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A Study in Modeling Low-Conservation Protein
Superfamilies

Chang Wang,Student Member, IEEE,Stephen D. Scott,Member, IEEE,Jun Zhang,
Qingping Tao, Dmitri E. Fomenko, and Vadim N. Gladyshev

Abstract

We present several algorithms for identification of new proteins in superfamilies with low primary sequence
conservation. The low conservation of primary sequence in protein superfamilies such as Thioredoxin-fold (Trx-
fold) makes conventional methods such as hidden Markov models (HMMs) difficult to use. Therefore, we use
structural properties to build our classifiers. These structural properties include secondary structure patterns as well
as various properties of the residues in the protein sequences. We use this information to model proteins via hidden
Markov models, support vector machines and algorithms in the multiple-instance learning model. In 20-fold jack-
knife tests, some of our models performed well, with relatively high true positive and true negative rates. We can
identify 75% of the Trx-fold proteins in this jack-knife test (compared to only 5% for HMMs on primary sequence)
while maintaining a 75% true negative rate. Since our techniques are general, they should be applicable to other
superfamilies with low primary sequence conservation.

Index Terms

low primary sequence conservation, hidden Markov models, multiple-instance learning, support vector ma-
chines, thioredoxin-fold proteins, redox proteins.

I. I NTRODUCTION

W E study the problem of identifying new proteins in superfamilies whose primary sequence con-
servation is so low that conventional approaches (e.g. building hidden Markov models on primary

sequence) are ineffective. For our experiments, we focus on the thioredoxin-fold (Trx-fold) superfamily.
Oxidation-reduction reactions in cells are catalyzed by various redox proteins, many of which use

catalytic cysteine residues. Thiol-dependent redox proteins regulate many basic cellular processes, such as
DNA synthesis, apoptosis, signal transduction and transcription [12], [5]. To understand the mechanism
of cellular redox regulation, the first step is to identify redox proteins and to characterize the specific
functions of these proteins [5], [2]. The thioredoxin superfamily is the major family of thiol-dependent
oxidoreductases involved in cellular regulation, and its characterization is important for understanding
of redox processes. In addition to thioredoxin, it includes protein disulfide isomerases, glutaredoxins,
nucleoredoxins, peroxiredoxins, glutathione peroxidases and other redox enzymes.

Inter-family similarity within the Trx-fold superfamily is generally low, and sequence analysis tools such
as SAM [14] cannot easily identify new families in the Trx-fold superfamily. For example, In Figure 1,
active site segments of five Trx-fold proteins are shown. Only the two cysteines (C, marked by asterisks)
are conserved in the alignment. These two cysteines form a redox motif designated the CxxC motif. This
motif is conserved in the majority members of the superfamily, including thioredoxins, glutaredoxins,
protein disulfide isomerases and other proteins. However, some of the Trx-fold proteins conserve other
motifs (e.g. CxxS, SxxC, CxxT and TxxC).
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* *
1A8L: KLIVFVRKDHCQYCDQLKQLVQEL
1BED: PVVSEFFSFYCPHCNTFEPIIAQL
1QK8:A LVFFYFSASWCPPCRGFTPQLIEF
1F9M:A PVVLDMFTQWCGPCKAMAPKYEKL
1MEK: YLLVEFYAPWCGHCKALAPEYAKA

Fig. 1. Alignment of segments of five Trx-fold proteins, indexed by PDB ID.

In a more rigorous evaluation of the low primary sequence conservation of this superfamily, we used
SAM to attempt to identify distinct Trx-fold protein families based on primary sequence alone (Section III-
B) by running jack-knife tests on sets of highly dissimilar sequences. In these tests, only 5% of distinct Trx-
fold proteins were correctly identified, indicating that primary structure alone is insufficient in identification
of Trx-fold protein families. SAM’s poor performance is directly related to the lack of a good multiple
alignment of the sequences: neither SAM nor Clustal were able to find a good primary sequence-based
alignment of such highly dissimilar sequences (see Scott et al. [20] for results using Clustal).

In addition to the conserved motif mentioned above, for secondary structure, threeα-helices and four
β-sheets are organized in a specific pattern (aβ-α-β-α-β-β-α motif). For most sequences, the CxxC motif
is located between the firstβ-strand and the firstα-helix in the fold, so the entire motif isβ-CxxC-α-β-
α-β-β-α [17], [13]. Therefore, even though the protein primary sequences are not conserved, one can use
structural information to discriminate Trx-fold proteins. It should be noted, however, that some Trx-fold
proteins allow insertions and deletions of secondary structures, which complicate the searches.

To compensate for the lack of primary sequence conservation, we use structural properties to identify
new protein families. These structural properties include secondary structure patterns, as well as various
properties of the residues in the protein sequences. We use this information to model proteins via hidden
Markov models (HMMs) [14], support vector machines (SVMs) [19], and an algorithm [21] in themultiple-
instance learning model[7]. The latter approach produced our strongest results, though a combination of
HMMs and SVMs also performed well.

In a 20-fold jack-knife test on Trx-fold proteins, the three MIL approaches (motif-based alignment
method, secondary-based alignment method andα-β signature method; see Section II-C) achieved 75%
, 70% and 70% true positive rates (respectively) and 75%, 70% and 76.1% true negative rates. The
hidden Markov models based on predicted secondary structure (see Section II-A) achieved true positive
rates above 50% and true negative rates above 80%. The true positive and true negative rates of our
SVM (Section II-B) were 50% and 88%. By combining the last two methods, we could identify 75%
of the Trx-fold proteins in the jack-knife test with a true negative rate of 73%, making this combination
comparable to MIL. Since our techniques are not specific to the Trx-fold superfamily, we believe that
these techniques should be applicable to other superfamilies with low primary sequence conservation,
especially when there is other conservation within the superfamily, e.g. secondary structure.

The rest of this paper is as follows. In Section II we describe the algorithms we employ in our study.
Then in Section III we summarize our experimental results. Finally, we conclude in Section IV with a
discussion of future work.

II. OUR ALGORITHMS

We apply three fundamental approaches to this problem. The first employs hidden Markov models
(HMMs), but the models are built on structural information rather than on primary sequence. The second
approach involves deriving summary statistics on structural information on the sequences (similar to that
used in the QFC algorithm [15]) and using these statistics as attributes to an SVM, which is a robust
algorithm for classification. In our third approach we treat this problem as amultiple-instanceproblem
in machine learning [7] and apply a new algorithm [21] to learn a classifier that will separate Trx-fold
proteins from non-Trx-fold proteins.
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A. HMMs on Structural Information

Given the high conservation of secondary structure in the Trx-fold superfamily, it is natural to build
hidden Markov models on secondary structures. In general, we do not expect to be able to use known
secondary structures when classifying sequences, so we predict1 secondary structure with PSI-PRED [18]
and PREDATOR [9]. Thus we built our models on the reduced alphabet{α, β, loop} rather than the
20 amino acids. Due to this, we replaced the prior distributions normally used (which assume that e.g.
“A” means alanine) with new priors (specifically, Dirichlet mixture priors) that are based on our new
alphabet and our sequences when mapped to this alphabet. Developing a new prior depends on having
a good multiple alignment, so we built our priors on sequences from PDB, where secondary structure is
exactly known. We selected PDB sequences with obvious Trx-fold characteristics (CxxC motif in primary
structure andβ-α-β-α-β-β-α motif in secondary structure), which made possible with SAM [14] a good
multiple alignment based on secondary structure. Our method for construction of priors is based on the
work of Sjölander et al. [22], which starts with a base prior and modifies it based on symbol frequencies
in each column of the multiple alignment. Since no base priors are available for our alphabet, we used
a uniform distribution over{α, β, loop} as the base prior when building our new priors. We used these
priors along with predicted secondary structure to build our models with SAM.

While predicted secondary structure is a natural first approach, PREDATOR and PSI-PRED (like other
structure prediction algorithms) have fairly high per-residue error rates. This introduces significant noise
in remapped sequences and thus affects our model. Hence we also looked at other sequence mappings.
Andorf et al. [1] and Wang et al. [24] remapped the 20-character amino acid alphabet to a reduced one
that captures structural properties. They used the reduced alphabet representations of protein sequences
in the data-driven discovery of sequence motif-based decision trees for classifying protein sequences into
functional families. Their results raise the possibility that the use of different alphabets might provide
different, but complementary, insights into protein structure-function relationships. So in addition to the
remapping to secondary structure elements as outlined above, we remapped our sequences from the
20-character amino acid alphabet to a reduced one based on hydrophobicity, charge, volume and mass
(Table I). Each column of Table I shows a criterion for remapping and the class that the particular residue
was remapped to based on that criterion. For each of these remappings, we built an HMM with SAM.

B. Modeling with QFC-Based Summary Features

In the QFC algorithm [15], the physico-chemical properties of the amino acids in the molecules are
characterized using various indices and standard measurements, such as GES hydropathy index [8], [11],
solubility [4], polarity, pI, Kyte-Doolittle index [16],α helix index [6], and molecular weight. A protein
sequence is described by a set of variablesx1 throughxn, and for eachxi, there is a valuexij for the ith
amino acid index (property) value at thejth position of the sequence. Thusxi1 throughxim constitutes a
profile of the protein in terms of theith amino-acid property index (e.g. Figure 2). Then each raw profile
is smoothed by applying the Sliding Window Recognizer [23], which transforms the profile as follows:
x′ij =

∑d
k=−d wj−kxj−k, whered is the kernel size andw is the kernel window.

We followed a procedure similar to the method used by Kim et al. [15]. We first computed moving
window profiles of putative Trx-fold (for positive training data) and non-Trx-fold (for negative training
data) proteins based on each property, and then smoothed the profiles with a width-16 Gaussian kernel. We
then mapped each sequence’s set of smoothed profiles to a set of attributes associated with that sequence.
The average periodicityattributes describe how often each property’s profile crosses a neutral value. For
example, in Figure 2, we count the number of times the Kyte-Doolittle index crosses the neutral value 2.0
(44) and then divide this by the length of the sequence (104). So the value of attribute “crosscv-KD2.0”
for 1fb0 is 44/104 = 0.423. (For a complete list of the neutral values we used, see Table II.) These
features were used to train a support vector machine (SVM) with a Guassian kernel.

1For comparison purposes, we also built models on true structures and tested them on predicted structures.
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TABLE I

DEFINITION OF THE REMAPPINGS OF THE20-RESIDUE ALPHABET.

Residue Charge Volume Mass Hydro-4 Hydro-6

A None Small Small [−2.0, 0.7] [−0.6,−2.0]

C None Medium Medium [−2.0, 0.7] [−0.6,−2.0]

D Neg Medium Med-Large [8.2, 12.3] [8.2, 9.2]

E Neg Med-Large Med-Large [8.2, 12.3] [8.2, 9.2]

F None Large Large [−3.7,−2.6] [−3.7,−2.6]

G None Small Small [−2.0, 0.7] [−0.6,−2.0]

H Neg Med-Large Med-Large [3.0, 4.8] [3.0, 4.8]

I None Med-Large Med-Large [−3.7,−2.6] [−3.7,−2.6]

K Pos Med-Large Med-Large [8.2, 12.3] [8.2, 9.2]

L None Med-Large Med-Large [−3.7,−2.6] [−3.7,−2.6]

M None Med-Large Med-Large [−3.7,−2.6] [−3.7,−2.6]

N None Medium Med-Large [3.0, 4.8] [3.0, 4.8]

P None Medium Medium [−2.0, 0.7] [0.2, 0.7]

Q None Med-Large Med-Large [3.0, 4.8] [3.0, 4.8]

R Pos Med-Large Large [8.2, 12.3] [12.3, 12.3]

S None Small Medium [−2.0, 0.7] [−0.6,−2.0]

T None Medium Medium [−2.0, 0.7] [−0.6,−2.0]

V None Med-Large Medium [−3.7,−2.6] [−3.7,−2.6]

W None Large Large [−2.0, 0.7] [−0.6,−2.0]

Y None Large Large [−2.0, 0.7] [0.2, 0.7]

TABLE II

NEUTRAL VALUES OF THE QFC-BASED PROPERTIES THAT WE USED FOR OURSVM.

Property Neutral Value Used

GES hydropathy index 1.38

Kyte-Doolittle index −0.5

Solubility 65

PI 6

Polarity 8

Molecular weight 136

Alpha helix index 1

In addition to QFC’s summary statistics, we added features that summarize the predicted secondary
structure. First we predicted each sequence’s secondary structure as in Section II-A, and from these
predictions we generated the following features: the fraction of residues in the sequence that were predicted
asα helices,β sheets and loops. These features were tested in conjunction with the average periodicity
features of Table II.

C. Multiple-Instance Learning Approaches

SVMs are algorithms in the conventional machine learning model. As such, the sequence profiles as
described in Section II-B must be summarized into a single set of numbers such as the average periodicity
of each property. To use the profiles directly, one must use themultiple-instance learning model[7], in
which each example is represented as a multiset (called abag) of attribute vectors rather than as a single
attribute vector as in the conventional learning model. Simply put, in this new model a bag is labelled
as positive (Trx-fold) if and only if the attribute vectors in it satisfy some function. For example, the
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Fig. 2. Plot of a profile of 1fb0 from PDB, based on Kyte-Doolittle index. On thex axis is the amino acid position and on they axis is
the value of the index.

algorithm of Scott et al. [21] (which is adapted from Goldman et al. [10]) looks for a set of pointsS such
that each Trx-fold protein has a point near each point of a size-k subsetS ′ ⊆ S and that all non-Trx-fold
proteins have points near at mostk − 1 points of S. E.g. this algorithm might find that all Trx-fold
proteins satisfy one of the following conditions and that few non-Trx-fold proteins satisfy any of them:
(1) a Kyte-Doolittle value of−4.5 around position 85and a Kyte-Doolittle value of−0.75 near position
10; (2) a Kyte-Doolittle value of3.5 near position 55and Kyte-Doolittle value of4.25 near position 92
and Kyte-Doolittle value of1.5 near position 25; etc. Intuitively, Scott et al.’s algorithm searches for a
set of boxes in e.g. Figure 2 that represent ranges of values of properties that are needed by a sequence
for it to be Trx-fold.

We mapped our data to the multiple-instance learning model in the following way. We first found
the primary sequence motif in each (positive and negative) sequence and extracted a window of size 204
around it (20 residues upstream, 180 downstream, which is a region known to contain the entire Trx fold).
We then mapped all sequences to their profiles based on the 7 properties of Kim et al. [15], yielding
7-dimensional data, which we then smoothed with a Guassian kernel.

Since each 7-tuplexi = (xi1, . . . , xi7) in each profile is tied to a particular residuerxi
in the original

sequence, we need to add an 8th coordinatexi8 to xi that corresponds torxi
’s position in the sequence.

The simplest method is to setxi8 to be the index ofrxi
in the sequence. However, since the length of

the subsequence that contains the Trx fold can vary significantly among sequences, settingxi8 to be the
index of rxi

in the sequence will likely misalign the profiles of the sequences. This can make it difficult
or impossible for a learning algorithm to identify the regions of profiles that distinguish Trx-fold proteins
from non-Trx-fold proteins.

A natural way around this problem is to multiply align the sequences and setxi8 to be the index ofrxi

in the multiple alignment. However, conventional multiple alignments are not feasible in our case due to
low primary sequence conservation. Thus we instead used multiple alignments based on information that
is conserved in the Trx-fold superfamily. We used two methods. In the first method, we first aligned the
conserved motif (typically CxxC) in all sequences. Then we used the next 180 symbols of each sequence,
discarding everything else that lay beyond that point. If a sequence was not long enough to go 180 symbols
past the CxxC, it was linearly rescaled so that the last symbol was in position 180. Finally, since it is
also known that Trx-fold proteins extend at most 20 positions upstream of the motif, we also used these
20 positions, yielding a sequence of length at most 204, mapped to a space that spans[1, 204]. We then
setxi8 to be the index ofrxi

in this alignment. We refer to this method asmotif-based alignment. In our
second alignment method, which we callsecondary-based alignment, we used SAM to multiply align the
secondary structure patterns (predicted by PSI-PRED) of the sequences and used residuerxi

’s position in
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Fig. 3. Theα-β signature of the hypothetical sequenceαβββCxxCαααβββ.

this multiple alignment to setxi8.
In our final application of multiple-instance learning to this problem, we represent each sequence by

its α-β signature. This signature models the ordering ofα helices andβ sheets in a given sequence, as
predicted by PSI-PRED. Starting from the first residue of the sequence, we move one position to the
right for eachα helix seen and one position up for eachβ sheet. To reduce the number of points that
represent a sequence, we only place a point when there is a change, e.g. fromα to β. To implicitly align
the sequences, we define the origin of the two-dimensional space to correspond to the first residue of the
active site motif (e.g. the first C of CxxC). Figure 3 gives an example of the signature for a hypothetical
sequence. Such signatures nicely fit the multiple-instance learning model and should intuitively be able
to separate Trx-fold proteins from non-Trx-fold proteins due to the conserved secondary structure motif.

III. E XPERIMENTAL RESULTS

A. Random Data Sets

As a first test of our techniques, we applied them on large, random data sets, constructed as follows. First
we extracted 47 Trx-fold proteins from PDB [3], including thioredoxins and glutaredoxins, all containing
the CxxC motif. Since these 47 had structural information, they allowed us to test our techniques when
models were built on true secondary structure. We then combined these 47 proteins with a set of 226
other known Trx-fold proteins (for which secondary structure is not known) and 320 known non-Trx-fold
proteins from the NCBI Non-redundant Database. We filtered our positive and negative sets to reduce
similarity, yielding 183 positives and 197 negatives. We then built three HMMs: one on the sequences’
primary structure, one on predicted secondary structure, and one on true secondary structure2. In all three
cases, the sequences were aligned, built and calibrated in SAM. Then the test set (consisting of all Trx-fold
and non-Trx-fold proteins not used for training) was searched with each model. In the secondary structure
test sets, only predicted structure was used since when performing database searches, the true secondary
structures would not be known.

We found that HMM trained on primary structure can achieve true positive and true negative rates of
more than 0.99. This shows that HMM trained on primary structure is very effective at finding sequences
so long as the model was built on other, related sequences (related in primary structure). In contrast, HMM
trained on predicted secondary structures can achieve both true positive and true negative rates at about
0.82, while HMM trained on true secondary structure (but tested on predicted secondary structure) only

2Since true secondary structure was used for one test, we used the PDB sequences for building all three models and the remaining positive
and negative sequences for testing.
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achieved true positive and true negative rates at about 0.70. A possible explanation of True Secondary’s
worse performance is that errors in predicting secondary structure adds noise to the test sequences. Thus
an HMM built on predicted secondary structure is also training on this noise, which might makes it less
sensitive to structure prediction inaccuracies in the database.

To test models built on the QFC-based attributes, we split our filtered data set into three sets of
approximately equal sizes and ran three tests. For each test, we trained an SVM and an MIL model using
the features described in Section 2.2 on two sets and tested on the third. In this experiment, SVM averaged
0.81 for the true positive rate, and 0.85 for the true negative rate. MIL on motif based alignment averaged
0.74 for the true positive rate, and 0.88 for the true negative rate.

Since HMM on primary structure can achieve true positive and true negative rates of over 99%, it is
superior to our methods in identifying new sequences that are similar to the sequences it was trained on.
However, in the next section we will show that this is not the case when sequences are highly dissimilar.

B. Jack-Knife Tests

Within our data set, there are many similar sequences, which means that the experiments of Section III-A
are inappropriate to evaluate our methods for the purpose they were designed: to identify new families that
are highly dissimilar to known ones, i.e. identify sequences that primary sequence-based HMMs cannot.
Since our goal is to identify new families, the sequences in our data set should be highly dissimilar to each
other. Thus we constructed a new positive set of putative Trx-fold proteins such that primary sequence
conservation between each pair of sequences was so low that SAM was unlikely to identify any one with
a model built on the rest. We started by randomly selecting one sequence from a setS of 1100 putative
Trx-fold sequences, placing it in our positive setP , and built an HMMM on P using SAM. We then
usedM to score the other 1099 putative Trx-fold sequences fromS \ P (“\” denotes set difference, i.e.
those sequences that are inS but not in P ) and added toP the one with the highest E-value (i.e. the
least similar one). We then iteratively built a new HMM onP , scored the remaining sequences inS \P ,
and added toP the sequence with largest E-value until|S| = 25. We then further filteredS by building
an HMM on each individual sequence and testing that model on the remaining sequences. We discarded
any sequence that, when tested against a model, produced an E-value less than 0.01. Twenty sequences
remained, which we then used as our set of positives (see Table III). A jack-knife test using SAM on
primary structure only found one of these sequences. In these 20 sequences, 17 of them have the CxxC
motif, 2 of them have the CxxS motif, and the final sequence has neither CxxC nor CxxS motif3.

Due to the small number of putative positive proteins available in our new data set, we performed a
jack-knife (leave-one-out cross-validation) test. We held out one positive protein for use in testing and
used the rest for training, repeating once for each of the 20 positive proteins in the data set. So for each
HMM-based experiment, the model was built on 19 positive proteins and the test set (the one that is
searched by the model) consisted of all 20 positive proteins and all our negative proteins4. Since the SVM
and the multiple-instance learning algorithm require both positive and negative proteins for training, we
split our set of negative proteins into 8 equal-sized sets. We then trained our algorithms on the 19 positive
proteins plus one of the 8 sets of negative proteins, and tested on the held-out positive protein plus the
remaining 7 sets of negative proteins. We repeated this for each of the 8 sets of negative proteins. Thus
we ran20× 8 = 160 experiments for each algorithm.

Our results are in Table IV. For HMM-based experiments, we used an E-value cutoff of 0.1 as in
Section III-A. Since each jack-knife round for SVM and multiple-instance learning involved 8 experiments
(one for each negative set), we gave the algorithm credit for correctly classifying the held-out positive
protein if it successfully identified it at least half the time. The TP rates in the tables are the fractions
(out of 20) of the set of positive proteins that each algorithm correctly identified. For the HMM-based

3In Table III, gi:14787802 is a putative Trx-fold protein. Its actual motif is unknown, but believed to be KxxC.
4We used the 19 training sequences in our test set so we could compare the E-values of the hold-out to those of sequences that the model

was built on. However, all error rates reported are only on sequences that were not used to build the models.
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TABLE III

THE 20 POSITIVE SEQUENCES USED IN OUR JACK-KNIFE TESTS.

accession number motif putative class

gi: 13400018 CxxC DsbA

gi: 14602058 CxxC Thioredoxin

gi: 19698793 CxxC Thioredoxin

gi: 2194076 CxxC DsbA

gi: 7512732 CxxC Thioredoxin

gi: 443281 CxxC Thioredoxin

gi: 1076496 CxxC PDI

gi: 840745 CxxC Thioredoxin

gi: 1421133 CxxC Gluteredoxin

gi: 129727 CxxC, CxxC PDI

gi: 15229353 CxxS Gluteredoxin

gi: 14787802 KxxC PDI

gi: 14729415 CxxC, CxxC PDI

gi: 13122603 CxxC Gluteredoxin

gi: 11494247 CxxC Thioredoxin

gi: 15150492 CxxC Gluteredoxin

gi: 13358154 CxxC Thioredoxin

gi: 24372070 CxxC Thioredoxin

gi: 23483739 CxxS, CxxS PDI

gi: 16763418 CxxC DsbA

algorithms, TN is the fraction of negative proteins that had E-values above 0.1. For SVM and multiple-
instance learning, TN is that algorithm’s accuracy on the negative proteins over all 160 experiments.
The three MIL models, the SVM and the HMM built on predicted secondary structure (PSI-PRED, New
Prior) were the overall best performers, correctly identifying 0.75, 0.70, 0.70, 0.50 and 0.50 positives and
over 0.75, 0.76, 0.70, 0.88 and 0.81 of the negatives. We can also draw a conclusion from the table that
using new priors can improve the results greatly over a naive uniform prior (i.e. the base prior we used to
construct the new prior). For the SVM, the secondary structure information, the molecular weight and the
Kyte-Doolittle hydropathy scale were most important in separating the positives from the negatives. The
remapping schemes based on hydrophobicity, charge, volume and mass did not work well. One probable
reason is that we could not get good alignments from them and so we could not build good HMMs.

Interestingly, there is little correlation among the methods we tested in terms of the positive sequences
they found. Table V summarizes each algorithm’s performance on each of the 20 Trx-fold proteins from
the jack-knife test. An “H” in an entry indicates that the algorithm was successful in finding that protein.
We see that the five proteins missed by SVM (column 6) are hit by Predicted Secondary (column 2).
Since both of these algorithms have high TN rates, it suggests that taking a union of these classifiers’
hits would work well. Indeed, a classifier that predicts Trx when either Predicted Secondary or SVM says
“yes” would cover of the 75% positives with a true negative rate 73%. However, while combining an
MIL classifier with either SVM or Predicted Secondary improves the true positive rate to 75–85%, the
true negative rates drop to 59–69%. Thus it is better to either use an MIL algorithm in isolation or take
the union of SVM and Predicted Secondary.

IV. CONCLUSION

We proposed numerous solutions to the problem of identifying new families within a superfamily
with low primary sequence conservation such as the thioredoxin-fold superfamily. Our approaches focus
on structural information rather than primary sequence. Jack-knife tests indicate that the most accurate
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TABLE IV

SUMMARY OF RESULTS ON THE JACK-KNIFE TESTS ON THE SET OF20 TRX-FOLD PROTEINS. “TP” IS TRUE POSITIVE RATE, “TN” IS

TRUE NEGATIVE RATE, “NH” IS NEAR HIT RATE (HMM E-VALUE IN [0.1, 1)).

Algorithm TP NH TN

HMM Primary 0.05 0.00 0.98

HMM Pred. Second (PSI-PRED+Uniform Prior) 0.30 0.10 0.85

HMM Pred. Second (PSI-PRED+New Prior) 0.50 0.05 0.81

HMM Pred. Second (Predator+Uniform Prior) 0.10 0.00 0.94

HMM Pred. Second (Predator+New Prior) 0.25 0.25 0.81

SVM (QFC features+fraction ofα,β,loop)-PSI-PRED 0.50 N/A 0.88

SVM (QFC fretures+fraction ofα,β,loop)-Predator 0.35 N/A 0.92

MIL (Motif-based alignment) 0.75 N/A 0.75

MIL ( α-β signature) 0.70 N/A 0.76

MIL (Secondary-based alignment) 0.70 N/A 0.70

Volume 0.10 0.00 0.96

Mass 0.15 0.00 0.98

Charge 0.0 0.00 0.96

Hydro-4 0.05 0.05 0.99

Hydro-6 0.15 0.00 0.99

methods are based on algorithms in the multiple instance learning (MIL) model, followed by HMMs on
predicted secondary structure and support vector machines. Further, taking a union of the results from
HMM-secondary and SVM yields a performance comparable to that of MIL. (The most credible hits
would of course be those that are detected by multiple models.)

While some of the features used by our algorithms exploited the secondary structure motif found in
the Trx-fold superfamily, we did not use the specific motif itself anywhere. Thus we believe that these
techniques should be applicable to other superfamilies with low primary sequence conservation, especially
when there is other conservation within the superfamily, e.g. secondary structure or conservation of specific
QFC properties. Future work includes such application, especially to G protein-coupled receptors and some
specific classes of oxidoreductases.
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TABLE V

SUMMARY OF WHICH SEQUENCES WERE FOUND BY EACH CLASSIFIER IN THE20-FOLD JACK-KNIFE TEST. “H” INDICATES A HIT, “M” A

MISS, AND “NH” A NEAR HIT (E-VALUE IN [0.1, 1.0)). FOR HMM- BASED ALGORITHMS, PRIM MEANS PRIMARY STRUCTURE, PSI

MEANS SECONDARY STRUCTURE IS PREDICTED BYPSI-PRED, PRE MEANS SECONDARY STRUCTURE IS PREDICTED BYPREDATOR,

U MEANS USING UNIFORM PRIOR, N MEANS USING NEW PRIOR. FOR THE MULTIPLE-INSTANCE LEARNING (MIL) ALGORITHMS, MOTIF

MEANS THE MODEL IS ON MOTIF-BASED ALIGNMENT, SECONDARY MEANS THE MODEL IS ON SECONDARY-BASED ALIGNMENT, α-β

MEANS THE MODEL IS ONα-β SIGNATURE, HMM MEANS HIDDEN MARKOV MODEL , SVM MEANS A CLASSIFIER BUILT FROM A

SUPPORT VECTOR MACHINE.

Gi HMM HMM HMM HMM HMM SVM SVM MIL MIL MIL

Number Prim PSI N PSI U PRE N PRE U PSI PRE Motif α-β Secondary

13400018 M M M M M M H H H M

14602058 M NH NH H M M M M H H

19698793 M H H H M M M H H H

2194076 M H H M M M M M H M

7512732 M M H H H H H H H H

443281 H H H H M H M H H H

1076496 M M M M M M M M M H

840745 M H H NH M H M H H H

1421133 M H M NH M H M M H H

129727 M H M NH M M H H H H

15229353 M M M M M M M H H M

14787802 M M M M M H M M M M

14729415 M M M M M H M H M H

13122603 M M M M M H H H H H

11494247 M H M H M H M H H H

15150492 M M M M M H H H H H

13358154 M H H M M M M H M H

24372070 M M M NH H M M H M H

23483739 M H NH M M M H H M M

16763418 M H M NH M H H H H M
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