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DynaTAPP Dynamic Timing Analysis With Partial Path Activation in Sequential Circuits 

Rathima Agrawal and Vishwani D. Agrawal Sharad C. Seth* 
AT&T Bell Laboratories 
600 Mountain Avenue 
Murray Hill, NJ 07974 

Abstract - This paper gives a method offinding all sensiti- 
zable paths in a non-scan synchronous sequential circuit. 
Path activation conditions of the circuit are mapped onto a 
single stuck type fault by adding a few modeling gates to 
the netlist. Only if the corresponding stuck type fault is 
found detectable by a sequential circuit test generator is 
the path considered sensitizable. A depth-first analysis of 
circuit topology, that determines all paths between pri- 
mary inputs, primary outputs and flip-flops, employs a 
partial path hierarchy. Thus, all paths with a common 
unsensitizable segment need not be examined separately. 
Results on benchmark circuits show that ( I )  the number of 
sensitizable paths can be significantly smaller than that 
found by a static timing analyzer and (2)  the partial path 
analysis adds to eficiency when the number of sensitizable 
paths is less than 20 percent. 

1. Introduction 
Since early 1980s, static timing analysis has been 

routinely used by designers. The tools developed for inter- 
nal use in large corporations [l] and others commercially 
available have been used to design thousands of VLSI cir- 
cuits. In static timing analysis, the total delay of a path in 
the circuit is analyzed without regard to the sensitizability 
of the path. Designers often complain about the volumi- 
nous path data produced. Clearly, many paths, reported as 
failing by the static analysis, are non-functional and their 
consideration can lead to unnecessary overdesign. 

A path delay is considered relevant to the proper 
functioning of the circuit if a rising or a falling signal can 
be propagated through the path and the result at the desti- 
nation of the path can be observed. Both delay test genera- 
tion and path analysis problems have been studied exten- 
sively for combinational circuits where the sources and 
destinations of paths are fully accessible. In this paper, we 
present a dynamic path analysis technique for non-scan 
synchronous sequential circuits. Thus, for a path of inter- 
est, there must exist an input vector sequence that will set 
up a transition at the origin (primary input or a flip-flop), 
propagate the transition through the path to its destination 
(a flip-flop or a primary output), and if the destination is a 
flip-flop, propagate its latched state to an observable out- 
put. If a path is sensitizable, the delays of elements along 
the path can be added up to estimate the path delay. 

The dynamic timing analysis differs from delay 
~~ 
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testing. For ease of delay-fault test generation, the system 
clock is assumed to be slower during initialization and 
fault propagation phases and runs at the rated speed only 
during the path activation phase [2,3]. Such an operation, 
though useful in test generation and fault diagnosis, differs 
from the normal operation of the circuit. In timing analy- 
sis, we assume the clock runs at rated speed throughout. 

The result of both test generation and timing analysis 
should be independent of any gate delays. Testing requires 
that the circuit output must produce the fault effect for any 
set of arbitrary delays in the circuit. The requirements for 
a test sequence can be broken down into a necessary con- 
dition (the signal transition produces a fault effect at a cir- 
cuit output) and a suflcient condition (the transition has no 
hazard). For timing analysis, on the other hand, as long as 
there exists a possible set of delays in the circuit that will 
make the primary output sensitive to the path delay, the 
path is considered relevant. Therefore, only the necessary 
condition is used. Obviously, the vector sequences gener- 
ated as a byproduct of our timing analysis only verify the 
existence of functional paths but may otherwise be non- 
robust tests for verifying path delays. 

2. Paths in a Non-Scan Circuit 
In a synchronous sequential circuit, the boundaries 

of combinational logic consist of primary inputs, primary 
outputs and flip-flops. All flip-flops are synchronized by a 
common clock signal of some given frequency (or period). 
hoper operation requires that any signal changes, occur- 
ring at the inputs of the combinational logic and propagat- 
ing to the outputs, must do so within the clock period. The 
relevant paths will all be sensitizable from inputs to out- 
puts of the combinational logic. For each path, we have 
two potential cases based on the times that rising and fal- 
ling transitions take to propagate through the path. 

Sensitizability analysis requires the initialization of 
the circuit to an appropriate state such that a transition can 
be propagated through the path and the resulting transition 
captured in the destination flip-flop. If the delay of the 
path exceeds the clock period, then the state of the destina- 
tion latch will be incorrect. This state must be observable 
at a primary output. In order to apply and propagate a tran- 
sition through a path, we require two vectors applied to the 
combinational logic. Following Lin and Reddy [4], we 
specify the combination of signal values during the appli- 
cation of these two vectors as: u0 = x0,  u l  = x l ,  
SO = 00, sl  = 1 1 ,  R = 01, F = 10 and X = xx. The 
hazard conditions associated with signals, as discussed 
elsewhere [2], do not concern us here. 
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The signals on the path assume R and F values. The 
off-path signals feeding the gates in the path assume values 
among u0, u l ,  SO and sl. During the second vector, the 
off-path signals must sensitize the path. However, in the 
first vector, the off-path signals are left in the don't care 
state if the path signal applies the controlling value (0 for 
AND and NAND, 1 for OR and NOR). If the signal arriv- 
ing at the destination flip-flop is a rising transition, the cor- 
rect value latched in this flip-flop will be 1. Whenever the 
path delay exceeds the rated clock period, a 0 will be 
latched. Thus the state of the destination flip-flop can be 
denoted by D ,  which has the same meaning as in D- 
algorithm [5]. Similarly, for a falling traEsition arriving at 
the destination flipflop, the state will be D .  

3. Path Activation Analysis 
Given a path and a transition at its source, we create 

a modified circuit in which a test for a specified single 
stuck fault_will activate the path. The fault must be such 
that a D (0) value is injected into the destination flip-flop 
whenever the two path activation vectors produce a falling 
(rising) transition at the input to the flip-flop. Otherwise, 
the destination flipflop should be set according to the nor- 
mal operation of the circuit. 

Figures 1 and 2 implement the above requirements. 
For the path ace (shown in bold) between flip-flops FFS 
and FFD, we insert the circuit enclosed within dashed 
lines. The signal requirements for a falling (rising) transi- 
tion at the destination flip-flop are captured by the gates 
ANDlF (ANDIR) and AND2F (AND2R). The output of 
ANDIF (ANDIR) feeds a flip-flop (FFI initialized to 0)  
whose output feeds AND2F (AND2R). AND2F (AND2R) 
is 1 iff the preceding and the current vectors launch a fal- 
ling (rising) transition at the input to the destination flip- 
flop,The AND2F (AND2R) output signal is used to gate a 
D (0) into the destination flip-flop according to the above 
requirement. When the AND2F (ANDZR) output is 0, the 
circuit remains unaffected by the added logic. 
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The above model can be incorporated into a sequen- 
tial circuit test generator program by modifying the netlist 
according to the path under consideration [2]. If the fault 
in Figure 1 (Figure 2) is not detectable, we can conclude 
that a falling (rising) transition on the selected path cannot 
be observed at a primary output of the circuit, hence the 

.. 

Fig. 2 Logic model for path with rising transition at destination. 

path need not be considered in timing analysis. 
Paths are considered one at a time. Thus, only two 

gates and one flip-flop are added to the netlist that is sup- 
plied to the test generator. The connectivity of these gates 
is changed automatically by the program for each run of 
the test generator. 

4. Implementation 
We have implemented a dynamic timing analysis 

system, DynaTAPP. The program modules are similar to 
those used in a path delay test generator [21. 

The main algorithms are shown in Fig. 3. There are 
three path generation functions, newpath, forward, and 
buck. From the netlist, an input routine (not shown) builds 
the internal circuit structure in the form of a bipartite graph 
whose nodes represent the gates and the signals (wires). 
Source and destination wires are marked in this graph. A 
new path is generated each time the function newpath is 
called. Thus, DynaTAPP repeatedly calls newpath until all 
paths are done. Within newpath, the search for paths 
moves under the control of forward and back. The algo- 
rithm forward traces the circuit topology in the forward 
direction until a partial or a full path destination is reached. 
It then calls sensitizeguth that performs the analysis of 
Section 3 using the Steed [6] test generator. Forward 
returns a partial or a full path with its sensitization status. 

When newpth is called such that the previous path 
was either a full path or not sensitizable, back is called to 
move back to a node with unused forward paths. If the 
backward movement returns to a source, back will initial- 
ize to another source node unless all sources have been 
exhausted. When a partial path is found to be sensitizable, 
newpath calls forward. The preprocessor, mark-nodes, 
counts the number of paths from any gate to all destina- 
tions. For a gate g, this number is denoted by N ( g ) .  This 
information is helpful for the partial path analysis. Also, 
the data is used to sort the fanout list of each gate output in 
the decreasing order of path counts. 

Experience shows that a large number of potential 
paths cannot be sensitized during the normal operation of a 
VLSI circuit. The idea of hierarchically analyzing seg- 
ments of combinational paths has been used to advantage 
both for timing analysis [7] and for delay test generation in 
combinational circuits [8]. We define a partial path as a 
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mark-nodes( ) I* mark nodes with number of forward paths *I 
newpath( ) /* generate next sensitizable path */ 
{ 

if (first-call) { 
initialize; I* create a partial path of first source wire */ 
forward( ); 

1 
else 
if (not-done) { 

if (last path is partial and sensitizable) 
forward( ); 

else 
back( ); 

return(path) ; 
1 

1 
forward( ) /*go forward to a partial or full path destination*/ 
{ 

if (current wire not a destination) 
forward-one( ); /* move forward to the next wire */ 

while (current wire not a partial or full path destination) 
forward-one( ); 

sensitizegath( ); 
1 
back( ) I* go back until a wire with unused fanout */ 
{ 

if (the current wire is not a source) 
back-one( ); /* move back to the previous wire */ 

while (current wire not source AND no unused fanouts) 
back-one( ); 

if (current wire has unused fanouts) 
forward( ); 

else I* at a source node whose all paths have been traced */ 
if (there are unprocessed source nodes) { 

initlalize;/*create a partial path with next source wire*/ 
forward( ); 

1 
else 

done = TRUE; 
1 

Fig. 3 Path generation algorithms in DynaTAPP. 

path from a source (primary input or flip-flop) to any gate 
that is not a primary output or a flip-flop input. Thus, if a 
partial path terminating on gate g is not sensitizable, then 
so are the N ( g )  paths that include this partial path. 

Suppose the probability of sensitizing a partial path 
to gate g is p .  If this partial path is found to be unsensitiz- 
able, then a single run of path sensitization analysis saves 
us N ( g )  runs which we would need without the partial path 
analysis. Thus, the saving in the runs of sensitization anal- 
ysis due to a failed partial path is N ( g ) -  1 .  Since the aver- 
age number of failing paths to g is 1-p,  we estimate the 
average saving of ( 1  - p ) ( N ( g ) -  1 )  runs due to the partial 
path analysis. On the other hand, if the sensitization analy- 
sis finds the partial path to be sensitizable, then we incur a 
cost of one extra run. The average cost is p runs. A proper 
selection of partial paths should ensure that saving > cost. 
Therefore, we get 

1 
N ( g )  2 - 

1 - P  

For very small values of p ,  we notice that any value of 
N ( g )  greater than 1 is beneficial. However, for p = 1 ,  
N ( g )  should be very large. 

In circuits where most paths are sensitizable, i.e., 
p = 1 ,  the analysis of partial path will not be beneficial 
unless N ( g )  is very large. Notice that N ( g )  depends only 
on the circuit fanout structure and is easily determined. 
The benefit of partial path analysis is easier to realize in 
circuits where a small fraction of paths is sensitizable. 
However, to maximize the benefit, a partial path should 
have a large N ( g )  and a small p .  If we assume that the 
sensitization probability of a path decreases with its length 
then a partial path should not be too short. A good hemis- 
tic is to check for partial path sensitization only if the 
product of path length and N ( g )  exceeds some threshold. 

The partial path heuristic employed in DynaTAPP 
differs slightly from the above suggestion and works with- 
out a threshold value. We monitor the product during the 
path search. A drop in the product value signals the need 
to check for sensitization of the partial path up to (but not 
including) the node at which the drop occurs. 

5. Results 
Table 1 shows the results of DYMTAPP. For each 

physical path, two cases of rising and falling transitions 
were considered. Thus, the number shown as Total Paths 
is twice the number of physical paths. The Dynamic Paths 
% is the percentage of paths that were found sensitizable. 
The program provides a vector sequence for each sensitiz- 
able path. Since our sensitization analysis does not con- 
sider combinational hazards, the sequence is not a robust 
test. In the present context, we only analyze the necessary 
condition for sensitization. 

Table 1 - DynaTAPP Results 

Circuit Paths Partial Path Analysis Full Path 
Name Static Dynamic %I Full+Partial CPUs CPUs 
s27 56 37.5 5 4 + 9  2.6 2.2 
s208 290 16.6 141 +40  11.7 18.8 
s298 462 20.8 388+48 144.2 150.4 
s344 710 25.9 625 + 170 1302.5 1155.9 
s349 730 25.2 633 + 175 1296.3 1168.1 
s382 800 1.3 309 + 79 1687.7 34962.6 
s420 738 6.4 194+75 122.2 334.0 
s444 1,070 5.6 309+79 5180.0 14209.6 
s510 738 23.4 708+110 126.4 113.6 
s526 820 3.8 312 + 72 19915.0 42521.2 
s526n 816 3.8 312+72 20012.4 42564.4 
s820 984 37.4 945 + 144 2970.0 2952.0 
s832 1.012 36.4 993 + 159 3625.6 3162.6 
s953 2.266 40.2 2228 +560 1550.7 1287.7 
s1488 1,924 37.5 1831 +419 1053.7 901.3 
s1494 1,952 37.0 1857+432 1085.6 928.8 

The CPU time of DynaTAPP was measured on SUP 
Sparc 2. For a given circuit, the run time is roughly pro- 
portional to the number of paths that are analyzed. For 
example, for the circuit s208, a total of 181 (141 full and 
40 partial) paths were analyzed. Without the partial path 
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analysis, we would analyze all 290 paths. For s344, how- 
ever, the partial path analysis processes more paths (a total 
of 625 + 170 = 795) as compared to the 710 actual paths. 
We may conclude that our analysis is faster whenever the 
fraction of sensitizable paths is below 20%. This result is 
dependent on the heuristic used in the program and there is 
scope for improvement. 
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(b) s1488 
Fig. 4 Path lengths obtained by DynaTAPP 

(Non-Scan: Solid; Scan/Hold: Dashed) 
and Static analysis (Dotted). 

In general, simulators accumulate estimated values 
of rise and fall delays for gates and propagation delays for 
interconnections to determine path delays. However, for 
simplicity, we will assume that the path length is given 
simply by the number of gates in a path. Figure 4 shows 
the histograms of path data for the circuits s382 and s1488. 
The dotted lines show the data from static analysis, 
obtained by DynaTAPP without using sensitizepath. The 
dashed lines are the results of running the program on the 
combinational part of the circuits. The solid lines show 
the results for non-scan sequential mode. Notice that for 
s1488, the static and the combinational data almost overlap 
and, for both circuits, the longest path length is unchanged 
under these two categories. The non-scan circuits show a 
marked reduction in the number of paths. The longest path 
is also shortened by two gates in both circuits. 

The results clearly show that the reduction in the 
number of functional paths is significant for non-scan cir- 
cuits. We found that the unsensitizable paths were impos- 
sible to activate in the sequential mode and are not due to 
the inability of the test generator to find a test. Further 
experiments showed that the number of paths activaed by 
another set of input vectors, generated to have a high stuck 
type fault coverage, can be even lower than that deter- 
mined by our timing analysis. To our knowledge, such 
results have not been reported before and should help 
improve the design and test methodology. 

Since sensitizegath generates an input sequence 
that sensitizes the path, circuit level simulation can be 
readily used for accurate verification. Use of functional 
paths in layout-level timing optimization [9] will lead to 
more meaningful result. We must caution, however, that 
the vectors generated by sensitizegath may not be appro- 
priate for path delay testing since the hazards that depend 
upon the actual delays of gates can invalidate the testing of 
a path [2]. Just the hazard-free or robust delay tests will 
not be sufficient for testing if the path coverage is low, 
since the stuck-type coverage is likely to be unacceptably 
low. The fact that in some circuits only a small fraction of 
paths is sensitized needs further investigation. 

6. Conclusion 
This is perhaps the first time potentially sensitizable 

paths of sequential circuits have been analyzed by an auto- 
mated analysis tool. The results show that the false path 
problem may be more significant in non-scan circuits than 
in combinational circuits. Due to the low sensitizability of 
paths in the sequential mode of operation, partial path anal- 
ysis can provide greater efficiency. Our path analysis is 
based on a necessary condition of path delay testing. 
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