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History of the order of operations 

There is not a wealth of information regarding the history of the notations and procedures 

associated with what is now called the “order of operations”.  There is evidence that some agreed 

upon order existed from the beginning of mathematical study.  The grammar used in the earliest 

mathematical writings, before mathematical notation existed, supports the notion of 

computational order (Peterson, 2000).  It is clear that one person did not invent the rules but 

rather current practices have grown gradually over several centuries and are still evolving.   

 Prompted by the need for such conventions, the basic rule that multiplication has 

precedence over addition appears to have arisen without much disagreement as algebraic 

notation was being developed in the 1600s.   Authors of mathematical research books written 

during this era used various systems of symbols, forcing them to explain their use of 

conventions.  For example, in 1631, Englishman Thomas Harriot wrote about the multiplication 

of fractions using the notation                                                                 

 

and for complex fractions he wrote                                                      

About the same time, fellow Englishman William Oughtred was placing an unusual emphasis 

upon the use of mathematical symbols.  Oughtred’s beliefs that mathematical notation should 

replace verbal explanations of calculations are summarized by the following passage: 

“…Which Treatise being not written in the usual synththetical manner, nor with 
verbous expressions, but in the inventive way of Analitice, and with symbols or 
notes of things instead of words, seemed unto many very hard; though indeed it 
was but their owne diffidence, being scared by the newness of the delivery; and 
not any difficulty in the thing it selfe.” (Cajori, 1929) 

ac 
 b 
 b 

acb 
  b ac 

aaa 
  b 
  
d 

aaa 
 bd (Cajori, 1929). 
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Despite the abundance of unique symbol sets for mathematical operations, during this time not 

much was being written about the development of a universal set of rules to create order for the 

operations.  

 The continued development of specific rules for establishing computational order did not 

proceed without some growing pains.  In particular, math historian Florian Cajori (1859-1930) 

pointed out that there was disagreement as to whether multiplication should have precedence 

over division, or whether they should be treated equally. In addition, Cajori (1929) quoted many 

writers for whom, in the special case of a factorial-like expression such as  n(n-1)(n-2), the 

multiplication sign seems to serve as a grouping symbol (i.e. parentheses or brackets) allowing 

them to write n × n - 1 × n – 2  instead.  Cajori pointed out that this was an exception to an 

established rule by which nn-1n-2 would be interpreted as the quadratic expression n2 - n -2 .  

The following is a brief description of some early historical events that contributed to the 

development of our current uses of mathematical notation and computational practices. 

In 1892 in Mental Arithmetic, M. A. Bailey advises avoiding expressions containing both 
÷ and ×.  

In 1898 in Text-Book of Algebra by G. E. Fisher and I. J. Schwatt, a÷b×b is interpreted as 
(a÷b)×b.  

In 1907 in High School Algebra, Elementary Course by Slaught and Lennes, it is 
recommended that multiplications in any order be performed first, then divisions as they 
occur from left to right. So a÷b×b = a÷(b×b). 

In 1910 in First Course of Algebra by Hawkes, Luby, and Touton, the authors agree with 
Fisher and Schwatt when they write that ÷ and × should be taken in the order in which 
they occur. 

In 1912, First Year Algebra by Webster Wells and Walter W. Hart states: "Indicated 
operations are to be performed in the following order: first, all multiplications and 
divisions in their order from left to right; then all additions and subtractions from left to 
right." So c+ a÷b×b = c+(( a÷b)×b). 
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In 1913, Second Course in Algebra, authors Webster Wells and Walter W. Hart are 
clarifying what they wrote in their 1912 text: "Order of Operations. In a sequence of the 
fundamental operations on numbers, it is agreed that operations under radical signs or 
within symbols of grouping shall be performed before all others; that, otherwise, all 
multiplications and divisions shall be performed first, proceeding from left to right, and 
afterwards all additions and subtractions, proceeding again from left to right."  

In 1917, "The Report of the Committee on the Teaching of Arithmetic in Public 
Schools," Mathematical Gazette 8, p. 238, recommended the use of brackets to avoid 
ambiguity in such cases.  

In A History of Mathematical Notations (1928-1929) Florian Cajori writes (vol. 1, page 
274), "If an arithmetical or algebraical term contains ÷ and ×, there is at present no 
agreement as to which sign shall be used first." (Miller, 2006). 

 

 Contemporary contributions to the effort of formalizing rigid rules for computational 

order came primarily from two sources.  One was through the development of computer 

technology.  Programming languages used by computers required a set of strict rules for 

interpreting mathematical expressions.  Prior to these technological developments, it was 

acceptable to simply recognize some forms, like x/yz as ambiguous and ignore them.  A second 

source was the result of widespread mathematics textbook use.  Peterson (2000) described the 

role textbooks played when he wrote “I suspect that the concept, and especially the term “order 

of operations” and the PEMDAS/BEMDAS mnemonics, were formalized only in this century, or 

at least in the late 1800s, with the growth of the textbook industry.  I think it has been more 

important to text authors than to mathematicians, who have just informally agreed without 

needing to state anything officially.” 

 In summary, the rules can be divided into two categories: the natural rules (such as 

precedence of exponential over multiplicative over additive operations, and the meaning of 

parentheses), and the artificial rules (left-to-right evaluation, equal precedence for multiplication 

and division, and so on). The former were present from the beginning of the notation, and 
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probably existed already, though in a somewhat different form, in the geometric and verbal 

modes of expression that preceded algebraic symbolism. The latter, not having any absolute 

reason for their acceptance, have had to be gradually agreed upon through usage, and continue to 

evolve (Peterson, 2000).  Today’s situation is not all that different from the 1600s. 

 
Limitations of common mnemonics used in beginning algebra 
 
 The most common mnemonics used in beginning algebra are “PEMDAS” (Parentheses, 

Exponents, Multiplication, Division, Addition, Subtraction) and “BEDMAS” (Brackets, 

Exponents, Multiplication, Division, Addition, Subtraction).  These serve as memorization aids 

and are typically introduced around the 6th grade.  While much time and effort are expended by 

teachers and students learning the order of operations, there are many reasons to question their 

effectiveness.  I will discuss a few of them. 

First, when students enter into the middle grades they begin building a fundamental 

understanding of computation that would survive without the use of the PEMDAS mnemonic.  

These students learn that multiplication (of integers) is defined as repeated addition.  Also, 

students are gaining an understanding that division is defined as multiplying by the reciprocal 

and subtraction is defined as adding the negative in combination with the commutative and 

associative laws of addition and multiplication. Therefore, they are able to compute 4+3*2 by 

changing it to 4+2+2+2 or 4+3+3.  Students are able to make connections between the 

expressions, finding that the correct answer is produced from the original expression only when 

the multiplication is done first.   

Students are able to simplify calculations by reducing an expression containing all four 

common binary operators to only addition and multiplication.  For example, Wu (2002) argues 

that middle grades students can convert an expression such as  by changing it to 
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, making rules for division and subtraction redundant and unnecessary. Although I 

believe it is extremely important for students to have an understanding of the relationship 

between division and multiplication by the reciprocal for the division of fractions and some 

mental math strategies, I have found my students are resistant to this practice.  Division will 

never be eliminated therefore students must be prepared to deal with it.   

Furthermore, the grouping functions (which are listed as parentheses, extended radical 

signs, fractions with expressions in the numerator or denominator, and absolute values) allow 

you to bypass these conventions, anyway.  For these reasons, a student should not be restricted 

by only performing calculations from left to right.  The 4-step format (parentheses, exponents, 

multiplication and division from left to right, addition and subtraction from left to right) is 

confusing and inefficient.  Instead, as H. Wu (2004) suggests, we should teach a much simpler 

form: exponents first, followed by multiplications, then additions including a thorough 

explanation of the fundamental properties underlying the process. 

Another reason to de-emphasize teaching the order of operations via the PEMDAS 

mnemonic is because it lures teachers into teaching ambiguous computations such as 

.  These computations should not be done just for the purpose of teaching the 

order of operations because they are seldom encountered beyond a math classroom.  In a realistic 

context, this problem would be done by computing the subexpressions in the proper order or 

parentheses would be used to clarify order.  A problem like this is designed to trick a person and 

encourages students to rely on a calculator to compute the correct answer.  

Finally, too much time is spent teaching terminology and conventions and not enough 

time is spent teaching mathematics.  As described by Wu (2004), “too much importance is 

attached to the name of a concept or the literal execution of a procedure without attempting to 

learn the mathematical significance of the concept itself or the reason or spirit behind the 
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procedure.”   Wu (2004) explains further when he writes “In the context of mathematics 

learning, knowing that a number is called “the additive inverse” of another number is of zero 

value compared with knowing how to make use of the uniqueness of additive inverse to explain, 

for example, why –(r+s) = -r – s and (-r)(-s) = +rs for all rational numbers r and s.” 

 

RPN 

What is RPN and how does it work?  
 

In the 1920's, Polish mathematician Jan Lukasiewicz developed a formal logic system 

which allowed mathematical expressions to be specified without parentheses by placing the 

operators before (prefix notation) or after (postfix notation) the operands.   This logic system was 

later at the root of the idea of the recursive stack, a last-in, first-out computer memory store 

invented by Australian philosopher and computer scientist Charles Hamblin in the mid-1950s.  A 

similar concept underlies a form of postfix notation which was first implemented in Hewlett 

Packard calculators.  HP adjusted the postfix notation for a calculator keyboard, added a stack to 

hold the operands and functions to reorder the stack. HP dubbed the result Reverse Polish 

Notation (RPN) in honor of Lukasiewicz.  

In Reverse Polish notation the operators follow their operands; for instance, to add three 

and four one would write "3 4 +" rather than "3 + 4". If there are multiple operations, the 

operator is given immediately after its second operand; so the expression written "3 − 4 + 5" in 

conventional infix notation would be written "3 4 − 5 +" in RPN: first subtract 4 from 3, then add 

5 to that.  RPN does not require parentheses to force order unlike infix notation.  For example, 

the infix expression 6 × (9 + 3) becomes 6 9 3 + × in RPN. 
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An Example of a calculation done in RPN 

  The following example illustrates the process an RPN interpreter executes to calculate 

expressions.  The memory stores used by RPN interpreters are called stacks.  Operands are 

pushed onto the last in, first out (LIFO) stack, and when an operation is performed, its operands 

are popped from a stack and its result pushed back on.  

Postfix Evaluation:  
In normal algebra we use the infix notation like a + b * c. The corresponding postfix notation is  
a b c * +.  The algorithm for the conversion is as follows:  

 Scan the postfix string from left to right. 
 If the scanned character is an operand, add it to the stack.  
 If the scanned character is an operator then the top most element of the stack is popped 

and stored in a variable temp.  Next, the stacked is popped a second time and the result 
stored in the variable topStack.  The popped operands are used to evaluate the expression 
topStack(Operator)temp. The value of this expression is then pushed back onto the stack. 
Repeat this step until all the characters are scanned. 

 After all characters are scanned, we will have only one element in the stack. The 
remaining element is the final result of the calculation. 

Example:  
Postfix (RPN) String: 1 2 3 * + 4 -  
 
Initially the Stack is empty. Now, the first three characters scanned are 1, 2, and 3, which are 
operands. Thus they will be pushed into the stack in that order.  

 
Stack 

 
Expression 

 

Next character scanned is "*", which is an operator. Thus, we pop the top two elements from the 
stack and perform the "*" operation with the two operands. 

 
Stack 

 
Expression 
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The value of the expression (2*3) that has been evaluated (6) is pushed into the stack.  

 
Stack 

 
Expression 

 

 
Next character scanned is "+", which is an operator. Thus, we pop the top two elements from the 
stack and perform the "+" operation with the two operands.  

 
Stack 

 
Expression 

 

 
The value of the expression (1+6) that has been evaluated (7) is pushed into the stack.  

 
Stack 

 
Expression 

 

Next character scanned is "4", which is added to the stack.  

 
Stack 

 
Expression 
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Next character scanned is "-", which is an operator. Thus, we pop the top two elements from the 
stack and perform the "-" operation with the two operands.  

 
Stack 

 
Expression 

 
The value of the expression (7-4) that has been evaluated (3) is pushed into the stack.  

 
Stack 

 
Expression 

 
Now, since all the characters are scanned, the remaining element in the stack (there will be only 
one element in the stack) will be returned.  
 
End result : 

• Postfix String : 123*+4- 
• Result : 3   

(Pillai, 2002) 
 

Why did HP use RPN?  

In the years that followed the development of postfix notation, computer scientists 

realized that RPN was very efficient for computer use since calculations with postfix notation are 

done faster, requiring less processor time, than those with infix notation.  As a postfix expression 

is scanned from left to right, operands are placed into the LIFO stack and operators may be 

immediately applied to the operands at the top of the stack. By contrast, expressions with 

parentheses and precedence (infix notation) require that operators be delayed until some later 

point. For example, the expression (75 - (6 + 4) * 3) / 5 requires the interpreter, human or 
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machine, to make decisions about the operands and operators. This occurs only after the entire 

expression is scanned from left to right which demands extra processing time.  Thus, the 

compilers of most modern computers of this time converted statements to RPN for execution. (In 

fact, some computer manufacturers designed their computers around postfix notation.)  

At the time Hewlett Packard introduced its first calculator using RPN, other pocket 

calculators typically used a partial algebraic model. That meant they could evaluate simple 

expressions like 3 + 4 but couldn't handle anything that involved parentheses or order of 

operations.  The technology available didn't allow for full algebraic compilers in pocket 

calculators.  

The development of RPN allowed HP to produce a pocket calculator that could evaluate 

arbitrary, complex expressions using the available technology. For many, learning a new style of 

entry was a small price to pay to be able to evaluate these expressions on a calculator. Once the 

technology to produce algebraic compilers could fit into a pocket calculator, most RPN users had 

decided that RPN was more efficient and consistent for the user as well as for the calculator. 

Also, because subexpressions are evaluated as they are entered, entry errors are more obvious 

with RPN. On an algebraic calculator, omitting an opening parenthesis may not lead to a 

calculation error until much later when an entire expression has been evaluated.  

Another advantage to RPN is consistency between machines. Early algebraic calculator 

models had differing limits of the complexity of the expressions they could evaluate. For 

example, TI catalogs from the late 70's listed how many levels of parentheses and pending 

operations each model could handle. Even today if you begin to use an algebraic calculator, you 
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need to determine just "how algebraic" it really is. Some calculators cannot handle a problem 

written as   even though they claim to allow expressions to be entered as they are written.   

Converting infix notation to RPN 

Conversion algorithm  
The following is an algorithm (illustrated by a flowchart in Appendix A) for converting 

an expression in infix notation to one in postfix, or RPN. This algorithm will work on any 

expression that uses simple binary operators such as  and parentheses.  The process 

begins when the infix expression is read as a string of characters.   Each character is either added 

to the postfix output string or placed in temporary storage called a stack where it awaits future 

action.  There are four results possible for each character scanned: 

Operator:  If the character is an operator, and there's nothing else on the operator stack, it is 

pushed onto the stack. If there is something on the stack, the precedence of the current operator 

is compared with the one on the stack. If the stack's operator is greater or equal to the current 

one, the top operator from the stack is popped and added to the postfix string.  If its precedence 

is less, the current operator is pushed on the operator stack and the next character is read from 

the infix string. The current operator continues to be compared to the stack until one of the 

following occurs: 

1. the end of the stack is reached  

2. the top of the stack is a left parenthesis 

3. the current operator is compared to one with lower precedence 

Left Parenthesis:  If the character is a left parenthesis it is pushed it onto the operator stack. 
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Right Parenthesis:  If the character is a right parenthesis then all the characters are popped off 

the stack until a left parenthesis or the end of the stack is encountered. 

Operand:  If the character is an operand it is added to the postfix string. 

When the entire infix string has been scanned, all remaining operators are popped from 

the operator stack and added to the postfix string.  The following diagram illustrates the state of 

the stacks and postfix string as an expression written in infix notation is converted to RPN. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Postfix String 

2 The operand “2” is read and added to the postfix string. 

Operator Stack 

 
+
( 

The operator “+” is read and pushed onto the operator stack. 

The infix expression is scanned from left to right.  A left 
parenthesis is read and pushed onto the operator stack. 

Operator Stack 

 
 
 
*

The operator “*” is read and pushed onto the empty operator 
stack. 

The operand “5” is read and added to the postfix string. 

A right parenthesis is read causing the operator stack to be 
popped and all operators added to the postfix string until a left 
parenthesis is encountered. 

Postfix String 

2  5 

Postfix String 

2  5  + 

Operator Stack 

( 
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Standard Algebraic Expression (Infix) Reverse Polish Notation (Postfix) 
8 + 5 8  5 + 
13 – 7 + 9 13  7 – 9 + 
3+ 6 × 4 3  6  4 × + 
(3+ 6) × 4 3  6 + 4 × 
8((3 + 4) − 5) 8  3  4 + 5 − × 
5 + ((1 + 2) × 4) − 3 5 1 2 + 4 × + 3 − 
(6 (7 – 2)) ÷ 3 + 9 × 4 6  7  2 − × 3 ÷ 9  4  × + 

Operator Stack 

+ 
The operator “+” is read and compared to the top operator in 
the stack.  Since “*” has a higher precedence than “+” the “*” 
is popped and added to the postfix string before the “+” is 
pushed onto the operator stack.. 

The operand “1” is read and added to the postfix string. 

Here are more examples of converting infix notation to RPN. 

The end of the infix string has been reached.  The operators in 
the stack are popped and added to the postfix string. 

Postfix String 

2  5  +  3 

Postfix String 

2  5  +  3  * 

Postfix String 

Postfix String 

2  5  +  3  *  1 + 

2  5  +  3  *  1 

Postfix String 

The operand “3” is read and added to the postfix string. 
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Summary 

When teaching the order of operations, the focus should be on fundamental mathematical 

principles instead of memorized mnemonic devices.  The familiar PEMDAS acronym could be 

reduced to “multiply before you add” if students develop a complete understanding of the 

relationships among common operators.  RPN is a viable teaching tool to help build a solid 

computational foundation.   RPN forces a shift in responsibility for operations order from the 

person performing the calculation to the person notating the calculation. Since each operation 

given in RPN creates implied parentheses around the two previous values, skill is required by the 

user to translate infix to RPN by correctly placing the operators within the operands for the 

expression to be evaluated as desired.   Once an expression is correctly written in RPN, it can be 

quickly calculated with minimal chance for error.  For example, the RPN expression 3 5 + 7 * 8 

7 - / is equivalent to ((3 5 +) 7 *) (8 7 –) /.  The absence of parentheses with this type of notation 

reduces the number of characters processed by the interpreter making it more efficient than infix.  

Since RPN forces subexpression to be calculated at an intermediate level, the user is able to 

check for errors periodically rather than wait until the entire expression has been evaluated as is 

done with infix notation.  It is my belief that RPN could be used effectively to deepen students’ 

understanding of computation and could be a valuable tool for teaching computational order. 

Advantages of RPN 

• Reading from left to right, calculations can occur as soon as an operator is read; 
processing can begin before the entire expression is read. 

• Parentheses and brackets are not necessary. The RPN expression 6 2 – 3 + is equivalent 
to the infix expression (6 – 2) + 3 with no ambiguity. 

• RPN allows the user to observe intermediary results as subexpressions are evaluated.  
This allows the user to check for errors during the calculation process rather than waiting 
until the end. 

• RPN is translated and executed by the same basic algorithm all around the world unlike 
infix. 
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Disadvantages of RPN 

• Infix notation has been the standard for teaching computational skills for a long time 
making a switch to postfix difficult and impractical.  (However, it is easy for a computer 
to convert infix notation to postfix). 

• Adjacent numbers have to have a space between them, which requires precise 
handwriting to prevent confusion (for instance, 12 34 + could look a lot like 123 4 +) 

• RPN calculators are comparatively expensive and rare compared to an infix calculator. 
When an RPN calculator is unavailable, frequent users of RPN calculators may find use 
of infix calculators difficult due to habit. 



   
Order of Op/RPN – p.16  

 
Appendix A : Conversion Algorithm Flowchart (Infix notation to RPN) 
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