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ON A THEOREM OF HOLDER
DONALD W. MILLER, University of Wisconsin and University of Nebraska

1. Introduction. A well-known result, due to Hélder [1], is the following:
The symmetric group S, has outer automorphisms if and only if #=6. The
classical proof of the existence of a class of outer automorphisms of Ss, as
formulated by Burnside [2], rests in part on the theory of primitive groups and
entails extensive computation. In this note we offer a direct method for con-
structing such automorphisms.

The author is grateful to Professor R. H. Bruck for raising this problem
and for subsequent helpful remarks.

2. Construction of an outer automorphism of Ss. Let .Ss be defined on the
set M= { 1,2,3,4,5, 6} ; let I denote the identity of Ss. Call two elements of .Sg
disjoint if no element of M is displaced by both of them.

Define the mapping ¢ by: (1 2)¢=(12)(36)(4 5) =Py, (1 3)¥=(13)(24)(56)
=P, 14y =(14(26)35) =Py (15¢ =(15)(23)(46) =P;, (16)¢
=(1 6)(2 5)(3 4) =Ps. Write N={2, 3,4, 5,6}, ®={P;|i€N}. Note that the
elements of ® include as factors the 15 distinct transpositions of Ss; consequently
@ is transitive on M, Moreover, for 4, j, kEM, 1547,

Pi=1, kP;%kP; iP5
Note that ¢P;=jP; implies ¢=j. For if iP;=jP;=k then P;=(11)(j k)(r s),
Pij=(14)( k)(r5), so i=j. Also, P;P;j=( j jP.P;--- (1 1P; iP;P;P; - - - .
Hence (jP:P;)P;P; equals 7 or 1. But in the latter case jP;P;=1P;P;=jP;,
whereas P; fixes no element of M. Thus P;P; has order three, so P;P;P;=P;P.P;,
all 72, j&EN.

If 4, j, k are distinct elements of NV, then

(1) 1P = jP, = kP;
cannot hold. For, if so, write {P;=¢g and N= {1', gy Ry q, r}. Now g=fP, for some
fin M. Certainly f is not one of 4, j, k, or g. But if f=7 then ¢=rP,=1, contra-
dicting 75%;.

If P;, P;, P are distinct elements of @, then
(2) (PiPkPj)P" = Pj(P,‘PkPj).
It is sufficient to prove that P, commutes with P;P;P;, for then P,P;P;P;

=PinP,'Pk, P"PkPinP,'=PjP§Pk, P,‘PkPjP;Pj=P]P,'PkPij, P,‘PkPjP,'
=PjP,'PkPj. Now

Q = PiPiP; = P;P:P; = (1 iP;P)(i jP)(j iP)).

Each of the three transpositions of Q is a factor of some Py, k%4, j. If Q should
have two cycles in common with some P, then Q=P,. But in that case the dis-
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played representation of Q would yield ¢P;=jP,, iP;P;=t (so iP;=tP;), whence
tP,=1iP;=jP,, contradicting (1). (Thus we can write Q=/(a b)(c d)(e f), P
=(a b)(c f)(d e). But then QP,=(c ¢)(d f) = P:Q.

If 4, - - -, A,, B, C are distinct elements of @, then

3) B(CAy - AuB) = (C4, - - - 4.B)C.
If n=1, (3) follows from (2). Assume inductively that (3) holds for #; then
B(CAy+ - - ApAnp1B)
= B(CAy- -+ AwB)(BAn1B) = (CA41- -+ A.BC)(Ant1BAny1)
= (CAy+ + + Andni1)(Apt1BCAni1)BApyr = (CAy - ¢+ AnAp1)(BCAny1B)BAnys
= (CAy -+ A, 4, 11B)C.
Further, if 44, - - -, A, B, C are distinct elements of @, then
4 CB(Ay: -+ A,)B= B(A,--- A4,)BC.

For by (3), CBA:::+-A.,B = BC(BCA4,---A,B) = BC(CA, - - - A4,BC)
=B(A4, - - A,BC).

Define the mapping 6 as follows. Let a4, - - +, @, be distinct elements of N
and write (1 ¢y =A4;. Then set

Io = I, (101 LY an)o = Al o« e e A”’
(0103 - - - @0)0 = Aodady -+ 4ay (QR)O = (06)(RO),
where Q, R are arbitrary disjoint cycles of Ss. By (3),

)

(0«102 LKA a,,)0 = A1A2 c e AnAI-

Clearly 6 maps S into itself. ,
To show that 6 is single-valued it will be sufficient to establish that if Q

=(ay - -+ @n), R=(b1 - - + b,) are arbitrary disjoint cycles in S;, then
(i) (QR)0=(RQ)0;
(ii) (@i - - - an)0=(azas - - - ana:)l.

If Q displaces 1 then Qf is uniquely defined; if not, (ii) follows from (3). As to
(i), suppose without loss of generality that R does not displace 1; then R is of
the form B4, - - - 4.B, so by successive applications of (4), (QR)8 = (Q8)(R0)
= (R9)(Q0) = (RQ)0.

For arbitrary elements Q, R of Ss, (QR)0 = (Q0)(R6). To prove this it is suffi-
cient to consider the case where R is a transposition (since every element of Ss
is a product of transpositions). If Q and R are disjoint the asserted relation is
trivial. Hence we write Q as a product of disjoint cycles and let Q' denote the
product of those factors of Q which are not disjoint from R. We need to show that
(Q'R)8 = (Q'0)(R0).

Letl,e f, a1, -, am by, - - -, b, denote distinct elements of M.
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A If ¢=(Ua- an), R=10b), then (Q8)(RI = A1 ---A.B
=0 ay - - - anb)i=(Q'R).

(i) Q' =(ear- - am), V=(eby - - - bs), then (Q0)(VO) =(EA, - - - AnE)
“(EBy - +B,E)=EA; -+ AuB1 -+ B,E=(ar+ - aunb -+ b,)0=(Q' V).

i) HQ=1a1---aneby - -by), R=(1¢), withm, n=0, then (Q'0)(R)
= Ay An(EBy-+--B,E) = Ay -+ A,B,EB, - - - B, = [(1(11...%)
(e by - - - by)]0=(Q'R)6.

(v) If '=1ar---am)(eds---ba), R=(1e), then (Q')(RO) =4, - -
AnEBy -+ BuEE=Ay -+ AnEB; -+ -Ba=1a1- - ameby - - - b)0=(Q'R)8.

(V) It '=(ear---anfbi---bs), R=(cf), with m, n=0, then by (4),
(Q'0)(R8) = (EA, - - - ApFBy - - - B,E)(EFE)=(EA, - - - Ap)(FBy - - - B,FE)
=(EAy - - An)(EFBy - - -B,F)=[(eas - - - aw)(fbs - - - by)]0=(Q'R)0.

(vi) If Q'=(ear---an)(fbr---ba)=0Q{Qf, R=(ef), then, by (ii),
(Q'0) (R6) = (Q16)(Q4 0) (R) = (Qf Q5 R)f = (Q"R)6.

6 is an automorphism of Ss. Indeed, the kernel, K, of 6 is a normal subgroup
of Ss, so K is one of Ss, 45, {I }, where A denotes the alternating group of de-
gree 6. But [(3 6)(4 5)]0=(3 6)(4 5), so KSs, KA. Therefore K= {I} )
6 is 1-1 and hence an automorphism.

Finally, 8 is outer since (1 3 5)8=(1 2 6)(3 5 4), whereas if # were inner it
would map every conjugate class of Ss onto itself. This completes the proof.

We observe in conclusion that all outer automorphisms of Ss are obtainable
with the aid of the above construction. Indeed, as shown by Holder [1], the
automorphism group of S¢ has order 1440=2(6!); thus the group, 3, of inner
automorphisms is of index 2 in the full automorphism group. Hence if 0 is any
outer automorphism of Ss then the right coset 30 includes all outer automor-
phisms of Ss.
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