N)

,

where E(Avgσ,N) is the execution time assuming the task has an average data size

Avgσ and is allocated to run on N fully-available nodes simultaneously [45]. Given

a DCRatio, the cluster size N and the average data size Avgσ, AvgD is implicitly

specified as DCRatio× E(Avgσ,N). Thus, task relative deadlines are related to the

average task execution time. In addition, a task’s relative deadline Di is chosen to

be larger than its minimum execution time E(σi, N). In summary, we specify the

following parameters for a simulation: N, τ , χ, 1/λ, Avgσ, and DCRatio.

To analyze the cluster load for a simulation, we use the metric SystemLoad [43].
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It is defined as, SystemLoad = E(Avgσ,1)×λ
N

, which is the same as, SystemLoad =

TotalTaskNumber×E(Avgσ,1)
TotalSimulationT ime×N . For a simulation, we can specify SystemLoad instead of

average interarrival time 1/λ. Configuring (N, τ , χ, SystemLoad, Avgσ, DCRatio) is

equivalent to specifying (N, τ , χ, 1/λ, Avgσ, DCRatio), because, 1/λ = E(Avgσ,1)
SystemLoad×N .

Algorithm 5 RegTask2Resv(T (A, σ,D),∆)

1: // Input:
2: // Regular task T (A, σ,D) and
3: // advance factor ∆
4: // Output:
5: // Reservation R(Ra, Rs, n, Re, IOratio)
6: // Make ResvStartTime = RegTaskArrivalTime
7: Rs = A
8: // Compute ResvLength (Re - Rs) based
9: // on RegTaskExecutionTime E(σ, nmin)
10: γ = 1− στ

D

11: β = χ
χ+τ

12: nmin = ⌈ lnγ
lnβ
⌉

13: E = 1−β
1−βnmin σ(τ + χ)

14: // ResvLength = RegTaskExecutionTime E(σ, nmin)
15: Re = Rs + E
16: // Nodes reserved = minimum nodes required by
17: // RegTask at A to complete before its deadline D
18: n = nmin

19: // Make Resv IOratio =
20: // RegTaskTranmissionTime / RegTaskExecutionTime
21: IOratio =

σCms
E

22: // The request for Resv arrives ∆ time unit in advance
23: Ra = Rs −∆

To generate reservations, some regular tasks are selected from the aforementioned

workload and converted to reservations. To study the algorithm’s performance under

varied conditions, different percents of the workload are converted to reservations.

Algorithm 5 describes the procedure of converting a regular task to a reservation. To

ensure that the newly generated workload, mixed with reservations and regular tasks,

leads to the same SystemLoad as the original workload, the reservation start time
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is made equal to the regular task’s arrival time. In addition, the number of nodes

reserved equals to the minimum number of nodes nmin required to finish the regular

task before its deadline. It follows that the reservation length is equal to the regular

task’s execution time E(σ, nmin); and the reservation’s IOratio is defined according to

the regular task’s I/O ratio.

Advance Factor for Reservation Since a reservation is often made in advance,

we use ∆, called the advance factor, to specify the time difference between the arrival

of the reservation request (Ra) and the reservation start time (Rs), i.e., ∆ = Rs−Ra.

Figure 5.12 shows an example where task T9 is selected and converted to reservation

R9, which is then assumed to arrive before task T4. Therefore, for the new work-

load, tasks T1, T2, T3 and reservation R9 will be scheduled first, followed by tasks

T4, T5, · · · , T8 and T10. The earlier a reservation is made, the greater its chance of

being accepted. To study an advance reservation’s impact on system performance,

different advance factors are simulated.

Figure 5.12: An Example of Mixed Workload Generation.

The simulation in this chapter is divided into several experiments. Each experi-

ment consists of several runs, where each run is further divided into ten tests. The

parameters N, τ , χ remain constant over all runs. However, SystemLoad, Avgσ,

DCRatio), ∆ and reservation percentage vary from run to run. For each test, dif-

ferent random numbers are generated for task arrival times Ai, data sizes σi and

deadlines Di. For all figures in this section, a point on a curve corresponds to the av-

erage performance of ten tests in a specific run of an experiment. For each simulation,
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the TotalSimulationT ime is 10,000,000 time units, which is sufficiently long.

Baseline Configuration. For our basic simulation model we chose the following

parameters: number of processing nodes in the cluster N = 256; unit data transmis-

sion time τ = 1; unit data processing time χ = 1000; SystemLoad changes in the

range {0.1, 0.2, · · · , 1.0}; Average data size Avgσ = 2000; and the ratio of the average

deadline to the average execution time DCRatio = 2. Our simulation has a three-

fold objective. First, we verify the correctness of the proposed algorithm. Second, we

study the effects of reservation percentage, and third, we want to investigate effects

of advance factor ∆.

5.4.2 Simulation Results

To validate that the proposed algorithm works correctly, we check all simulation

results to verify that real-time requirements of every accepted task are satisfied. There

are enough resources to guarantee reservations start and finish at the specified times.

Once accepted, tasks are successfully processed by their deadlines.

Effects of Reservation Percentage. We conducted experiments with the base-

line configuration. To study the effects of reservation percentage, 0%, 10%, 30%, 50%,

80% and 100% of the workload were set to be reservations respectively.

In the first experiment, we set the advance factor ∆ = 0. That is, all reservations

request to be started immediately. Figures 5.13a and 5.14a show the simulation

results. We can see that for a workload of all regular tasks (i.e., 0% reservation), the

scheduler rejects the least number of tasks (TRR) and leads to the highest system

utilization (UTIL). As the reservation percentage of the workload increases from 0%

to 100%, the TRR increases and the UTIL decreases. These results follow the common

intuition that making reservations can reduce system performance. Reservations must

start at the requested time and execute continuously until completion. Reservation



75

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

0% Reservation
10% Reservation
30% Reservation
50% Reservation
80% Reservation

100% Reservation

(a) Task reject ratio (∆=0).

Figure 5.13: Effects of Reservation Percentage (Task Reject Ratio (∆=0)).

tasks offer little flexibility to the scheduler. In contrast, regular tasks are flexible.

That is, they can start at any time as long as they finish before their deadlines.

Some parallel tasks, are also flexible in their required number of nodes, allowing

the scheduler to dictate the allocated amount of resources. The scheduler can start

them earlier with fewer nodes or later with more nodes. In particular, the arbitrarily

divisible tasks considered in this chapter, give the scheduler the maximum flexibility.

Such tasks can be divided into subtasks to utilize any available processing times in the

cluster. These factors explain why the system performs the best with no reservation

in the workload.

In the second experiment, we instead let the advance factor equal to the average

task interarrival time: ∆ = 1/λ. That is, all reservations are made 1/λ time units

in advance of their start times. Figures 5.15a and 5.16a show the simulation results.

From Figure 5.15a, we can see that the scheduler achieves similar TRRs for workloads

with 0%, 10%, 30% and 50% reservations, while the TRR for the workloads with 80%
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Figure 5.14: Effects of Reservation Percentage (System utilization (∆=0)).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

0% Reservation
10% Reservation
30% Reservation
50% Reservation
80% Reservation

100% Reservation

(a) Task reject ratio (∆=1/λ).

Figure 5.15: Effects of Reservation Percentage (Task Reject Ratio (∆=1/λ)).
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Figure 5.16: Effects of Reservation Percentage (System Utilization (∆=1/λ)).
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Figure 5.18: Effects of Advance Factor (Reservation Tasks 50%).

and 100% reservations increase significantly. contradicts the intuitive belief of pre-

vious researches that reservation decreases system performance. Figure 5.16a shows

that UTIL obtained with a workload of no reservation is higher than those obtained

with mixed workloads. However, the utilization differences between workloads of 0%,

10%, 30% and 50% reservations are quite small. These results are due to the fact

that reservations are made plenty of time in advance. Since an advance reservation

requests for some resources in the future, the earlier the reservation is made, the more

likely the required resources have not been occupied. Therefore, advance reservations

are more likely to be accepted. After cluster resources are booked by reservations,

less resources are left to serve regular tasks arriving in the future. As a result, more

regular tasks are rejected. However, thanks to the flexibility in scheduling regular

tasks, many of them can still be accepted. This explains why the overall system

performance (i.e., TRR and UTIL) does not deteriorate with the percentage increase

of advance reservations from 0% to 50%.

Next, to understand how much earlier a reservation should be made, we investigate
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the effects of advance factor ∆.

Effects of Advance Factor. We again conducted experiments with the baseline

configuration, where either 30% or 50% of the workload was set aside for reservations.

To study the effects of advance factor, we set ∆ = 0, 1/λ, 2/λ, and 10/λ respectively.

Figures 5.17 and 5.18 show the simulation results.

From both figures, we observe that when ∆ increases, the TRR decreases. The

improvement is significant until ∆ = 2/λ, and the TRR with advance factors ∆ =

2/λ and ∆ = 10/λ are similar. Since the UTIL curves have the same trend, we omit

them to save space.

In the following, we use an example to illustrate how the advance factor affects the

task acceptance. Figure 5.19 shows a regular task Ti arriving at Ai and a reservation

Figure 5.19: Advance Factor Effect.

Ri+1 requesting to start at Rs. In this simple example, we assume there is only one

processing node. If Ri+1 arrives after Ai, it is rejected because the node is allocated

to Ti. If Ri+1 arrives before Ti, Ri+1 is booked on the node before Ti arrives. Upon

Ti’s arrival, the scheduler may still accept Ti and let it utilize the node before and

after Ri+1, while still finishing before its deadline. In general, since a reservation does

not affect a regular task as much as a regular task affects a reservation, it is beneficial

to make reservations in advance so that the scheduler can consider them before all

competing regular tasks.

On average, when the advance reservation factor is equal to or greater than the

average task interarrival time (i.e., ∆ ≥ 1/λ), the competition for resources be-
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tween reservations and regular tasks is less constraining and results in improved

performance. When a reservation R arrives, the scheduler decides if it is feasible

to schedule R without compromising the guarantees for previously admitted tasks.

Therefore, R only competes with reservations and regular tasks that have already

been committed to by the system. Moreover, among admitted regular tasks, only

those whose deadlines are later than R’s start time are actually competing with R

for resources. Consequently, if the advance reservation factor is at least as large as

the average task deadline (i.e., ∆ ≥ AvgD), the competition for resources between

reservations and regular tasks is almost negligible. For the simulated workloads, since

SystemLoad = E(Avgσ,N)×λ and AvgD = DCRatio×E(Avgσ,N), we have AvgD

= DCRatio × SystemLoad × 1/λ ≤ 2/λ. This explains why we observe significant

performance improvements as ∆ increases until ∆ = 2/λ, and the curves for work-

loads with ∆ ≥ 2/λ are close to each other with less performance improvement. If

a reservation is rejected, it is most likely due to conflicts with other advance reser-

vations. As reservations compete for resources with each other, the task accept ratio

decreases significantly, which explains why as the reservation percentage increases

beyond 50%, system performance degrades drastically (Figures 5.15a and 5.16a).

5.5 Summary

In this chapter, we investigated the challenging problem of real-time divisible load

scheduling with advance reservations in a cluster. To address the under-utilization

concerns, we extensively studied the effects of advance reservations. A multi-stage

real-time scheduling algorithm is proposed. Simulation results show: 1) our algorithm

works correctly and provides real-time guarantees to accepted tasks; and 2) proper

advance reservations could avoid the system performance degradation.
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Chapter 6

An Efficient Algorithm for

Real-Time Divisible Load

Scheduling

6.1 Introduction

While existing real-time divisible load scheduling algorithms have focused on sat-

isfying QoS, providing real-time guarantees, and better utilizing cluster resources,

these algorithms place little emphasis on scheduling efficiency. The algorithms as-

sume that scheduling takes much less time than the execution of a task, and thus

ignore the scheduling overhead. However, clusters are becoming increasingly bigger

and busier. In Table 6.1, we list the sizes of some OSG (Open Science Grid) clus-

ters. As we can see, all of these clusters have more than one thousand CPUs, with

the largest providing over 40 thousand CPUs. Figure 6.2 shows the number of tasks

waiting in the OSG cluster at University of California, San Diego for two 20-hour

periods, demonstrating that at times there could be as many as 37 thousand tasks in
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the waiting queue of a cluster. As the cluster size and workload increase, so does the

scheduling overhead. For a cluster with thousands of nodes or thousands of waiting

tasks, as will be demonstrated in Section 6.4, the scheduling overhead could be sub-

stantial and existing divisible load scheduling algorithms are no longer applicable due

to lack of scalability. For example, to schedule the bursty workload in Figure 6.2a,

the best-known real-time algorithm [17] prior to our algorithm, takes more than 11

hours to make admission control decisions on the 14,000 tasks that arrived in an hour,

while our new algorithm needs only 37 minutes.

Table 6.1: Sizes of OSG Clusters.

Host Name No. of CPUs
fermigrid1.fnal.gov 41863
osgserv01.slac.stanford.edu 9103
lepton.rcac.purdue.edu 7136
cmsosgce.fnal.gov 6942
osggate.clemson.edu 5727
grid1.oscer.ou.edu 4169
osg-gw-2.t2.ucsd.edu 3804
u2-grid.ccr.buffalo.edu 2104
red.unl.edu 1140

In this chapter, we address the deficiency of existing approaches and present an

efficient algorithm for real-time divisible load scheduling. The time complexity of

the proposed algorithm is linear in the maximum of the number of tasks in the

waiting queue and the number of nodes in the cluster. In addition, the algorithm

performs similarly to previous algorithms in terms of providing real-time guarantees

and utilizing cluster resources.

Next, we discuss the real-time scheduling algorithm in Section 6.2 and evaluate

the algorithm performance in Section 6.4.
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Figure 6.1: Status of a UCSD Cluster (Bursty Arrival).

6.2 Algorithm

In this section, we present our new algorithm for scheduling real-time divisible loads

in clusters. We adopt the regular task model in section 3.1.1, system model and

notations in section 3.2. Due to their special property, when scheduling arbitrarily

divisible loads, the algorithm needs to make three important decisions: task execution

order, the number n of processing nodes that should be allocated to each task and a

strategy to partition the task among the allocated n nodes.

As is typical for dynamic real-time scheduling algorithms [23, 59, 66], when a task

arrives, the scheduler determines if it is feasible to schedule the new task without

compromising the guarantees for previously admitted tasks. Only those tasks that

pass this schedulability test are allowed to enter the task waiting queue (TWQ).

This decision module is referred to as the admission controller. When processing

nodes become available, the dispatcher partitions each task and dispatches subtasks

to execute on processing nodes.

For existing divisible load scheduling algorithms [17, 18, 43, 46, 45], in order to
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Figure 6.2: Status of a UCSD Cluster (Large Queue).

perform the schedulability test, the admission controller generates a new schedule for

the newly arrived task and all tasks waiting in TWQ. If the schedule is feasible, the

new task is accepted; otherwise, it is rejected. For these algorithms, the dispatcher

acts as an execution agent, which simply implements the feasible schedule developed

by the admission controller. There are two factors that contribute to large overheads

of these algorithms. First, to make an admission control decision, they reschedule

tasks in TWQ. Second, they calculate in the admission controller the minimum num-

ber nmin of nodes required to meet a task’s deadline so that it guarantees enough

resources for each task. The later a task starts, the more nodes are needed to com-

plete it before its deadline. Therefore, if a task is rescheduled to start at a different

time, the nmin of the task may change and needs to be recomputed. This process of

rescheduling and recomputing nmin of waiting tasks introduces a big overhead.

To address the deficiency of existing approaches, we develop a new scheduling

algorithm, which relaxes the tight coupling between the admission controller and

the dispatcher. As a result, the admission controller no longer generates an exact
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schedule, avoiding the high overhead. To carry out the schedulability test, instead

of computing nmin and deriving the exact schedule, the admission controller assumes

that tasks are executed one by one with all processing nodes. This simple and ef-

ficient all nodes assignment (ANA) policy speeds up the admission control decision.

The ANA is, however, impractical. In a real-life cluster, resources are shared and

each task is assigned just enough resources to satisfy its needs. For this reason,

when dispatching tasks for execution, our dispatcher needs to adopt a different node

assignment strategy. If we assume ANA in the admission controller and let the dis-

patcher apply the minimum node assignment (MNA) policy, we reduce the real-time

scheduling overhead but still allow the cluster to have a schedule that is appealing in

the practical sense. Furthermore, our dispatcher dispatches a subtask as soon as a

processing node and the head node become available, eliminating IITs.

Due to the superior performance of EDF-based divisible load scheduling [45], our

new algorithm schedules tasks in EDF order as well. Although in this chapter, we

describe the algorithm assuming EDF scheduling, the idea is applicable to other divis-

ible load scheduling such as MWF-based scheduling algorithms [43]. In the following,

we describe in detail the two modules of the algorithm: admission controller (Sec-

tion 6.2.1) and dispatcher (Section 6.2.2). Since the two modules follow different rules,

sometimes an adjustment of the admission controller is needed to resolve their dis-

crepancy so that task real-time properties can always be guaranteed (Section 6.2.3).

Section 6.2.4 proves the correctness of our algorithm.

6.2.1 Admission Controller

When a new task arrives, the admission controller determines if it is feasible to sched-

ule the new task without compromising the guarantees for previously admitted tasks.

In the previous work [17, 18, 43, 46, 45, 58], the admission controller follows a brute-
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force approach, which inserts the new task into TWQ, reschedules each task and

generates a new schedule. Depending on the feasibility of the new schedule, the new

task is either accepted or rejected. As we can see, both accepting and rejecting a task

involve generating a new schedule.

In this chapter, we make two significant changes in order to develop a new admis-

sion control algorithm. First, to determine the schedulability of a new task, we only

check the information recorded with the two adjacent tasks (i.e., the preceding and

succeeding tasks). Unlike the previous work, our new algorithm could reject a task

without generating a new schedule. This significantly reduces the scheduling over-

head for heavily loaded systems. Second, we separate the admission controller from

the dispatcher, and to make admission control decisions, an ANA policy is assumed.

The new admission control algorithm is called AC-FAST. Algorithm 6 presents its

pseudo code. The admission controller assumes an ANA policy. We use E and C to

respectively denote the task execution time and the task completion time. AC-FAST

partitions each task following the divisible load theory (DLT), which states that the

optimal execution time is obtained when all nodes allocated to a task complete their

computation at the same time [79]. Applying this optimal partitioning, we get the

execution time of running a task τ(A, σ,D) on N processing nodes as [45],

E(σ,N) =
1− β

1− βN
σ(τ + χ), (6.1)

where β =
χ

τ + χ
. (6.2)

When a new task τ arrives, the algorithm first checks if the head node P0 will

be available early enough to at least finish τ ’s data transmission before τ ’s absolute

deadline. If not so, task τ is rejected (lines 1-4). As the next step, task τ is tenta-

tively inserted into TWQ following EDF order and τ ’s two adjacent tasks τs and τp
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(i.e., the succeeding and the preceding tasks) are identified (lines 5-6). By using the

information recorded with τs and τp, the algorithm further tests the schedulability.

First, to check whether accepting τ will violate the deadline of any admitted task,

the algorithm compares τ ’s execution time τ.E with its successor τs’s slackmin, which

represents the minimum slack of all tasks scheduled after τ . Next, we give the formal

definition of slackmin. Let S denote the task start time. A task’s slack is defined as,

slack = A+D − (S + E), (6.3)

which reflects the scheduling flexibility of a task. Starting a task slack time units

later does not violate its deadline. Therefore, as long as τ ’s execution time is no

more than the slack of any succeeding task, accepting τ will not violate any admitted

task’s deadline. We define τi.slackmin as the minimum slack of all tasks scheduled

after τi−1. That is,

τi.slackmin
= min(τi.slack, τi+1.slack, · · · , τn.slack). (6.4)

If τ ’s execution time is less than its successor τs’s slackmin, accepting τ will not violate

any task’s deadline (lines 7-10).

The algorithm then checks if task τ ’s deadline can be satisfied or not. That is, to

check if τ.(A + D − S) ≥ τ.E , where the task start time τ.S is the preceding task’s

completion time τp.C or τ ’s arrival time τ.A (lines 11-31). If there is a task in TWQ,

then the cluster is busy. For a busy cluster, we do not need to resolve the discrepancy

between the admission controller and the dispatcher and the task real-time properties

are still guaranteed (see Section 6.2.4 for a proof). However, if TWQ becomes empty,

the available resources could become idle and the admission controller must consider

this resource idleness. As a result, in our AC-FAST algorithm, when a new task
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τ arrives into an empty TWQ, an adjustment is made (lines 15-17). The purpose

is to resolve the discrepancy between the admission controller and the dispatcher

so that the number of tasks admitted will not exceed the cluster capacity. For a

detailed discussion of this adjustment, please refer to Section 6.2.3. Once a new task

τ is admitted, the algorithm inserts τ into TWQ and modifies the slackmin and the

estimated completion time of tasks scheduled after τ (lines 22-31).

Time Complexity Analysis. In our AC-FAST algorithm, the schedulability

test is done by checking the information recorded with the two adjacent tasks. Since

TWQ is sorted, locating τ ’s insertion point takes O(log(n)) time and so do functions

getPredecessor(τ) and getSuccessor(τ). Function adjust(τ) runs in O(N) time (see

Section 6.2.3) and it only occurs when TWQ is empty. The time complexity of

function updateSlacks is O(n). Therefore, algorithm AC-FAST has a linear i.e.,

O(max(N,n)) time complexity.

6.2.2 Dispatcher

The dispatching algorithm is rather straightforward. When a processing node and

the head node become available, the dispatcher takes the first task τ(A, σ,D) in

TWQ, partitions the task and sends a subtask of size σ̂ to the node, where σ̂ =

min (A+D−CurrentT ime
τ+χ

, σ). The remaining portion of the task τ(A, σ − σ̂, D) is left

in TWQ. As we can see, the dispatcher chooses a proper size σ̂ to guarantee that

the dispatched subtask completes no later than the task’s absolute deadline A +D.

Following the algorithm, all subtasks of a given task complete at the task absolute

deadline, except for the last one, which may not be big enough to occupy the node

until the task deadline. By dispatching the task as soon as the resources become

available and letting the task occupy the node until the task deadline, the dispatcher

allocates the minimum number of nodes to each task.
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Algorithm 6 AC-FAST(τ(A, σ,D), TWQ)

1: //check head node’s available time
2: if (τ.(A+D) ≤ P0.AvailableTime + τ.στ) then
3: return false
4: end if
5: τp = getPredecessor(τ)
6: τs = getSuccessor(τ)
7: τ.E = E(τ.σ,N)
8: if (τs ̸= null && τ.E > τs.slackmin) then
9: return false
10: end if
11: if (τp == null) then
12: τ.S = τ.A
13: else
14: τ.S = τp.C
15: if (TWQ == ∅) then
16: adjust(τ)
17: end if
18: τ.S = max(τ.S, τ.A)
19: end if
20: if τ.(A+D − S) < τ.E then
21: return false
22: else
23: τ.slack = τ.(A+D − S − E)
24: τ.C = τ.(S + E)
25: TWQ.insert(τ)
26: updateSlacks(τ , TWQ)
27: for (τi ∈ TWQ && τi.(A+D) > τ.(A+D)) do
28: τi.C+ = τ.E
29: end for
30: return true
31: end if
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Algorithm 7 updateSlacks(τ(A, σ,D),TWQ)

1: for (τi ∈ TWQ ) do
2: if (τi.(A+D) > τ.(A+D)) then
3: τi.slack = τi.slack − τ.E
4: end if
5: end for
6: i = TWQ.length;
7: τi.slackmin = τi.slack
8: for (i = TWQ.length - 1; i ≥ 1; i−−) do
9: τi.slackmin = min(τi.slack, τi+1.slackmin)
10: end for

To illustrate by an example, if two tasks τ1 and τ2 are put into TWQ, from the

admission controller’s point of view, they will execute one by one using all nodes of

the cluster (see Figure 6.3a); in reality, they are dispatched and executed as shown in

Figure 6.3b, occupying the minimum numbers of nodes needed to meet their deadline

requirements.

Figure 6.3: An Example Scenario (a) Admission Controller’s View (b) Actual Task
Execution.
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6.2.3 Admission Controller Adjustment

As discussed in previous sections, the admission controller assumes a different schedule

than the one adopted by the dispatcher. If TWQ is not empty, the resources are always

utilized. In this case, the admission controller can make correct decisions assuming

the ANA policy without detailed knowledge of the system. The admitted tasks are

dispatched following the MNA policy and are always successfully completed by their

deadlines. However, if TWQ is empty, some resources may be idle until the next task

arrival. At that point, the admission controller has to know the system status so that

it takes resource idleness into account to make correct admission control decisions.

Figure 6.4: An Illustration of the Problem (a) Admission Controller’s View (b) An
Incorrect Task Execution.

We illustrate this problem in Figure 6.4. τ1 arrives at time 0. The admission

controller accepts it and estimates it to complete at time 7 (Figure 6.4a). However,

because τ1 has a loose deadline, the dispatcher does not allocate all four nodes but the

minimum number, one node, to τ1 and completes it at time 20 (Figure 6.4b). Task

τ2 arrives at an empty TWQ at time 6 with an absolute deadline of 14. The nodes

P2, P3, P4 are idle during the time interval [4, 6]. If the admission controller were
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not to consider this resource idleness, it would assume that all four nodes are busy

processing τ1 during the interval [4, 6] and are available during the interval [7, 14].

And thus, it would wrongly conclude that τ2 can be finished with all four nodes

before its deadline. However, if τ2 were accepted, the dispatcher cannot allocate all

four nodes to τ2 at time 6, because node P1 is still busy processing τ1. With just

three nodes available during the interval [6, 20], τ2 cannot complete until time 15 and

misses its deadline.

To solve this problem, when a new task arrives at an empty TWQ, the admis-

sion controller invokes Algorithm 8 to compute the idle time and make a proper

adjustment. The algorithm first computes the workload (σidle) that could have been

Algorithm 8 adjust(τ)

1: TotalIdle = 0
2: for (i = 0; i < N ; i++) do
3: r = max(Pi.AvailableTime, P0.AvailableTime)
4: TotalIdle += max(A− r, 0)
5: end for
6: σidle =

TotalIdle
τ+χ

7: w = 1−β
1−βN σidle(τ + χ)

8: τ.S+ = w

processed using the idled resources (lines 1-6). According to Eq (7.1), we know, with

all N nodes, it takes w = 1−β
1−βN σidle(τ + χ) time units to execute the workload σidle

(line 7). To consider this idle time effect, the admission controller inserts an idle task

of size σidle before τ and postpones τ ’s start time by w (line 8).

6.2.4 Correctness of the Algorithm

In this section, we prove all tasks that have been admitted by the admission controller

can be dispatched successfully by the dispatcher and finished before their deadlines.

For simplicity, in this section, we use Ai, σi, and Di to respectively denote the arrival
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time, the data size, and the relative deadline of task τi. We prove by contradiction

that no admitted task misses its deadline. Let us assume τm is the first task in TWQ

that misses its deadline at dm = Am+Dm. We also assume that tasks τ0, τ1, · · · , τm−1

have been executed before τm. Among these preceding tasks, let τb be the latest that

has arrived at an empty cluster. That is, tasks τb+1, τb+2, · · · , τm have all arrived at

times when there is at least one task executing in the cluster. Since only tasks that

are assumed to finish by their deadlines are admitted, tasks execute in EDF order,

and τb, τb+1, · · · , τm are all admitted tasks, we know that the admission controller has

assumed that all these tasks can complete by τm’s deadline dm. Let σ
AN denote the

total workload that has been admitted to execute in the time interval [Ab, dm]. We

have,

σAN ≥
m∑
i=b

σi. (6.5)

Since all dispatched subtasks are guaranteed to finish by their deadlines (Sec-

tion 6.2.2), task τm missing its deadline means at time dm a portion of τm is still in

TWQ. That is, the total workload σMN dispatched in the time interval [Ab, dm] must

be less than
∑m

i=b σi. With Eq (6.5), we have,

σAN > σMN . (6.6)

Next, we prove that Eq (6.6) cannot hold.

As mentioned earlier, tasks τb+1, τb+2, · · · , τm have all arrived at times when there

is at least one task executing in the cluster. However, at their arrival times, TWQ

could be empty. As described in Section 6.2.3, when a task arrives at an empty TWQ,

an adjustment function is invoked to allow the admission controller to take resource

idleness into account. Following the function (Algorithm 8), the admission controller

properly postpones the new task τ ’s start time by w, which is equivalent to the case
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where the admission controller “admits” and inserts before τ an idle task τidle of size

σidle that completely “occupies” the idled resources present in the cluster. Let us

assume that τ̄1, τ̄2, · · · , τ̄v are the idle tasks “admitted” by the admission controller

adjustment function to “complete” in the interval [Ab, dm].

We define σ̂AN as the total workload, including those σ̄i, i = 1, 2, · · · , v of idle

tasks, that has been admitted to execute in the time interval [Ab, dm]. σ̂
MN is the total

workload, including those σ̄i, i = 1, 2, · · · , v of idle tasks, that has been dispatched in

the time interval [Ab, dm]. Then, we have,

σ̂AN = σAN +
v∑

i=1

σ̄i, (6.7)

σ̂MN = σMN +
v∑

i=1

σ̄i. (6.8)

Next, we first prove that σ̂MN ≥ σ̂AN is true.

Computation of σ̂AN : σ̂AN is the sum of workloads, including those
∑v

i=1 σ̄i of

idle tasks, that are admitted to execute in the time interval [Ab, dm]. To compute

σ̂AN , we leverage the following lemma.

Lemma 6.2.1 For an admission controller that assumes the ANA policy, if h ad-

mitted tasks are merged into one task T , task T’s execution time is equal to the sum

of all h tasks’ execution times. That is,

E(
h∑

i=1

σi, N) =
h∑

i=1

E(σi, N). (6.9)
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Figure 6.5: Merging Multiple Tasks into One Task.

Proof If we run a single task of size σ on N nodes, the execution time is

E(σ,N) =
1− β

1− βN
σ(τ + χ) (6.10)

If multiple tasks of size σ1, σ2, · · · , σh execute on N nodes in order, their total execu-

tion time is

h∑
i=1

Ei(σi, N) =
h∑

i=1

(
1− β

1− βN
σi(τ + χ))

=
1− β

1− βN

h∑
i

σi(τ + χ) (6.11)

Therefore, we have,
h∑

i=1

E(σi, N) = E(
h∑

i=1

σi, N). (6.12)

Since σ̂AN = σAN +
∑v

i=1 σ̄i, according to the lemma, we have E(σ̂AN , N) =

E(σAN , N) +
∑v

i=1 E(σ̄i, N), which implies that the sum of workloads σ̂AN admitted

to execute in the interval [Ab, dm], equals to the size of the single workload that can

be processed by the N nodes in [Ab, dm]. According to Eq (7.1), we have

σ̂AN =
dm − Ab

1−β
1−βN (χ+ τ)

. (6.13)
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In addition, it is the sum of workloads assumed to be assigned to each of the N nodes

in the interval [Ab, dm]. We use σpk to denote the workload fraction assumed to be

processed by node Pk in the interval [Ab, dm]. P1 is always transmitting or computing

during [Ab, dm]. Therefore, the workload of node P1 is:

σp1 =
dm − Ab

τ + χ
(6.14)

Because the data transmission does not occur in parallel, other nodes are blocked by

P1’s data transmission. We use Bpk to denote the blocking time on node Pk. The

node P2’s workload is:

σp2 =
dm − Ab − σp1τ

τ + χ
=

dm − Ab −Bp2

τ + χ
(6.15)

In general, we have,

σpk =
dm − Ab −

∑k−1
j=1 σpjτ

τ + χ
=

dm − Ab −Bpk

τ + χ
(6.16)

Thus, as shown in Figure 6.6, we have,

σ̂AN =
N∑
k=1

σpk . (6.17)

Figure 6.6: All Node Assignment Scenario.

Computation of σ̂MN : σ̂MN denotes the total workload processed in the time
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interval [Ab, dm]. With idle tasks τ̄1, τ̄2, · · · , τ̄v completely “occupying” the idled re-

sources during the interval [Ab, dm], there are no gaps between “task executions” and

the cluster is always “busy” processing σ̂MN = σMN +
∑v

i=1 σ̄i. which means there

are no gaps between task executions and nodes are always busy during [t0, t0 + dm]

interval.

Unlike the admission controller, the dispatcher applies MNA policy. When a

processing node becomes available, the dispatcher starts to execute a task on the

node until the task’s deadline. Therefore, a task is divided into subtasks, which can

be dispatched to processing nodes at different times. As illustrated by an example

in Figure 6.7, the σ31 of task 3 is dispatched to P1 after σ1 of task 1 finishes and the

remaining workload σ32 of task 3 is dispatched to P2 after σ22 of task 2 finishes. As

we can see, MNA dispatcher leads to a complicated node allocation scenario and it

makes it difficult to compute the exact value of σ̂MN . Therefore, we compute the

lower bound of σ̂MN . If the lower bound of σ̂MN is no less than σ̂AN , we prove that

σ̂MN is alway no less than σ̂AN .

Similar to computing σ̂AN , we calculate how much workloads are processed by

each of the N nodes in the given interval. We use σ
′
pk

to denote the sum of workloads

that are processed by node Pk in the interval [Ab, dm]. We have,

σ̂MN =
N∑
k=1

σ
′

pk
. (6.18)

To compute the lower bound of σ̂MN , we first consider the case, where computing

nodes have priorities that are indicated by their node numbers. The node P1 has the

highest priority, while PN has the lowest priority. We also assume only high priority

nodes can block low priority nodes. We use B
′
pk

to denote the actual blocking due

to the data transmission. In this case, since computing nodes have priorities, P1 is



98

never blocked in [Ab, dm]. Thus the actual workload on P1 in [Ab, dm] is:

σ
′

p1
=

dm − Ab

τ + χ
(6.19)

Figure 6.7: A Minimum Node Assignment Scenario.

As shown in Figure 6.7, P1 could have multiple data transmissions. However,

not all data transmissions on P1 block the effective use of P2. In Figure 6.7, the

second data transmission on P1 does not block and cause P2 idle, because P1’s data

transmission overlaps with P2’s computation. Therefore, the actual blocking time B
′
p2

is equal or less than the sum of data transmission time on P1. That is:

B
′

p2
≤ σ

′

p1
τ (6.20)

Therefore,

σ
′

p2
=

dm − Ab −B
′
p2

τ + χ

≥
dm − Ab − σ

′
p1
τ

τ + χ
(6.21)
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In general:

B
′

pk
≤

k−1∑
j=1

σ
′

pj
τ k = 2, 3, · · · , N (6.22)

σ
′

pk
=

dm − Ab −B
′
pk

τ + χ

≥
dm − Ab −

∑k−1
j=1 σ

′
pj
τ

τ + χ
(6.23)

So far, we have presented the estimated and actual workloads that are allocated

on each node by the admission controller and the dispatcher. We now show that the

actual dispatched workload σ̂MN is always no less than the estimated workload σ̂AN

admitted by the admission controller.

From Equations (6.14),(6.15),(6.19), and (6.21), we have,

σ
′

p1
= σp1 (6.24)

and σ
′

p2
≥ σp2 (6.25)

From Eq(6.25), we can see that the actual workload that is dispatched could be more

that the estimated workload on P2. If workload on P2 increases, it increases the

blocking time of the following nodes. In general, if σ
′
pi

> σpi for any node Pi, the

increased workload σ∆i
= (σ

′
pi
− σpi) increases the blocking time on the following

nodes Pi+1 to PN by σ∆i
τ , as shown in Figure 6.8.

But we can show that the increased workload σ∆i
on Pi is no less than the work-

load that can be processed in increased blocking time B∆i+1=σ∆i
τ using all nodes.

Therefore, an increased workload on any node contributes to an increase of the accu-

mulated workload σ̂MN .

Next, we prove this claim. If σ
′
pi

> σpi for node Pi, then the increased blocking
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Figure 6.8: Increased Blocking Time.

time is,

B∆i+1
= (σ

′

pi
− σpi)τ (6.26)

The workload that can be processed during an interval t using N nodes is,

σ =
t

1−β
1−βN (τ + χ)

(6.27)

Therefore, the workload that can be precessed in B∆i+1
time using N nodes is:

B∆i+1

1−β
1−βN (τ + Cps)

=
(σ

′
pi
− σpi)τ

1−β
1−βN (τ + χ)

=
(σ

′
pi
− σpi)τ
τ

1−βN

= (σ
′

pi
− σpi)(1− βN)

≤ (σ
′

pi
− σpi)

That is:

B∆i+1

1−β
1−βN (τ + χ)

≤ σ∆i
(6.28)

From Eq(6.28), we can see that the increased workload σ∆2 on P2 is no less than

the workload that could be processed in σ∆2τ time units on all following nodes. Next,

we prove by induction that for the first i nodes, the actual accumulated workload is
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no less than the estimated workload.

Base: From Equations (6.24) and (6.25), we have,

2∑
k=1

σ
′

pk
≥

2∑
k=1

σpk (6.29)

We assume

l∑
k=1

σ
′

pk
≥

l∑
k=1

σpk (6.30)

We use σinc
l to denote the increase of the accumulated workload on the first l

nodes. That is

σinc
l =

l∑
k=1

σ
′

pk
−

l∑
k=1

σpk (6.31)

σinc
l increases the blocking time on Pl+1 by σinc

l τ .

From Eq(6.23) we have,

σ
′

p(l+1)
≥

dm − Ab −
∑l

k=1 σ
′
pk
τ

τ + χ
(6.32)

Combining Eq(6.32) with with Eq(6.31), we have,

σ
′

p(l+1)
≥ dm − Ab − (

∑l
k=1 σpk + σinc

l )τ

τ + χ

=
dm − Ab −

∑l
k=1 σpkτ

τ + χ
− σinc

l τ

τ + χ

That is σ
′

p(l+1)
≥ σp(l+1)

− σinc
l τ

τ + χ
(6.33)

For the first (l + 1) nodes:

l+1∑
k=1

σ
′

pk
=

l∑
k=1

σ
′

pk
+ σ

′

p(l+1)
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Replace
∑l

k=1 σ
′
pk

with Eq(6.31), we have,

l+1∑
k=1

σ
′

pk
=

l∑
k=1

σpk + σinc
l + σ

′

p(l+1)
(6.34)

Replace σ
′
pl+1

with Eq(6.33), we get:

l+1∑
k=1

σ
′

pk
≥

l∑
k=1

σpk + σinc
l + σp(l+1)

− σinc
l

τ

τ + χ

=
l+1∑
k=1

σpk + σinc
l − σinc

l

τ

τ + χ

=
l+1∑
k=1

σpk + σinc
l (1− τ

τ + χ
)

=
l+1∑
k=1

σpk + σinc
l β

≥
l+1∑
k=1

σpk (6.35)

That is:
l+1∑
k=1

σ
′

pk
≥

l+1∑
k=1

σpk (6.36)

Eq(6.36) shows that the actual accumulated workload is no less than the estimated

workload. Thus, ∀ l ∈ [0, N ] we have,

l∑
k=1

σ
′

pk
≥

l∑
k=1

σpk (6.37)

⇒ σ̂MN ≥ σ̂AN (6.38)

We proved that if computing nodes have priorities, the workload that is dispatched

in [Ab, dm] is no less than the estimated workload. In next step, we relax the node

priority constraint. Without priority, workloads can be dispatched to any available
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node, such that high index node can block low index nodes. As an example shown in

Figure 6.9-(A), data transmission σ1τ on P1 blocks P2, denoted as B
′
2. The dispatcher

starts dispatching σ21 to P2 immediately after σ1’s data transmission. When P1

completes processing σ1, it is blocked by P2 until σ21’s data transmission completes.

This blocking is denoted as B
′
1. For this case, it is difficult to derive the workload

processed by each node. because a node can be blocked by any other nodes. But we

can show that no-priority, mixed blocking case can be reduced to a case, where the

priority is enforced.

Figure 6.9: Another MNA Scenario.

Assume a low index node can be blocked by a high index node. Without loss of

generality, we assume node P1 is blocked by node P2 in B
′
1. If we remove σ∆ =

B
′
1

τ+χ

workload from P2 and assume that the workload were assigned to P1, as shown in

Figure 6.9-(B). This workload can be processed in B
′
1 time. The σ∆ on P1 increases

the blocking time on P2 by σ∆τ , denoted as B
′
22, and reduces the computation time on

P2 by σ∆χ, denoted as B
′
23, which corresponds to the removed workload. Therefore,

B
′
1 = B

′
22+B

′
23. This way as shown in Figure 6.9-(B), we can reverse the blocking time
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order without changing the blocking amount. Next, we justify the existence of the

blocking time B
′
23, showing that after the conversion, the blocking time on node P2 is

still no more that the sum of data transmission time on node P1. In Figure 6.9-(A),

B
′

1 = σ∆(τ + χ) ≤ σ21τ (6.39)

σ21χ = σ22(τ + χ) (6.40)

Multiply both sides of Eq (6.40) by τ/χ, we have,

σ21τ = σ22(τ + χ)
τ

χ
(6.41)

From Eq(6.39) and Eq(6.41), we have,

σ∆(τ + χ) ≤ σ22(τ + χ)
τ

χ
(6.42)

Multiply both side of Eq(6.42) by χ/(τ + χ), we have,

σ∆χ ≤ σ22τ (6.43)

i.e., B
′

23 ≤ σ22τ (6.44)

In the converted case, B
′
21 + B

′
22 + B

′
23 ≤ (σ1 + σ∆ + σ22)τ . That is the total

blocking time on P2 is no more than the sum of data transmission time on P1. This

conforms to a scenario in the priority enforced case. Same method can be applied to

the multiple node scenario, where the mixed blocking time can be reversed among

two nodes in each step until the we reach the previous case.

Therefore, the no priority case can be reduced to the priority enforced case. Thus
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for both cases, we can conclude:

N∑
j=1

σ
′

pj
≥

N∑
j=1

σpj (6.45)

σ̂MN ≥ σ̂AN (6.46)

With Equations (6.46), (6.7), and (6.8), we conclude that σMN ≥ σAN is true, which

contradicts Eq (6.6). Therefore, the original assumption does not hold and no task

misses its deadline.

6.3 Hybrid Approach

In Section 6.2.4, we have showed that although ANA admission controller is fast, it

is a little pessimistic in comparison to the exact MNA admission controller. In this

section, we introduce a hybrid approach that combines the best of both strategies.

To avoid unnecessary task rejections, when the waiting queue length is small and the

overhead is little, the hybrid admission controller applies the exact MNA policy. If

the waiting queue length is large and the scheduling overhead becomes non-negligible,

it switches to the fast ANA admission controller. By dynamically switching between

MNA and ANA-based strategies, the hybrid approach can provide both efficiency and

better real-time performance.

Next, we describe the hybrid admission control algorithm (Algorithm 9) in detail.

According to a pre-specified queue length threshold, the hybrid approach switches

between the fast admission control algorithm AC-FAST (Algorithm 6) and the exact

MNA-based admission controller as adopted by EDF-IIT [17, 45] (line 1). When

switching to AC-FAST, since the currently-running tasks’ remaining workload will

delay the start time of waiting tasks, this delay must be calculated (lines 2-3). We



106

then compute the expected execution time, completion time and slack time of all

waiting tasks (line 4). This computation is only needed at the switch point (lines

5-6). In addition, because AC-FAST is only applied when the TWQ is large and thus

the cluster is busy, there is no need to call the “adjust” function (Algorithm 8) in this

hybrid algorithm (lines 7-8). To switch from AC-FAST to EDF-IIT, the schedule of

all waiting tasks must be calculated based on the current resource availability (line

9-11). Since this schedule recalculation occurs only if the queue length is small, the

resultant scheduling overhead is tolerable.

Algorithm 9 HybridAC(τ ,TWQ)

1: if (Queue Length >= Switch Threshold) then
2: if (FLAG) then
3: r = RunningTaskExeTime()
4: AdjANACompTime(r)
5: FLAG = false
6: end if
7: AC-FAST(τ , TWQ)
8: else
9: EDF-IIT(τ , TWQ)
10: FLAG=true
11: end if

Algorithm 10 RunningTaskExeTime()

1: r = 0 //current time to node end time
2: for (ni ∈ cluster) do
3: if ni.EndT ime > curT ime then
4: r += ni.EndT ime− curT ime
5: end if
6: end for
7: σr =

r
χ
//running workload

8: Er = E(σr, N)
9: return Er
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Algorithm 11 AdjANACompTime(delayTime)

1: C = curTime + delayTime
2: //update tasks’ execution and completion time
3: for (τi ∈ TWQ) do
4: τi.E = E(τi.σ,N)
5: τi.C = C + τi.E
6: C = τi.C
7: end for
8: //compute slack time of all tasks
9: for (τi ∈ TWQ) do
10: τi.slack = τi.(A+D)− τi.C
11: end for

6.4 Evaluation

In Section 6.2, we have presented an efficient divisible load scheduling algorithm.

Since the algorithm is based on EDF scheduling and it eliminates IITs, we use FAST-

EDF-IIT to denote it. The EDF-based algorithm proposed in [46] is represented by

EDF-IIT-1 and that in [17] by EDF-IIT-2. We use HYBRID to denote the hybrid

algorithm introduced in Section 6.3. This section compares their performance.

We have developed a discrete simulator, called DLSim, to simulate real-time divis-

ible load scheduling in clusters. This simulator, implemented in Java, is a component-

based tool, where the main components include a workload generator, a cluster con-

figuration component, a real-time scheduler, and a logging component. For every

simulation, three parameters, N , τ and χ are specified for a cluster.

In Sections 6.4.1 and 6.4.2, we evaluate the performance of FAST-EDF-IIT. In

Section 6.4.3, we evaluate the performance of the hybrid algorithm HYBRID.

6.4.1 FAST-EDF-IIT: Real-Time Performance

We first evaluate the algorithm’s real-time performance. The workload is generated

following the same approach as described in [46, 45] and due to the space limitation,
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we choose not to repeat the details here. Similar to the work by Lee et al. [43], we

adopt a metric SystemLoad = E(Avgσ, 1) λ
N

to represent how loaded a cluster is for a

simulation, where Avgσ is the average task data size, E(Avgσ, 1) is the execution time

of running an average size task on a single node (see Eq (7.1) for E ’s calculation), and
λ
N

is the average task arrival rate per node. To evaluate the real-time performance,

we use two metrics — Task Reject Ratio and System Utilization. Task reject ratio is

the ratio of the number of task rejections to the number of task arrivals. The smaller

the ratio, the better the performance. In contrast, the greater the system utilization,

the better the performance.

For simulations in this subsection, we assume that the cluster is lightly loaded and

thus we can ignore the scheduling overheads. In these simulations, we observe that

all admitted tasks complete successfully by their deadlines. Figure 6.10 illustrates

the algorithm’s Task Reject Ratio and System Utilization. As we can see, among

the three algorithms, EDF-IIT-2 provides the best real-time performance, achieving

the least Task Reject Ratio and the highest System Utilization, while FAST-EDF-IIT

performs better than EDF-IIT-1. The reason that FAST-EDF-IIT does not have

the best real-time performance is due to its admission controller’s slightly pessimistic

estimates of the data transmission blocking time (Section 6.2). Focusing on reducing

the scheduling overhead, FAST-EDF-IIT trades real-time performance for algorithm

efficiency. In the next subsection, we use experimental data to demonstrate that in

busy clusters with long task waiting queues, scheduling overheads become significant

and inefficient algorithms like EDF-IIT-1 and EDF-IIT-2 can no longer be applied,

while FAST-EDF-IIT wins for its huge advantages in scheduling efficiency.
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Figure 6.10: Algorithm’s Real-Time Performance.

6.4.2 FAST-EDF-IIT: Scheduling Overhead

A second group of simulations are carried out to evaluate the overhead of the schedul-

ing algorithms. Before discussing the simulations, we first present some typical cluster

workloads, which lay out the rationale for our simulations.

In Figure 6.2, we have shown the TWQ status of a cluster at University of Cali-

fornia, San Diego. From the curves, we observe that 1) waiting tasks could increase

from 3, 000 to 17, 000 in one hour (Figure 6.2a) and increase from 15, 000 to 25, 000 in
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about three hours (Figure 6.2b) and 2) during busy hours, there could be on average

more than 5, 000 and a maximum of 37, 000 tasks waiting in a cluster. Similarly busy

and bursty workloads have also been observed in other clusters (Figure 6.11) and are

quite common phenomena.1 Based on these typical workload patterns, we design our

simulations and evaluate the algorithm’s scheduling overhead.
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Figure 6.11: Typical Cluster Status.
1To illustrate the intensity and commonness of the phenomena, Figures 6.2 and 6.11 show the

TWQ statistics on an hourly and a daily basis respectively.
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In this group of simulations, the following parameters are set for the cluster:

N=512 or 1024, τ=1 and χ=1000. have thousands of CPUs. We choose to simulate

modest-size clusters (i.e., those with 512 or 1024 nodes). According to our analysis,

the time complexities of algorithms FAST-EDF-IIT, EDF-IIT-1 and EDF-IIT-2 are

respectively O(max (N,n)), O(nN3) and O(nNlog(N)). Therefore, if we show by

simulation data that in modest-size clusters of N=512 or 1024 nodes FAST-EDF-

IIT leads to much less overheads, then we know for sure that it will be even more

advantageous if we apply it in larger clusters like those listed in Table 6.1.

To create cases where we have a large number of tasks in TWQ, we first submit a

huge task to the cluster. Since it takes the cluster a long time to finish processing this

one task, we can submit thousands of other tasks and get them queued up in TWQ.

As new tasks arrive, the TWQ length is built up. In order to control the number of

waiting tasks and create the same TWQ lengths for the three scheduling algorithms,

tasks are assigned long deadlines so that they will all be admitted and put into TWQ.

That is, in this group of simulations, we force task reject ratios to be 0 for all three

algorithms so that the measured scheduling overheads of the three are comparable.

We first measure the average scheduling time of the first n tasks, where n is in

the range [100, 3000]. The simulation results for the 512-node cluster are shown in

Table 6.2 and Figure 6.12. From the data, we can see that for the first 3, 000 tasks,

FAST-EDF-IIT spends an average of 48.87ms to admit a task, while EDF-IIT-1 and

EDF-IIT-2 average respectively 6206.91ms and 1494.91ms, 127 and 30 times longer

than FAST-EDF-IIT.

Table 6.2: 512-Node Cluster: First n Tasks’ Average Scheduling Time (ms).

n FAST-EDF-IIT EDF-IIT-1 EDF-IIT-2

300 0.96 410.44 151.32
1000 4.84 1321.08 494.07
2000 20.46 3119.76 988.95
3000 48.87 6206.91 1494.91
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Figure 6.12: 512-Node Cluster: Algorithm’s Real-Time Scheduling Overhead: First
n Tasks’ Average Scheduling Time.

Because the scheduling overhead increases with the number of tasks in TWQ, we

then measure the task scheduling time after n tasks are queued up in TWQ. Table 6.3

shows the average scheduling time of 100 new tasks after there are already n tasks

in TWQ of the 512-node cluster. The corresponding curves are in Figure 6.13. As

shown, when there are 3, 000 waiting tasks, FAST-EDF-IIT takes 157ms to admit a

task, while EDF-IIT-1 and EDF-IIT-2 respectively spend about 31 and 3 seconds to

make an admission control decision.

Table 6.3: 512-Node Cluster: Average Task Scheduling Time (ms) after n Tasks in
TWQ.

n FAST-EDF-IIT EDF-IIT-1 EDF-IIT-2

300 1.71 850.01 349.22
1000 16.25 3006.01 1034.21
2000 67.24 7536.32 2030.48
3000 157 31173.86 3050.86

Now, let us examine the simulation results and analyze their implication for real-

world clusters. It is shown in Figure 6.2a that the length of TWQ in a cluster

could increase from 3, 000 to 17, 000 in an hour. users before their submissions, we
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Figure 6.13: 512-Node Cluster: Algorithm’s Real-Time Scheduling Overhead: Aver-
age Scheduling Time after n Tasks in TWQ.

actually have a smaller number of “whole” tasks waiting in the queue. By studying

a 16-month-long log of the RED cluster at University of Nebraska-Lincoln 2, we find

that the average number of tasks submitted by a user consecutively is 7. Based on

this data, we believe it is reasonable to assume that a “whole” task comprises of 10

subtasks. Therefore, a TWQ length growing from 3, 000 to 17, 000 in an hour means

that the number of submitted “whole” tasks increases from 300 to 1, 700 in an hour.

From Table 6.3, we know that for EDF-IIT-1 and EDF-IIT-2, it takes respectively

more than 31 and 3 seconds to admit a task when the TWQ length is over 3,000.

Therefore, to schedule the 14, 000 new tasks arrived in that hour, it takes more than

7,000 and 700 minutes respectively. Even if we assume that the last one of the 14, 000

tasks has arrived in the last minute of the hour, its user has to wait for at least

700-60=640 minutes to know if the task is admitted or not. On the other hand, if

FAST-EDF-IIT is applied, it takes a total of 37 minutes to make admission control

decisions on the 14, 000 tasks. This example demonstrates that our new algorithm

is much more efficient than existing approaches and is the only algorithm that can

2Red is a 215 node/1140 core production-mode LINUX cluster.
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be applied in busy clusters. If we analyze the algorithms using data in Figure 6.2b

where waiting tasks increase from 15, 000 to 25, 000, the difference in scheduling time

will be even more striking.

Table 6.4: First n Tasks’ Average Scheduling Time (ms).

n FAST-EDF-IIT EDF-IIT-2
N=1024 N=512 N=1024 N=512

300 1.01 0.96 363.29 151.32
1000 4.90 4.84 1545.51 494.07
2000 21.1 20.46 3089.6 988.95
3000 50 48.87 4923.91 1494.91
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Figure 6.14: Algorithm’s Real-Time Scheduling Overhead: First n Tasks’ Average
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The simulation results for the 1024-node cluster are reported in Table 6.4 and

Figure 6.14. Due to EDF-IIT-1’s huge overhead and cubic complexity with respect to

the number of nodes in the cluster, a simulation for a busy cluster with a thousand

nodes would take weeks — with no new knowledge to be learned from the experiment.

Therefore, on the 1024-node cluster, we only simulate EDF-IIT-2 and FAST-EDF-

IIT. For easy comparison, Table 6.4 and Figure 6.14 include not only data for the

1024-node cluster but also those for the 512-node cluster. As shown by the simulation
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results, when the cluster size increases from 512 to 1024 nodes, the scheduling over-

head of FAST-EDF-IIT only increases slightly. FAST-EDF-IIT has a time complexity

of O(max (N, n)). Therefore, for busy clusters with thousands of tasks in TWQ (i.e.,

n in the range [3000, 17000]), the cluster size increase does not lead to a big increase

of FAST-EDF-IIT’s overhead. In contrast, EDF-IIT-2, with a time complexity of

O(nNlog(N)), has a much larger scheduling overhead on the 1024-node cluster than

that on the 512-node cluster.

6.4.3 Evaluation of Hybrid Approach
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Figure 6.15: 1024-Node Cluster: Hybrid Algorithm’s Overhead: First n tasks’ Aver-
age Scheduling Time.

Scheduling Overhead. In the following group of simulations, we analyze the

scheduling overhead of the Hybrid algorithm and compare it with FAST-EDF-IIT

and EDT-IIT-2. The simulation results for the 1024-node cluster are shown in Fig-

ures 6.15 and 6.16. For this set of simulations, the switch point of the Hybrid approach

is set at 500 tasks. The cluster admission controller is based on EDF-IIT-2 when the

queue length is smaller than 500, and switches to AC-FAST (Algorithm 6) when the
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Figure 6.16: 1024-Node Cluster: Hybrid Algorithm’s Overhead: Average Scheduling
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queue length goes beyond 500. We measure both the average scheduling time of first

n tasks and the scheduling time after n tasks in TWQ. As shown in Figure 6.15, as

the number of tasks increases in TWQ, the average scheduling time of EDF-IIT-2

gets bigger while that of FAST-EDF-IIT remains small. Before the switch point is

reached, the HYBRID algorithm’s overhead increases with the number of waiting

tasks; but afterwards, the HYBRID algorithm switches to applying AC-FAST and

its overhead slowly converges to be the same as that of FAST-EDF-IIT. Figure 6.16

shows the scheduling time after n tasks in TWQ. The scheduling overhead of the

HYBRID approach decreases immediately after it switches to AC-FAST.

Real-Time Performance. We next examine the HYBRID algorithm’s real-time

performance. The simulation configuration is the same as that in Section 6.4.1. We

first compare the performance of EDF-IIT-2, FAST-EDF-IIT and HYBRID with a

workload similar to that adopted in Section 6.4.1. Focusing on testing the real-time

performance, this workload does not generate a large TWQ. As shown in Figure 6.17,

the HYBRID approach performs the same as EDF-IIT-2, since with this workload
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Figure 6.17: Hybrid Algorithm’s Real-Time Performance with Small TWQ.

the TWQ is very small and as a result the HYBRID admission controller is essentially

based on EDF-IIT-2.

In the next group of simulations, we analyze the HYBRID algorithm’s perfor-

mance with a longer TWQ. To generate a longer TWQ, we made two changes to the

configuration. First, we increased DCRatio to allow tasks to wait longer in TWQ

without missing their deadlines. Second, we increased the system workload five times
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Figure 6.18: Hybrid Algorithm’s Real-Time Performance.

to force tasks to wait longer in TWQ. For these simulations, we set the HYBRID al-

gorithm’s switch point at 50 waiting tasks. Since the overhead is not the focus of this

evaluation, for this group of simulations we still assume that the scheduling overhead

is negligible and not big enough to affect the algorithms’ real-time performance. The

simulation results are shown in Figure 6.18.

As we can see from Figure 6.18a, both HYBRID and EDF-IIT-2 algorithms achieve
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better task reject ratios than FAST-EDF-IIT while the two algorithms perform simi-

larly to each other. This is because HYBRID algorithm is based on EDF-IIT-2 when

TWQ is small and only after TWQ size increases and reaches to the switch point

does the HYBRID algorithm switch to applying the slightly pessimistic AC-FAST.

For the heavy system workload, TWQ is never empty. It implies that the cluster

could always be busy or 100% utilized. However, when computing nodes are waiting

for data or blocked by other nodes’ data transmission, they are not counted as utilized.

Therefore, system utilization cannot really reach 100% but saturates around some

value. As we can see from Figure 6.18b, as the system workload goes beyond 1, the

system utilization starts to saturate.

In this subsection, we have used simulations to prove the feasibility of the hybrid

approach that combines advantages of FAST-END-IIT and EDF-IIT-2. To use the

hybrid algorithm in a real-world cluster, an administrator could set the algorithm’s

switch point at a proper level according to the user-tolerable overhead.

6.5 Summary

This chapter presents a novel algorithm for scheduling real-time divisible loads in clus-

ters. The algorithm assumes a different scheduling rule in the admission controller

than that adopted by the dispatcher. Since the admission controller no longer gen-

erates an exact schedule, the scheduling overhead is reduced significantly. Unlike the

previous approaches, where time complexities are O(nN3) [46] and O(nNlog(N)) [17],

our new algorithm has a linear time complexity, i.e. O(max (N, n)). We prove that

the proposed algorithm is correct, provides admitted tasks real-time guarantees, and

utilizes cluster resources efficiently. We also propose a hybrid admission control algo-

rithm that combines advantages of both the proposed fast admission control algorithm

and the previous approaches proposed in [17, 45]. We experimentally compare our



120

algorithm with existing approaches. Simulation results demonstrate that the pro-

posed algorithm scales well and can schedule large numbers of tasks efficiently. With

growing cluster sizes and number of taks submitted, we expect our algorithm to be

even more advantageous.
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Chapter 7

Feedback-Control Based Real-Time

Divisible Load Scheduling

7.1 Introduction

Existing real-time divisible load scheduling approaches are based on worst-case pa-

rameters or assuming that task execution times can be accurately known or derived

in advance. In addition, the cluster is assumed to be 100% reliable. In practice,

node failures occur frequently and the failure rate increases with the cluster size.

For existing “open-loop” scheduling algorithms, schedules once created, are not ad-

justed according to the current system status. While they function well in predictable

environments, their performance in open and dynamic environments could be unac-

ceptably poor. We, therefore, need a feedback-control based approach to dynamically

handle workload and system variances and maintain desired performance.

In this chapter, we propose a novel algorithm, which integrates feedback control

and real-time divisible load scheduling. Next, in Section 7.2, we discuss the real-time

scheduling algorithm and Section 7.3 evaluates the algorithm performance.
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7.2 Algorithm

In this section, we present our feedback-control based algorithm on real-time divisible

load scheduling. We adopt the regular task model in Section 3.1.1, system model and

notations in Section 3.2. The objective of the algorithm is to provide a guarantee

on low deadline miss ratio while maintaining a high system utilization. The deadline

miss ratio is defined as the percentage of accepted tasks that miss their deadlines.

The system utilization is the ratio of processors’ busy time to processors’ available

time. A processor is considered busy when it is transmitting or computing a task.

Previous work uses pessimistic approaches, which avoid deadline misses by extremely

pessimistic estimation of task execution time, resulting in low system utilization. Our

approach is optimistic, where we allow non-zero but low deadline miss ratio to trade

for high system utilization.

In our control structure, the deadline miss ratio MR(k) is the controlled variable.

We choose a positive value (for instance, 5%) as the miss ratio set point Ms, i.e., the

targeted miss ratio. The goal is to guarantee MR(k) = Ms. Note that 0% cannot be

chosen as the set point because to reach 0% miss ratio, the controller could reject all

tasks and make the system completely idle, which is a correct but undesirable state.

Therefore, the set point is chosen to be greater than zero so that the scheduler can

slightly overload the system to ensure high utilization. In the control structure, the

system utilization is the manipulated variable. Following the control input (i.e., the

controller output), the actuator sets a utilization bound for the task scheduler, which

then regulates the system utilization accordingly. Our task scheduler includes two

major components: the admission controller and the dispatcher.

Figure 7.1 shows the feedback-control architecture, which has a PI controller, a

deadline miss ratio monitor, an admission controller and a dispatcher. The control

loop is invoked once in every Ts sampling period, where 1) the monitor sends the
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Figure 7.1: Feedback-Control Architecture.

measured deadline miss ratio MR(k) to the controller; 2) based on the error between

MR(k) and its set point Ms, the controller computes the change ∆Û of the utilization

bound; and 3) as a result, a new utilization bound Û(k+1) = Û(k)+∆Û is generated

and passed to the admission controller, which accordingly controls task admission

and system utilization in the next period. The dispatcher dispatches and executes

admitted tasks.

Next, we present the details of the admission controller, the dispatcher, and the

design of the PI controller on the utilization bound.

7.2.1 Admission Controller

When a new task arrives, the admission controller determines if it is feasible to sched-

ule the new task without compromising the guarantees for previously admitted tasks.

In this chapter, it is to provide the x%, where x > 0, deadline miss ratio guarantee.

Unlike existing approaches which make the decision based on worst-case estimate of

task parameters, our admission control algorithm follows the guide of the feedback

controller, i.e., the system utilization bound Û(k).

Algorithm 12 provides the admission control pseudo code. We use E and C to

respectively denote the estimated task execution time and completion time. Here,

estimates are not based on the worst-case. Instead, the estimated task parameters
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Algorithm 12 AdmissionTest(τ(A, σ,D), TWQ)

1: TWQ.insert(τ) // following EDF order
2: τp = getLastDispatchedTask()
3: if (τp != null) then
4: S = max(τp.C, τ.A)
5: else
6: S = τ.A
7: end if
8: for (τi ∈ TWQ) do
9: τi.E = E(τi.σ,N)
10: U = τi.E/(τi.A+ τi.D − S)
11: if (U > Û(k)) then
12: return false
13: end if
14: S=S+τi.E
15: end for
16: return true

can be smaller, equal or greater than the actual values. In the admission controller,

for easy estimation, it is assumed that an accepted task will execute in parallel on

all N processing nodes of the cluster. A task is partitioned following the divisible

load theory, which states that the optimal execution time is obtained when all nodes

allocated to a task complete their computation at the same time [79]. Thus, we get

the estimated execution time of running a task τ(A, σ,D) on N processing nodes

as [45],

E(σ,N) =
1− β

1− βN
σ(τ ′ + χ′) (7.1)

where β =
χ′

τ ′ + χ′
(7.2)

and τ ′ and χ′ are the estimated task parameters. When a new task τ arrives, it is

tentatively inserted into the task waiting queue (TWQ) following an earliest deadline

first (EDF) order (line 1). Among currently running tasks, we then identify the last
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dispatched one (line 2). S denotes the start time of the next task. If there are tasks

currently running in the cluster, the admission controller estimates its completion

time and assumes that the next task cannot start until then (line 4). Otherwise, the

waiting task can start immediately (line 6). Next, the admission controller analyzes

each waiting task, compares its resultant momentary system utilization with the

utilization bound Û(k). If all waiting tasks successfully pass the test, the new task is

accepted. Otherwise it is rejected (lines 8-16).

7.2.2 Dispatcher

The dispatcher partitions a divisible task into subtasks and dispatches them to ex-

ecute on the allocated processors. When a processing node becomes available, the

dispatcher takes the first task τ(A, σ,D) in TWQ, partitions the task and sends a

subtask of size σ̂ to the node, where σ̂ = min (A+D−CurrentT ime
m(τ ′+χ′)

, σ). The remaining

portion of the task τ(A, σ − σ̂, D) is left in TWQ. As we can see, the dispatcher

chooses a proper size σ̂ to guarantee that the dispatched subtask completes no later

than the task’s absolute deadline A + D, assuming the subtask’s actual execution

time is no more than m times of the estimated execution time. If the actual execu-

tion time is less than the estimate, a processor may complete the subtask earlier and

receive multiple rounds of subtasks from the same task. This dispatching algorithm

allocates fewer processors to a task with a longer deadline, while for a task with a

shorter deadline, it spreads the task to more processors to finish it faster and before

its deadline.

7.2.3 PI Controller Design

We apply a control-theoretic methodology to design a PI controller on the utiliza-

tion bound. By manipulating the utilization bound Û(k), the PI controller keeps the
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deadline miss ratio MR(k) around its set point Ms. We first specify the performance

requirements for the controller, and then use system identification techniques to estab-

lish a dynamic model for the cluster. Based on the dynamic model, we use the Root

Locus method to design the PI controller that meets the performance specifications.

A key benefit of our control-theoretic approach is that it enables us to perform

rigorous analysis on critical system properties such as stability, overshoot, and set-

tling time. A dynamic system is stable if it converges to the equilibrium point for any

initial condition [33]. In our real-time cluster, the equilibrium point is the deadline

miss ratio set point Ms. Hence, a stable system guarantees the convergence to Ms.

The overshoot represents the maximum amount by which the set pointMs is exceeded

and the settling time denotes how fast the system converges. Through rigorous the-

oretical analysis, we can prove that a cluster controlled by our approach meets the

performance specifications despite significant workload and system variations.

For control theory based design and analysis, we need a dynamic model (e.g.,

difference equations) as the foundation, which characterizes the relationship between

control inputs and controlled variables of the system. In contrast to mechanical and

electrical systems whose dynamics are usually well understood, the lack of existing

dynamic models for open real-time systems has been a key hurdle in applying control-

theoretic approaches to such systems. Since the task waiting queue (TWQ) is an

integrator of flow (which gives rise to difference equations), the controlled real-time

cluster can be modeled as a difference equation with unknown parameters. That is,

MR(k) =
n∑

j=1

ajMR(k − j) +
n∑

j=1

bjÛ(k − j) (7.3)

We use system identification [5] to estimate unknown parameter values (i.e., the values

of aj and bj, where j = 1, · · · , n). In an nth order model, there are 2n parameters

that need to be decided by the least-squares estimator. Based on this dynamic model,
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we then apply the Root Locus method [33] to design the PI controller to meet the

performance specifications. Our approach is similar to that of our previous work [52].

7.3 Evaluation

In the previous section, we have presented the feedback-control based divisible load

scheduling algorithm. This section evaluates its performance.

We used the discrete simulator DLSim, described in Section 4.5. The workload

is generated following the same approach as described in Section 4.5. To simulate

the uncertainty of task transmission and computation costs, two values Fτ i and Fχ i

are randomly picked in the interval [0.1, 2] as task Ti’s transmission and computation

cost factors so that Ti’s actual costs are τ = τ ′Fτ i and χ = χ′Fχ i. Similar to the

work by Lee et al. [43], we adopt a metric SystemLoad = E(Avgσ, 1) λ
N

to represent

how loaded a cluster is for a simulation, where Avgσ is the average task data size,

E(Avgσ, 1) is the execution time of running an average size task on a single node (see

Eq (7.1) for E ’s calculation), and λ
N

is the average task arrival rate per node. In this

group of simulation, we choose the following parameters: N= 16, τ ′ = 1, χ′=100,

Avgσ=200. In addition, the sampling period is Ts = 100,000 time unit and the miss

ratio set point is Ms = 5%.

7.3.1 Effects of Unpredictable Workload

We first evaluate the algorithm under a varied and unpredictable workload. Three

metrics — Deadline Miss Ratio, Task Reject Ratio and System Utilization are adopted.

The task reject ratio is the ratio of the number of task rejections to the number of

task arrivals. The greater the system utilization and the smaller the deadline miss

ratio and the task reject ratio, the better the performance.
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For simulations in this subsection, we start with a light cluster workload and then

let it gradually increase. Figure 7.2 illustrates the resultant Deadline Miss Ratio. As
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Figure 7.2: Deadline Miss Ratio upon Changing Workload.

we can see from the figure, if no feedback control is applied (that is, tasks are always

accepted when the system utilization is below 1), the deadline miss ratio increases

with the workload. When the workload is heavy, 25% of the accepted tasks miss their

deadlines. This is not an acceptable performance for real-time applications. On the

contrary, when the feedback control is applied, the scheduler dynamically adjusts the

system utilization bound so that the admission controller accepts fewer tasks when

the system is overloaded. Therefore, the deadline miss ratio can be maintained at the

target 5%.

Next, we compare the task reject ratio and the system utilization of the feedback-

control based scheduler with two baseline strategies: 1) the ideal case where the

scheduler knows task execution parameters accurately; and 2) the worst case where

the scheduler assumes the worst case transmission and computation costs. Figure 7.3



129

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

Feedback Control
Worst Case
Ideal Case

Figure 7.3: Task Reject Ratio upon Changing Workload.

and Figure 7.4 show the resultant Task Reject Ratio and System Utilization. As

we can see, the ideal case provides the best performance: it rejects a small number

of tasks to ensure no deadline misses, while utilizing the system well. However,

in practice, it is impossible to have accurate knowledge of task execution times in

advance. When the workload is light, our feedback-control based scheduler performs

similarly to the ideal case and much better than the worst case; by slightly overloading

the system and allowing a small number of deadline misses, the feedback-control based

scheduler achieves an even better task reject ratio than the best case. Under the heavy

workload, due to the lack of accurate task knowledge, our scheduler achieves less

than ideal utilization. However, it keeps the deadline miss ratio around 5% and the

utilization around 75%. In contrast, for an algorithm that assumes the worst case task

parameters (like any of the existing real-time divisible load scheduling algorithms),

it performs much worse than the feedback-control based algorithm. Note, in this

simulation, the worst case task execution cost is assumed to be no more than twice of
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Figure 7.4: System Utilization upon Changing Workload.

the actual cost. In practice, the estimate could be much worse and so is the resultant

task reject ratio and system utilization of a worst-case based algorithm.

7.3.2 Effects of Node Failures

The previous subsection shows that the feedback-control based scheduler provides

stable and predictable performance in spite of a changing and unpredictable workload.

This subsection evaluates how our algorithm performs upon node failures. Node

failure is a common problem in clusters. The scheduling algorithms in previous work

[35, 43, 17, 46, 45, 44, 58] simply assume node failures never occur, thus do not

tolerate them. As a result, upon a node failure, existing schedulers cannot detect

it. The dispatcher may be able to flag off the failed node, since running a task

on the failed node never returns the completion signal. However, it is difficult to

differentiate between a node failure and the case where the actual execution time of a



131

task is much longer than the estimate. Therefore, existing approaches do not have an

effective mechanism to handle node failures. In contrast, our feedback-control based

scheduling algorithm can dynamically reduce the system utilization when the cluster

capacity decreases as a result of node failures.
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Figure 7.5: Deadline Miss Ratio upon Node Failures.

In this simulation, system workload is kept at a constant level. To evaluate the

effects of node failures, we turn off 40% of the cluster nodes in the middle of the

simulation. As we can see from Figure 7.5, when 40% of the nodes fail around the

90th sampling period, because the no-feedback scheduler cannot detect this capacity

change, its deadline miss ratio increases and keeps at 60%. For the feedback-control

based scheduler, the deadline miss ratio slightly increases, because some waiting tasks

miss their deadlines due to node failures. However, thanks to the feedback-control

mechanism, our scheduler can quickly react and bring the deadline miss ratio back to

its set point 5%.
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7.4 Summary

In this chapter, we have investigated the problem of providing real-time QoS guaran-

tees for arbitrarily divisible applications in unpredictable environments. The proposed

feedback-control based real-time divisible load scheduler can dynamically control the

system utilization bound to maintain low deadline miss ratio and high system utiliza-

tion. Simulation results have demonstrated that the proposed algorithm can provide

stable performance despite unpredictable workload and node failures.
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Chapter 8

Conclusions

This dissertation addresses the challenging problem of providing determinitic QoS

for cluster computing. We have integrated Divisible Load Theory into real-time

scheduling theory, and developed real-time divisible load scheduling algorithms for

cluster computing. This research has contributed significantly to the area of real-

time divisible load scheduling. We made the following contributions.

1. Real-Time Divisible Load Scheduling with Setup Costs: For an arbitrarily di-

visible load, the required number of processing nodes to meet a task deadline

is not fixed and is adjustable in accordance to the available resources. Our

goal is to exploit the arbitrarily divisible property to improve system perfor-

mance. Building on our team’s previous work, we developed a novel algorith-

mic approach integrating divisible load theory (DLT) and earliest deadline first

(EDF) scheduling. By integrating these together, we developed a new real-time

scheduling approach for arbitrarily divisible loads. We first identified three im-

portant and necessary design decisions for cluster-based real-time divisible load

scheduling, i.e., (1) workload partitioning, (2) node assignment, and (3) task

execution order. We proposed a scheduling framework that can configure differ-
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ent policies for each of the three design decisions and use it to generate various

algorithms. In particular, we investigated the scenarios where communication

and computation setup costs are not negligible. In this dissertation, we system-

atically studied these algorithms and identified scenarios where the choices of

design parameters have significant effects. Most significantly, we proved that

an established claim on real-time divisible load scheduling is not valid. Prior

to our work, researchers believed that the minimum node assignment always

leads to a better real-time performance than the maximum node assignment.

We used experimental data to prove that this claim does not always hold.

2. Real-Time Divisible Load Scheduling with Advance Resource Reservations: A

grid scheduler, unlike a central scheduler, has neither immediate access to all

system information nor full control of grid resources and grid tasks. With the

emergence of grid applications that require simultaneous access to multi-site

resources, supporting advance reservations in a cluster has become increasingly

important. We combined real-time cluster scheduling of arbitrarily divisible

loads with resource reservation protocols to provide real-time scheduling theory

and tools for grid computing. This research presents the first real-time divisible

load scheduling algorithm that can support advance reservations in a cluster.

The approach we proposed not only enforces the real-time agreement but also

addresses the under-utilization concerns raised by advance reservations. We

systematically studied the impact of advance reservations on the performance

of a cluster’s scheduler and showed that, with our proposed algorithm and

appropriate advance reservations, the system performance could be maintained

at the same level as with the no reservation case.
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3. Efficient Algorithm for Real-Time Divisible Load Scheduling: As the cluster

size and the number of tasks in the waiting queue increase, existing arbitrarily

divisible load scheduling approaches become inefficient and do not scale well.

We designed and developed an efficient algorithm for real-time divisible load

scheduling, time complexity of which is linear in the number of tasks and number

of nodes in a cluster. Unlike existing approaches, the new algorithm relaxes the

tight coupling between the task admission controller and the task dispatcher.

By eliminating the need to generate exact schedules in the admission controller,

the algorithm avoids the large scheduling overhead. We showed that to make

admission control decision on a typical cluster workload, the previously best-

known algorithm would take 11 hours while our new algorithm only needs 37

minutes. The algorithm reduces the scheduling overhead significantly and is

useful for large and busy clusters.

4. Feedback-control based Real-Time Divisible Load Scheduling: Current arbitrar-

ily divisible load scheduling approaches are based on “open-loop” scheduling.

These approaches perform well in predictable environments, but their perfor-

mance in open and dynamic environments may be unacceptable. “Open-loop”

real-time schedulers are often designed based on worst-case workload parame-

ters to ensure task deadlines. This could result in a highly underutilized system

based on the pessimistic estimation of the workloads. In an open environment

like a general-purpose cluster, where workloads are unknown and may vary at

run-time, we need adaptive solutions that can maintain desired performance

by handling system variations dynamically. We developed a real-time divisible

load scheduler based on the feedback-control paradigm. It can dynamically con-

trol the system utilization bound to maintain low deadline miss ratio and high

system utilization. We showed that the proposed algorithm can provide stable
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performance despite unpredictable workload and node failures. By handling

system and workload variations dynamically, our algorithm is able to provide

QoS guarantees and fault tolerance to soft real-time applications.
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