Hemoglobin Stability in Bull Sharks

Jack D. Burke

Medical College of Virginia

Follow this and additional works at: http://digitalcommons.unl.edu/ichthynicar

Part of the Aquaculture and Fisheries Commons

http://digitalcommons.unl.edu/ichthynicar/44
RAPID COMMUNICATION

HEMOGLOBIN STABILITY IN BULL SHARKS (1)

JACK D. BURKE
Department of Anatomy, Medical College of Virginia,
Health Sciences Division, Virginia Commonwealth
University, Richmond, Virginia 23298

ABSTRACT No significant differences in oxyhemoglobin affinity, or electrophoretic patterns of hemoglobin were found in 18 bull sharks collected in selected regions of Lake Nicaragua, the Rio San Juan, and the Caribbean Sea. The half-saturation of hemoglobin with oxygen (P50) was 11 and 17 mm Hg at pH 7.4 and 6.8, respectively (25°C, 3% hemoglobin solution, potassium phosphate buffer, 0.3 ionic strength). Electrophoresis resolved the hemoglobin into a minor and a major band. Planimetry of densitometric recordings showed that the major band constituted 54% of the total hemoglobin; the minor band, 46%. On the basis of these hemoglobin studies, no subspeciation of bull sharks in Lake Nicaragua was identified, although marine bull sharks have free access to the lake and have been there, at least, since 1535; the synonymy of Carcharhinus nicaraguensis with C. leucas was confirmed.

Lake Nicaragua is the largest lake in Central America. It is approximately 100 miles long, 45 miles wide, and its deepest point is 250 feet. The lake is drained into the Caribbean Sea by the 110 mile-long Rio San Juan which contains eight major rapids. In 1535 de Oviedo recorded sharks present in Lake Nicaragua. Gill and Bransford (1877) described the shark in Lake Nicaragua as being a land-locked, distinct species, Eulamia nicaraguensis. Jordan (1887) renamed the lake shark Carcharhinus nicaraguensis. Beginning with Gill (1893), all of the succeeding reports, check-lists, and catalogues appearing until 1961 referred to the lake shark by one or the other of these two scientific names (Burke, in press). After a morphological study of four preserved lake sharks (Bigelow and Schroeder, '48), and one specimen and a jaw, C. nicaraguensis was placed in synonymy with Carcharhinus leucas, the marine bull shark (Bigelow and Schroeder, '61).
synonymy received support from Thorson et al. ('66) whose measurements on bull sharks from Lake Nicaragua and the Rio San Juan compared favorably with similar data obtained from body measurements made on pelagic bull sharks (Schwartz, '60; Clark and von Schmidt, '65). In relation to synonymy, it was of interest to investigate hemoglobin, a stable genetic trait, in bull sharks taken from both fresh and salt water. If no variation occurs in bull shark hemoglobin (1) synonymy, based on morphometric data, is supported, and (2) non-variable hemoglobin would indicate no drift toward subspeciation and reproductive isolation (Sick, '61; Gorman and Dessauer, '65; Mourant, '70).

MATERIALS AND METHODS Eighteen mature male and female bull sharks were captured: eight in selected regions of the lake, four in the river, four in the river estuaries, and two in the sea. After immobilizing a bull shark by head blows, blood samples were removed from the heart (Burke, '62) using vacutainers, (1mg/ml EDTA) and 1½ inch, 20-gauge needles. The vacutainers, containing blood samples, were packaged in ice, and air-mailed to MCV where hemoglobin solutions were prepared (Dementi and Burke, '72) for oxyhemoglobin affinity curves (Burke, '66) and starch-gel electrophoresis (Smithies, '59). A portion of the hemoglobin solution used in determining an oxyhemoglobin affinity curve was electrophoresed using borate buffer at pH 8.7. At times it was possible to prepare hemoglobin solutions in Nicaragua, and ship them in containers with dry ice. Hemoglobin analyses were performed within 48-72 hr from the time of blood collection.

RESULTS The oxygen pressure at which 50% of the hemoglobin of a fresh water bull shark is saturated (P50) is 11 mm Hg at pH 7.4; at pH 6.8, the P50 is 17 mm Hg; for a marine bull shark the respective values vary less than one mm Hg at half-saturation (fig. 1). Duplicate analyses at both pH 7.4 and pH 6.8 were made on bull sharks from the lake, river estuaries, and sea. There was
no significant difference between the P_{50} determined for the lake bull shark group and the P_{50} of each of the other groups. There was no sexual dimorphism.

Upon electrophoresis, hemoglobin from each bull shark was resolved into two bands identified by benzidine stain. A minor band migrated 16% faster than a major band. Planimetry of densitometer recordings (at 560 nm) of the two bands revealed that the major band constituted 54% of the total hemoglobin and the minor one, 46%.

DISCUSSION Polymorphic hemoglobins are characteristic of fishes (Buhler and Shanks, '59; Chandrasekhar, '59; Manwell et al., '63; Burke, '65; Wilkins and Iles, '66; Riggs, '70). Hemoglobin is such a stable genetic character that it has been used to identify subspecific populations which are isolated, reproductively, within a species (Sick, '61; Gorman and Dessauer, '65; Mourant, '70). The constancy of the P_{50} and the stable hemoglobin pattern found in each bull shark indicates the homogeneity of bull shark hemoglobin and supports the synonymy of *Carcharhinus nicaraguensis* with *C. leucas*. *Carcharhinus* species do migrate into lakes and rivers from the ocean around the world (Burke, in press), but there is no direct evidence that *C. leucas* breeds in fresh water (Jensen, '72). Although both anadromous and catadromous migration of *C. leucas* occurs between Lake Nicaragua and the Caribbean Sea via the Rio San Juan (Thorson, '71), the non-variability of hemoglobin in *C. leucas* reported here indicates no drift toward subspeciation, and supports the vigorous contention of Herre ('55) that "sharks do not breed in freshwater, but ----return to the sea to breed".

ACKNOWLEDGMENTS I thank Mrs. Jewell Burke and Dr. F. M. Bush for laboratory aid; Sra. Melida C. de Sansón-Román, Dr. José Castillo, Dr. Guillermo Lugo, Sr. Manuel Pilarte, and Sr. Alejandro Argüello for transportation aid in Nicaragua; Dr. E. S. Kline, Dr. Peter Jezyk, Dr. Robert Ellis, Sr. Aldo Zepeda,
Sr. César Arburola, and Messrs. Kurt Koenig, Tom Emerson, Gary Fleming, and Tom Beatty for assistance in collecting sharks and blood samples.

LITERATURE CITED

FIGURE LEGEND

1 Oxyhemoglobin affinity curves at 25 ± 1 °C for Carcharhinus leucas from both fresh and salt water. At pH 7.4, P50 is 11 mm Hg; at pH 6.8 P50 is 17 mm Hg.
Per Cent Oxygen Affinity vs Oxygen Pressure (mm Hg)

- **Carcharhinus leucas**
 - Fresh water
 - Salt water

Temperature: 25°C ± 1°C

pH: 7.4, 6.8
Schwartz, F. J. 1960 Additional comments on adult bull sharks Carcharhinus leucas (Müller and Henle) from Chesapeake Bay, Maryland. Chesapeake Sci., 1: 68-71.

REFERENCES

This work was supported initially by the National Geographic Society, Grant No. 826, and aided subsequently by the A. D. Williams Research Committee (MCV), the MCV Foundation (VCU), and the Virginia Academy of Science.