4-2016

What Are The Genes That Cause Male Sterility in Hybrid Offspring Between *Drosophila mauritiana* and *Drosophila simulans*?

Naznaz J. Majid
naznaz.majid@huskers.unl.edu

Colin D. Meiklejohn
cmeiklejohn2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch

Part of the [Biology Commons](http://digitalcommons.unl.edu/ucareresearch)

http://digitalcommons.unl.edu/ucareresearch/39

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
What Are The Genes That Cause Male Sterility in Hybrid Offspring Between Drosophila mauritiana and Drosophila simulans

Naznaz J. Majid and Colin D. Meiklejohn, PhD
School of Biological Sciences, University of Nebraska – Lincoln, NE - 68588

WHAT WE LEARNED

Finding genes that cause sterility in hybrid males between D. mauritiana and D. simulans will help us better understand evolution at the molecular level.

A genetic component related to sterility is near the 7.10 Mb region, but more research is needed to identify the gene or genes contributing to sterility.

This will expand on the current understanding of speciation and shed light onto mechanisms of male sterility in insects that may help solve the challenges of insect disease vectors.

BACKGROUND

Research has found that the genes causing sterility in interspecific hybrids have a higher chance of residing on the X chromosome; this pattern is called the 'large X-effect'. Therefore this study focuses on the X chromosome and not the autosomes. The mechanisms underlying the large X-effect are not well understood. Previous research has demonstrated that the genes causing sterility in interspecific hybrids have a higher chance of residing on the X chromosome; this pattern is called the 'large X-effect'.

Research has found that the genes causing sterility in interspecific hybrids have a higher chance of residing on the X chromosome; this pattern is called the 'large X-effect'. Therefore this study focuses on the X chromosome and not the autosomes. The mechanisms underlying the large X-effect are not well understood. Previous research has demonstrated that the genes causing sterility in interspecific hybrids have a higher chance of residing on the X chromosome; this pattern is called the 'large X-effect'.