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~Received 8 April 2002; published 29 August 2002!

Based on 85 pb21 data ofpp̄ collisions atAs51.8 TeV collected using the DØ detector at Fermilab during
the 1994–1995 run of the Tevatron, we present a direct measurement of the total decay width of theW boson
GW . The width is determined from the transverse mass spectrum in theW→e1ne decay channel and found to
be GW52.2320.14

10.15(stat)60.10(syst) GeV, consistent with the expectation from the standard model.

DOI: 10.1103/PhysRevD.66.032008 PACS number~s!: 13.38.Be, 14.70.Fm

I. INTRODUCTION

The theory that describes the fundamental particle inter-
actions is called the standard model~SM!. The standard
model is a gauge field theory that comprises the Glashow-
Weinberg-Salam~GWS! model @1–3# of the weak and elec-
tromagnetic interactions and quantum chromodynamics
~QCD! @4–6#, the theory of the strong interactions. The dis-
covery of theW @7,8# and Z @9,10# bosons in 1983 by the
UA1 and UA2 Collaborations at the CERNpp̄ collider pro-
vided a direct confirmation of the unification of the weak and
electromagnetic interactions. Experiments have been refining
the measurements of the characteristics of theW and Z
bosons. The total decay width ofW boson,GW , is given in
the SM in terms of the masses of the gauge bosons and their
couplings to their decay products.

In pp̄ collisions,W bosons are produced by processes of
the typeud̄ or ūd→W, followed by subsequent leptonic or
hadronic decay:W→,n or W→q8q̄, where,5e, m, t, and
q8 or q represent one of the quarksu, d, c, s, or b ~but not t
since top quark is heavier than theW boson!.

At lowest order in perturbation theory, the SM predicts
the partial decay widthG(W→en) of W→en to be G(W
→en)5g2MW/48p @11#. Including radiative corrections,
this can be rewritten as

G~W→en!5
GFMW

3

6&p
~11dSM!, ~1!

whereGF /&5g2/8MW
2 , g is the charged current coupling,

andMW is the mass of theW boson. The SM radiative cor-
rectiondSM is calculated@12# to be less than12 %. By using
the experimental values ofGF ~measured from muon decay
@13#! and MW ~measured at the Fermilab Tevatron collider
@14,15# and CERNe1e2 collider LEP2 @16–19#!, the pre-
dicted partial width is@11# G(W→en)5226.560.3 MeV.

A W boson has three leptonic decay channels and two
dominant hadronic decay channelsW→en̄, mn̄, tn̄, and
qq8, whereq is u or c, andq8 is the appropriate Cabibbo-
Kobayashi-Maskawa~CKM! mixture of d ands. Other had-
ronic decay channels are greatly suppressed by CKM off-
diagonal matrix elements. Considering the three color
charges for quarks, these nine leptonic and hadronic channels
yield a total width of'9G(W→en). Including QCD correc-
tions, the leptonic decay branching ratio isB(W→en)

51/$316@11as(MW)/p1O(as
2)#%, leading to the SM pre-

diction for the full width of the W boson @11# of GW
52.092160.0025 GeV.

Historically, the accurate determination of the width of the
W boson was available through an indirect measurement us-
ing the ratioR of the W→en andZ→ee cross sections

R5
s~pp̄→W1X!•Br~W→en!

s~pp̄→Z1X!•Br~Z→ee!

5
sW

sZ
•

Br~W→en!

Br~Z→ee!
. ~2!

A measurement ofR, together with a calculation@20# of the
ratio of production cross sectionssW /sZ and the measure-
ment of the branching faction Br(Z→ee)5G(Z
→ee)/G(Z) from the CERNe1e2 collider ~LEP! @21#, can
be used to extract theW boson leptonic branching ratio
Br(W→en)5G(W→en)/G(W), which, in turn, yields the
full width of the W boson from calculated partial decay
width G(W→en). Thus, in this indirect measurement, cal-
culations ofsW /sZ and the partial widthG(W→en) yield
GW in the context of the SM. This method was first used by
the UA1 @22# and UA2 @23# Collaborations. More recently,
the CDF @24# and DØ @25# Collaborations obtainedGW
52.06460.084 GeV andGW52.16960.079 GeV, respec-
tively, using this technique.

The value ofGW can also be obtained from the line shape
of the transverse massmT of theW boson, because the Breit-
Wigner ~width! component of the line shape falls off more
slowly at highmT than the resolution component does@12#.
The transverse mass is given by

mT5A2ET
eET

n@12cos~fe2fn!#, ~3!

whereET
e andET

n are the transverse energies, andfe andfn

are the azimuthal angles of the electron and neutrino, respec-
tively. The transverse mass has a kinematic upper limit at the
value of MW , and the shape of themT distribution at this
upper limit, called the ‘‘Jacobian edge,’’ is sensitive toGW
@26#. Using this technique, the Collider Detector at Fermilab
~CDF! Collaboration reported@27# a measurement ofGW
52.0560.10(stat)60.08(syst) GeV. Figure 1 shows themT
spectrum shape expected for different values ofGW and in-
dicates the sensitivity of the tail of the transverse mass dis-
tribution to GW . Clearly, the effect is greatest in the region
abovemW .

The direct measurement ofGW complements the indirect
measurement throughR in several ways: theoretical inputs
for sW /sZ and G(W→en), which may be sensitive to
non-SM coupling of theW boson, are not needed; the direct

*Also at University of Zurich, Zurich, Switzerland.
†Also at Institute of Nuclear Physics, Krakow, Poland.
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measurement explores the region above theW boson mass
pole, where possible new phenomena such as an additional
heavy vector boson (W8) can contribute; it is desirable to
have more than one method of measuring a given property.
The sources of systematic errors in the two methods are dif-
ferent, and the direct method will be important when the
measurement throughR becomes limited by systematic un-
certainty.

The paper is organized as follows. In Sec. II, we give a
brief description of the DØ detector. Particle identification
and event selection are discussed in Sec. III. The analysis
procedure, including background estimation and Monte
Carlo simulation, is described in Sec. IV, and the conclusions
are presented in Sec. V. For more detailed information on
this analysis, see Ref.@28#.

II. THE DØ DETECTOR

A. Experimental apparatus

The DØ detector@30# comprises three major systems. The
innermost of these is a nonmagnetic tracker used in the re-
construction of charged particle tracks. The tracker is sur-
rounded by central and forward uranium/liquid-argon sam-
pling calorimeters. These calorimeters are used to identify
electrons, photons, and hadronic jets, and to reconstruct their
energies. The calorimeters are surrounded by a muon spec-
trometer used in the identification of muons and the recon-
struction of their momenta. We use a coordinate system~r, u,
f! wherer is the perpendicular distance from the beam line,
u is the polar angle measured relative to the proton beam
directionz, andf is the azimuthal angle. The pseudorapidity
h is defined as2 ln(tanu/2). For this analysis, the relevant
components are the tracking system and the calorimeters.

The central tracking system provides a measurement of
the energy loss due to ionization (dE/dx) for tracks within
its tracking volume. This information is used to help distin-
guish prompt electrons frome1e2 pairs due to photon con-
versions.

The structure of the calorimeter has been optimized to
distinguish electrons and photons from hadrons and to mea-
sure their energies. It is composed of three sections: the cen-
tral calorimeter~CC!, and two end calorimeters~EC!. Theh
coverage for electrons used in this analysis isuhu,1.1 @29#
in the CC region, which consists of 32f modules. The calo-
rimeter is segmented longitudinally into three sections, the
electromagnetic~EM! calorimeter, the fine hadronic~FH!
calorimeter, and the coarse hadronic~CH! calorimeter. The
EM calorimeter is subdivided longitudinally into four layers
~EM1–EM4!. The first, second and fourth layers of the EM
calorimeter are transversely divided into cells of sizeDh
3Df50.130.1. The electromagnetic shower maximum oc-
curs in the third layer, which is divided into finer units of
0.0530.05 to improve the measurement of the shower shape
and spatial resolution. There are 16 FH modules and 16 CH
modules inf. The fine hadronic calorimeter is subdivided
longitudinally into three fine hadronic layers~FH1–FH3!,
and there is only one coarse hadronic layer.

B. Trigger

The DØ trigger has three levels, each applying increas-
ingly more sophisticated selection criteria to an event. The
lowest level trigger, level 0, uses scintillation counters lo-
cated on the inner faces of the forward calorimeters to signal
the presence of an inelasticpp̄ collision. Data from the level
0 counters, the calorimeter, and the muon chambers are sent
to the level 1 trigger, which provides a trigger on total trans-
verse energy (ET), missing transverse energy (E” T), ET of
individual calorimeter towers, and/or the presence of a
muon. These triggers operate in less than 3.5ms, the time
between bunch crossings. Some calorimeter and muon-based
triggers require additional time, which is provided by a level
1.5 trigger system.

Level 1 ~and 1.5! triggers initiate a level 2 trigger system
that consists of a farm of microprocessors. These micropro-
cessors run simplified versions of the off-line event recon-
struction algorithms to select events of interest.

III. PARTICLE IDENTIFICATION AND EVENT
SELECTION

This analysis relies on the DØ detector’s ability to iden-
tify electrons and neutrinos which is associated with the un-
detected energy. We use bothW→en andZ→e1e2 candi-
date samples for this analysis. TheW boson candidate
sample provides the signal events, while theZ→e1e2 can-
didate sample is used to calibrate both the data and the
Monte Carlo~MC! simulation. CandidateW andZ events are
identified by the presence of an electron and a neutrino, or by
the presence of two electrons with an invariant mass consis-
tent with the mass of theZ boson, respectively. Electrons
from W and Z boson decays typically have large transverse

FIG. 1. Monte Carlo simulations of the transverse mass spec-
trum for differentW boson widths. The selectionsET(e).25 GeV
andET(n).25 GeV, are applied to MC sample. The circles show
the spectrum forGW51.60 GeV, the squares forGW52.10 GeV,
and triangles forGW52.60 GeV. Distributions are normalized arbi-
trarily in the transverse mass region shown.
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energy and are isolated from other particles. They are asso-
ciated with a track in the tracking system and with a large
deposit of energy in one of the EM calorimeters. Neutrinos
do not interact in the detector, and thus create an apparent
transverse energy imbalance in an event. For eachW boson
candidate event, we measure the energy imbalance in the
plane transverse to the beam direction (E” T), and attribute
this to the neutrino. The following sections provide a brief
summary of the procedure@25# used in this analysis.

A. Electron identification

Identification of electrons starts at the trigger level with
the selection of clusters of electromagnetic energy. At level
1, the trigger searches for EM calorimeter towers (Df
3Dh50.230.2) with signals that exceed predefined thresh-
olds.W boson triggers require that the energy deposited in a
single EM calorimeter tower exceed 10 GeV. Those events
that satisfy the level 1 trigger are processed by the level 2
filter. The trigger towers are combined with the energy in the
surrounding calorimeter cells within a window ofDf3Dh
50.630.6.

Events are selected at level 2 if the transverse energy in
this window exceeds 20 GeV. In addition to theET require-
ment, the longitudinal and transverse shower shapes are re-
quired to match those expected for electromagnetic showers.
The longitudinal shower shape is described by the fraction of
the energy deposited in each of the four EM layers of the
calorimeter. The transverse shower shape is characterized by
energy deposition patterns in the third EM layer. The differ-
ence between the energies in concentric regions covering
0.2530.25 and 0.1530.15 in Dh3Df must be consistent
with that expected for an electron@30#.

In addition, the electron candidates are required to deposit
at least 90% of their total calorimetric energy in the EM
section and to be isolated from other calorimetric energy
deposits, which isf EM5EEM /Etotal.0.9. To be considered
isolated, electrons must satisfy the isolation requirement
f iso,0.15, wheref iso is defined as

f iso5
Etotal~0.4!2EEM~0.2!

EEM~0.2!
~4!

in which Etotal(0.4) is the total energy andEEM(0.2) the elec-
tromagnetic energy, in cones of radiusR5A(Dh)21(Df)2

50.4 and 0.2, respectively. This enhances the signal ex-
pected from isolated electrons inW andZ boson decay.

After events are selected with isolated electromagnetic
showers at the on-line trigger level, we apply the offline
selection to these showers. For the purpose to study the back-
ground, we first define ‘‘loose’’ electron. Those EM clusters
are require to locate within the sensitive area of a calorimeter
module, have an associated track in the central tracking vol-
ume anduhu,1.1. To avoid areas of reduced response be-
tween neighboring calorimeter modules, the azimuthal angle
of electrons is required to be at leastDf50.1032p/32 ra-
dians away from the position of a module boundary. We
further impose a set of off-line tighter criteria to identify
electrons, thereby reducing the background from QCD mul-

tijet events. The first step in identifying an electron is to form
a cluster around the trigger tower using a nearest neighbor
algorithm. As at the trigger level, the cluster is required to be
isolated (f iso,0.15). To increase the likelihood that the clus-
ter is due to an electron and not a photon, a charged track
from the central tracking system is required to point to the
center of the EM cluster. We extrapolate the track to the third
EM layer of the calorimeter and calculate the distance be-
tween the extrapolated track and the cluster centroid along
the azimuthal direction~rDf! and in thez direction (Dz).
The position of cluster centroid is defined at the radius of the
third EM layer of the calorimeter. This position of the EM
cluster is connected to the associated one in the central track-
ing system and extrapolated to the beam line, which defines
the z position of the event vertex. The electronET is calcu-
lated using this vertex definition@25#. The variable

s trk
2 5S rDf

srf
D 2

1S Dz

sz
D 2

, ~5!

wheresrf andsz are the respective track resolutions, quan-
tifies the quality of the match. A requirement ofs trk,5 is
imposed on the data. These clusters are then subjected to a
four-variable likelihood test@31,32#. The four variables are
the following.

A x2 comparison of the shower shape with the expected
shape of an electromagnetic shower, computed using a 41-
variable covariance matrix@33# for the energy depositions in
the cells of the electromagnetic calorimeter and the location
of event vertex.

The electromagnetic energy fraction, defined as the ratio
of shower energy in the EM section of the calorimeter rela-
tive to the sum of EM energy plus the energy in the first
hadronic section of the calorimeter.

A comparison of the track position to the position of clus-
ter centroid, as defined in Eq.~5!.

The ionization,dE/dx, along the track. This is used to
reduce contamination due toe1e2 pairs from photon con-
versions, mainly from jets fragmenting into neutral pions.
Thee1e2 pair from photon conversion has a double value of
dE/dx for a genuine electron due to two overlapping tracks.

To good approximation, these four variables are indepen-
dent of each other for electron showers. Electrons that satisfy
all above criteria are called ‘‘tight’’ electrons.

Electron energies are corrected for the underlying event
energy that enter into the electron windows. The electromag-
netic energy scale is determined in the test beam data, and
adjusted to make the peak of theZ→e1e2 invariant mass
agree with the known mass of theZ boson@21#. We found it
to be 0.954560.0008. The electron energy scale is discussed
in detail in Ref.@15#.

B. Missing transverse energy

The primary sources of missing energy in an event in-
clude the neutrinos that pass through the calorimeter unde-
tected and the calorimeter resolution. The energy imbalance
is measured only in the transverse plane because of the lost
particles emitted at small angles~within the beam pipes!. The
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missing transverse energy is calculated by taking the nega-
tive of the vector sum of the transverse energy in all of the
calorimeter cells. This gives both the magnitude and direc-
tion of E” T , allowing the calculation of the transverse mass of
the W boson candidates.

C. Event selection

The W boson data sample used in this analysis was col-
lected during the 1994–1995 run of the Fermilab Tevatron
collider, and corresponds to an integrated luminosity of
85.063.6 pb21. Events are selected by requiring one tight
electron in the central calorimeter (uhu,1.1) @29# with ET
.25 GeV. In addition, events are required to haveE” T
.25 GeV andW transverse momentumpT(W),15 GeV,
which is combined transverse momentum of electron andE” T
~neutrino!. After applying all of the described selections, a
total of 24487W boson candidates is selected. There are
24479 candidates in the region 0–200 GeV, while 8~2! can-
didates havemT.200(250) GeV. Figure 2 shows the trans-
verse mass distribution of theW→en candidates.

Candidates for the processZ→e1e2 are required to have
two tight electrons, each withET.25 GeV in the CC. The
invariant mass of the dielectron pair is required to satisfy
60 GeV,mee,120 GeV. A total of 1997Z boson candi-
dates is selected. Figure 3 shows the invariant mass distribu-
tion of theZ→e1e2 candidates.

IV. ANALYSIS PROCEDURE

In this section, we describe the Monte Carlo simulation
program used to model the transverse mass spectrum. The
background from the dominant processes that can mimic the
W→en signal is also estimated. We compare the data with
the expectation from the Monte Carlo simulation and extract

the decay width of theW boson using log-likelihood fits to
the W boson transverse mass distribution.

A. Monte Carlo simulation

We use the same Monte Carlo program for the earlierW
boson mass measurement@15,34,35#. The transverse mass
spectrum for theW boson is modeled in three steps:W boson
production, W boson decay, and a parametrized detector
simulation.

We first simulate the production of theW boson by gen-
erating its four momentum and other event characteristics,
such as thez position of the interaction vertex and the run
luminosity. The luminosity is used to parametrize
luminosity-dependent effects. The full cross section depends
on the mass, pseudorapidity, and transverse momentum ofW
boson. The dependence of pseudorapidity and transverse mo-
mentum are correlated. We useRESBOS@36# to calculate the
dependence and use it as input to our MC program. To
lowest-order, the mass dependence of theW boson produc-
tion follows the Breit-Wigner distribution

s~Q!5Lqq̄~Q!
Q2

~Q22MW
2 !21Q4GW

2 /MW
2 , ~6!

whereQ is the invariant mass ofW boson,MW is the pole
mass andGW the decay width of theW boson, andLqq̄(Q)
is called the parton luminosity. To evaluateLqq̄(Q), we gen-
erateW→en events using the leading-orderRESBOSevent
generator and the different PDF models described in Refs.
@37,38#. The events are then selected using the same kine-
matic and fiducial constrains as for theW andZ boson data
samples. The resulting event distribution is proportional to
the parton luminosity, which we parametrize with the func-
tion @39#:

FIG. 2. Transverse mass distribution ofW→en event candi-
dates.

FIG. 3. Invariant mass distribution ofZ→e1e2 events com-
pared to Monte Carlo simulation. The histogram is the MC and the
black dot with error bar is the data. TheZ→e1e2 candidates re-
quire both electrons be in the CC.
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Lqq̄~Q!5
e2bQ

Q
, ~7!

whereb is obtained from a fit of the MC events to Eq.~6!.
The decay of theW boson is simulated in the MC and

used to calculate the transverse momentum of the electron
and other decay products. Any radiation from the decay elec-
tron or from theW boson can bias the measurement and has
to be taken into account.W→tn→enn̄n̄ events are indistin-
guishable fromW→en and are also included in the model,
using a branching ratio of Br(t→enn̄)/@11Br(t→enn̄)#
50.151.

Finally, we apply a parametrized detector simulation to
the momenta of all decay products to simulate any observed
recoil jets and electron momenta. The parameters giving the
electron and recoil system response of the detector are fixed
using data, which includeZ bosons and their recoil jets, to
study calorimeter response and resolution. The response to
jets and electrons is parametrized as a function of energy and
angle. Also included in the detector parametrization are ef-
fects due to the longitudinal spread of the interaction vertex
and the luminosity-dependent response of the detector
caused by multiple collisions. After detector simulation of
MC W events, we apply the same event selections ofW
→en data to the MC sample.

Uncertainties in the input parameters to the MC will even-
tually limit the accuracy of the width measurement of theW
boson. To study the uncertainties, we allow these input pa-
rameters to vary by one standard deviation and regenerate
the corresponding transverse mass spectrum. We then fit it
with a nominal MC template. If the positive and negative
variations of the width of theW boson with respect to a
parameter are not symmetric, the larger value is used for the
uncertainty. This estimation is used to estimate the impact of
the electron energy resolution, hadronic energy resolution,
electron energy scale, hadronic energy scale, dependence on
theW boson mass, electron angular calibration, and radiative
corrections. Detailed studies of these parameters can be
found in Ref.@15#. The uncertainties onGW from the electron
energy resolution and scale are 27 and 41 MeV, respectively.
The uncertainties from the hadronic energy resolution and
scale lead to variations inGW of 55 and 22 MeV, respec-
tively. The error on theW boson mass of 37 MeV, which is
the uncertainty of world average ofW massmW580.436
60.037 GeV, has an effect of 15 MeV onGW . The uncer-
tainties from radiative decay and electron angular calibration
correspond to 10 and 9 MeV, respectively.

Uncertainties onGW also arise from uncertainties in the
production model and the parton distribution functions
~PDF’s!. The uncertainty from the former is determined from
the upper and lower limits@37# of the most uncertain param-
eter in the model. This leads to an uncertainty of 28 MeV due
to parton luminosity and 12 MeV due to uncertainty in the
transverse momentum of theW boson in the model. There
are several PDF models currently in use. The uncertainty due
to variation in PDF’s is determined by using different PDF’s,
including MRSA @40#, CTEQ4M and CTEQ5M@41#, and
finding the largest excursion from the value ofGW deter-

mined using the MRST PDF set@42#, leading to a variation
of 27 MeV. The value quoted forGW is determined using the
MRST PDF’s. We chose MRST so that the results can be
consistent with DØ mass analysis@15#.

B. Backgrounds

Backgrounds toW→en can affect the shape of themT
spectrum and skew the measurement ofGW . We account for
this by estimating the background as a function ofmT and
adding this to themT distribution of theW boson from the
Monte Carlo. The three dominant background sources are
multijet events,Z→ee, and W→tn decay products. The
following describes how the backgrounds are estimated@28#.

A large potential source of background is due to multijet
events in which one jet is misidentified as an electron and the
energy in the event is mis-measured, thereby yielding large
E” T . This background is estimated using jet events from data,
following the procedure called the ‘‘matrix method,’’ de-
scribed in Refs.@25,28,32#. The method uses two sets of
data, each containing both signal and background. The first
data set corresponds to theW data sample in this analysis.
The second set contains a different mix of signal and back-
ground which is obtained with loose electron criteria~de-
scribed in Sec. III A!. We summarize below the essence of
this method used to estimate the multijet background.

The number of multijet background (NBG
W ) events in the

tight electronW data sample is given by

NBG
W 5e j

esNl2Nt

es2e j
, ~8!

whereNl and Nt are the number of events in theW boson
samples satisfying loose and tight electron criteria, respec-
tively. The tight electron efficiencyes is the fraction of loose
electrons that pass tight electron criteria, as determined by
the Z boson sample, where one electron is required to pass
the tight selection criteria and the other serves as an unbiased
probe for determining relative efficiencies. The electron effi-
ciency is obtained to bees5(86.361.2)%. The jet effi-
ciencye j is the fraction of loose ‘‘electrons’’ found in mul-
tijet events that also pass tight electron criteria. This sample
is required to haveE” T<15 GeV to minimize the number of
W bosons contained in it. The result ise j5(5.8360.25)%.
Both es and e j are found to be constant within statistical
error as a function ofW transverse mass. Oncees ande j are
determined, we can extract the background-event distribu-
tion. The ‘‘electron’’ and ‘‘neutrino’’ transverse momenta and
energies are used to form the transverse mass, and this dis-
tribution is shown in Fig. 4. The total multijet background is
estimated to be 368632 events in the regionmT
,200 GeV, with 25.462.2 events in the range 90 GeV
,mT,200 GeV.

The background sample is smoothed in the region
85 GeV,mT,200 GeV. We fit the distribution to an expo-
nential function of the formf BG5exp(a01a1x1a2x

21a3x
3).

The fitting parametersa0 , a1 , a2 , anda3 @43# are used to
generate the background distribution for the fit to the signal.
For bins outside the fitted region, we use the original data
itself, as shown in Fig. 4.
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Another source of background is due toZ→ee events in
which one electron is undetected. This results in a momen-
tum imbalance, with the event now being topologically in-
distinguishable fromW→en events. This background is also
estimated using Monte Carlo events. The number of suchZ
boson events present in theW boson sample is calculated by
applying theW boson selection criteria to MCZ→ee events
generated usingHERWIG @44# and processed through aGEANT

@45# based simulation of the DØ detector, and then overlaid
with events from randompp̄ crossings. This is done to simu-
late the effect of the luminosity on the underlying event. Out
of a total of 8870Z→ee events, 48 pass theW boson event
selection. Normalizing the Monte Carlo sample to the size of
the data sample for equivalent luminosity, we estimate that
there are 102Z→ee events in the data sample.

W→tn events in which thet decays into an electron and
two neutrinos are indistinguishable fromW→en events on
an event-by-event basis. Becauset undergoes a three-body
decay, leading to a softer electron relative toW→en events,
the acceptance is reduced greatly by the standardET selec-
tion criteria. The size of this background is small, and it
tends to add events with low values ofmT . This background
is determined using theW→en Monte Carlo, modified to
include the decay of thet lepton. The events are then passed
through the same detector simulation used to model theW
→en signal.

The shape and total amount of background affect the fit
used to determine the width ofW boson. To estimate the
uncertainty inGW due to the uncertainty in absolute back-
ground, we scale up~and down! the fitted number of back-
ground events by an amount that corresponds to the total
uncertainty in the background. This gives an uncertainty of
15 MeV for GW extracted from the region 90 GeV,mT
,200 GeV. To estimate the uncertainty inGW from the un-
certainty in the shape of the background spectrum, we per-

form an ensemble study in which background is generated
using a multinomial distribution. The multinomial distribu-
tion is defined by

P~N1 ,N2 ,...,Nch!5Ntotal)
i 51

ch pi
Ni

Ni !
, ~9!

whereNtotal is the total number of background events,ch is
the number of the bins,pi is the original distribution, andNi
is numbers of events ini th bin. The total backgroundNtotal is
kept at its central value, while the number of background
events in each bin is allowed to fluctuate. TheW boson width
is then recalculated with the new background distribution.
The variation inGW is taken as the uncertainty. We found
that this is 39 MeV for the fitted region ofmT .

C. Likelihood fitting

We generate a set of Monte CarlomT templates withGW
varying from 1.55 GeV to 2.75 GeV at intervals of 50 MeV.
These templates are normalized to the number of events in
the region ofmT,200 GeV. The background distributions of
multijet andZ→ee events are added to the templates and a
binned likelihood is calculated for data. ThemT bin size is 5
GeV. The fitting region is chosen to be 90 GeV,mT
,200 GeV to minimize the systematic uncertainty. From the
dependence of the likelihood onGW , we obtain theW boson
width and its error asGW52.2320.14

60.15(stat) GeV. The com-
bined uncertainty, taking the statistical and systematic uncer-
tainties contribution in quadrature, yields the resultGW

52.2320.14
10.15(stat)60.10(syst) GeV52.2320.17

10.18 GeV. The x2

for the best fit is an acceptable 25.9 for 22 degrees of free-
dom, corresponding to a probability of 26%. A comparison
of the observed spectrum to the probability density function
in the fitting region through a Kolmogorov-Smirnov test,
which compares the observed cumulative distribution func-
tion for a variable with a specified theoretical distribution,
yields k50.434, which is evidence of a good fit.

Figure 5 shows a fit to the likelihood, which corresponds
to a fourth-order polynomial fit that determines the peak po-
sition. Figure 6 shows themT spectrum for the data, the
normalized MC sample, and the background.

As a consistency check of the fitting method, we also
determine theW boson width from the ratio of the number of
events in the fitting region of 90 GeV<mT<200 GeV to the
number of events in the entire spectrum. This yields
GW52.2260.14(stat) GeV, compared to GW

52.2320.14
10.15(stat) GeV for the independent maximum likeli-

hood fit in the same region. All results show good agreement.
Sources of systematic uncertainties in the determination

of the W boson width are those that can affect the shape of
the transverse mass distribution. These include the uncertain-
ties from input parameters to the MC program and from
background estimation. Details can be found in correspond-
ing section of the parameters and in Ref.@28#. Table I lists all
the important sources of systematic uncertainty for the decay
width of theW boson.

FIG. 4. The transverse mass distribution for the multijet back-
ground. The line represents the results of the fit described in the
text.
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Comparing to the SM prediction ofG(W)52.0921
60.0025 GeV, we find the difference between SM predic-
tion and our measurement to be 0.2420.17

10.18 GeV, which is the
width for theW boson to decay into final states other than the
two lightest quark doublets and the three lepton doublets. We
set a 95% confidence level upper limit on theW boson width
to non-SM final states. Assuming the uncertainty is Gauss-
ian, we set a 95% confidence level upper limit on the invis-
ible partial width of theW boson to be 0.59 GeV. Under the
assumption that there is no correlation between indirect mea-
surement and direct measurement of theW boson decay

width and within the framework of SM, we can combine
both analyses and obtainGW52.16260.062 GeV. The 95%
confidence level upper limit on the invisible partial width of
the W boson is 0.191 GeV.

V. CONCLUSIONS

We have directly measured the decay width of theW bo-
son by fitting the transverse mass inW→en events inpp̄
collisions at 1.8 TeV, and obtain

GW52.2320.14
10.15~stat!60.10~syst! GeV ~10!

52.2320.17
10.18 GeV. ~11!

This result is consistent with the prediction of the stan-
dard model.
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FIG. 5. Results of the log-likelihood fit of the data to Monte
Carlo templates for differentGW .

FIG. 6. Comparison of data to the Monte Carlo templates for the
best fit. The black circles with error bars are the data. The solid line
of the histogram corresponds to the MC templates withG(W)
52.23 GeV normalized to the expected number ofW boson events.
The shadowed area is the background.

TABLE I. Systematic uncertainties and the total uncertainty on
the W boson width measurement.

Source dGW ~MeV!

Hadronic energy resolution 55
EM energy scale 41
Background ensemble studies 39
Luminosity slope dependence 28
EM energy resolution 27
PDF 27
Hadronic energy scale 22
Background normalization 15
W boson mass 15
Production model 12
Radiative correction 10
Selection bias 10
Angular calibration ofe trajectory 9

Total systematic uncertainty 99

Total statistical uncertainty 1145
2138

Total uncertainty 1176
2170

DIRECT MEASUREMENT OF THEW BOSON DECAY WIDTH PHYSICAL REVIEW D66, 032008 ~2002!

032008-9



@1# S. Glashow, Nucl. Phys.22, 579 ~1961!.
@2# S. Weinberg, Phys. Rev. Lett.19, 1264~1967!.
@3# A. Salam, in Elementary Particle Theory, edited by N.

Svartholm~Almqvist and Wiksells, Stockholm, 1969!, p. 367.
@4# W. Bardeen, H. Fritzsch, and M. Gell-Mann, inScale and Con-

formal Symmetry in Hadron Physics, edited by R. Gatto
~Wiley, New York, 1973!, p. 139.

@5# D. Gross and F. Wilczek, Phys. Rev. D8, 3633~1973!.
@6# S. Weinberg, Phys. Rev. Lett.31, 494 ~1973!.
@7# UA1 Collaboration, G. Arnisonet al., Phys. Lett.122B, 103

~1983!.
@8# UA2 Collaboration, P. Bagnaiaet al., Phys. Lett.122B, 476

~1983!.
@9# UA1 Collaboration, G. Arnisonet al., Phys. Lett.126B, 398

~1983!.
@10# UA2 Collaboration, P. Bagnaiaet al., Phys. Lett.129B, 130

~1983!.
@11# Particle Data Group, D. E. Groomet al., Eur. Phys. J. C15,

1–878~2000!.
@12# J. Rosner, M. Worah, and T. Takeuchi, Phys. Rev. D49, 1363

~1994!.
@13# Particle Data Group, R. M. Barnettet al., Phys. Rev. D54, 1

~1996!.
@14# CDF Collaboration, F. Abeet al., Phys. Rev. D43, 2070

~1991!.
@15# DØ Collaboration, B. Abbottet al., Phys. Rev. D58, 092003

~1998!.
@16# L3 Collaboration, M. Acciarriet al., Phys. Lett. B413, 176

~1997!.
@17# ALEPH Collaboration, R. Barateet al., Phys. Lett. B422, 384

~1998!.
@18# OPAL Collaboration, K. Ackerstaffet al., Eur. Phys. J. C1,

395 ~1998!.
@19# Delphi Collaboration, P. Abreuet al., Eur. Phys. J. C2, 581

~1998!.
@20# A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Lett. B

306, 147 ~1993!; 309, 492 ~1993!.
@21# LEP Electroweak Working Group, CERN Report No. CERN-

EP-2001-098, hep-ex/0112021.
@22# UA1 Collaboration, C. Albajaret al., Phys. Lett. B253, 503

~1991!.
@23# UA2 Collaboration, J. Alitti et al., Phys. Lett. B276, 365

~1992!.
@24# CDF Collaboration, F. Abeet al., Phys. Rev. D52, 2624

~1995!.
@25# DØ Collaboration, B. Abbottet al., Phys. Rev. D61, 072001

~2000!.

@26# V. D. Barger and R. J. N. Phillips, inCollider Physics, Vol. 71
of Frontiers in Physics~Addison-Wesley, New York, 1987!.

@27# CDF Collaboration, F. Abeet al., Phys. Rev. Lett.85, 3347
~2000!. CDF measured theW boson width in both theen and
mn channels. The number reported is their combined result.

@28# Qichun Xu, Ph.D. thesis, University of Michigan, 2001; http://
www-d0.fnal.gov/results/publications–talks/thesis/xu/
qichun–thesis.html

@29# The origin of the coordinate system is the reconstructed posi-
tion of pp̄ interaction when describing the interaction, and the
geometrical center of the detector when describing the detec-
tor. It refers to the detector here.

@30# DØ Collaboration, S. Abachiet al., Nucl. Instrum. Methods
Phys. Res. A338, 185 ~1994!.

@31# DØ Collaboration, B. Abbottet al., Phys. Rev. D58, 052001
~1998!.

@32# DØ Collaboration, V. M. Abazovet al., Phys. Lett. B513, 292
~2001!.

@33# DØ Collaboration, S. Abachiet al., Phys. Rev. D52, 4877
~1995!.

@34# Eric M. Flattum, Ph.D. thesis, Michigan State University,
1996, http://www-d0.fnal.gov/results/publications–talks/
thesis/flattum/eric–thesis.html

@35# Ian Malcolm Adam, Ph.D. thesis, Columbia University, 1997,
http://www-d0.fnal.gov/results/publications–talks/thesis/adam/
ian–thesis–all.html

@36# C. Balazs and C. P. Yuan, Phys. Rev. D56, 5558~1997!.
@37# G. A. Ladinsky and C. P. Yuan, Phys. Rev. D50, 4239~1994!.
@38# P. B. Arnold and M. H. Reno, Nucl. Phys.B319, 37 ~1989!;

B330, 284E ~1990!; R. J. Gonsalves, J. Pawlowski, and C.-F.
Wai, Phys. Rev. D40, 2245~1989!.

@39# DØ Collaboration, S. Abachiet al., Phys. Rev. Lett.77, 3309
~1996!; DØ Collaboration, B. Abbottet al., Phys. Rev. D58,
012002~1998!.

@40# A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Lett. B
354, 155 ~1995!.

@41# The Coordinated Theoretical-Experimental Project on QCD,
http://www.phys.psu.edu/cteq

@42# A. D. Martin, R. G. Roberts, W. J. Stirling, and R. R. Thorne,
hep-ph/0110215.

@43# We found the fitting parameters asa05(3.915360.0012)
3101, a15(27.510060.0044)31021, a25(4.7087
60.0041)31023, anda35(21.0046160.00095)31025.

@44# G. Marchesiniet al., Comput. Phys. Commun.67, 465~1992!.
@45# F. Carminati et al., GEANT Users Guide, CERN Program

Library W5013, 1991.

V. M. ABAZOV et al. PHYSICAL REVIEW D 66, 032008 ~2002!

032008-10


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-27-2002

	Direct measurement of the W boson decay width
	V. M. Abazov
	Gregory Snow
	D0 Collaboration


