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Effect of carrier-gas pressure on barrier to nucleation: Monte Carlo
simulation of water Õnitrogen system

K. J. Oh and X. C. Zenga)

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

~Received 18 October 2000; accepted 16 November 2000!

Carrier gases are used in most nucleation experiments for releasing the latent heat generated during
vapor condensation. In the analysis of experimental data it is often assumed that the carrier gas is
inert and would not participate in the nucleation process of the target gas. Several recent nucleation
experiments show that the influence of carrier gases to nucleation rate is not negligible under certain
conditions. To gain more insight into the carrier-gas effect, we carry out Monte Carlo simulation to
compute the free energy of formation of water clusters in the presence of a nitrogen carrier gas. At
fixed temperature~240 K! and chemical potential, it is found that the barrier height to nucleation
increases with the carrier-gas pressure. This barrier enhancement is attributed to the increase of
equilibrium vapor pressure of water in the presence of carrier gas, which results in a decrease of
supersaturation. It is also found that the simulation results are consistent with the binary-nucleation
theorem. ©2001 American Institute of Physics.@DOI: 10.1063/1.1339222#

I. INTRODUCTION

Carrier gases~or background gases! are commonly used
as a latent-heat reservoir to maintain an isothermal environ-
ment in most vapor-nucleation experiments. If the carrier
gases were not present, the latent heat would heat up the
condensing clusters and the condensation process would not
proceed under the isothermal condition. On analyzing ex-
perimental data, it is often assumed that carrier gas is just a
spectator and not involved in the nuclei formation of a target
gas. Based on this assumption, the conventional theory of
unary homogeneous nucleation can be applied without con-
sidering the effect of the second component in the gas
mixture—the carrier gas. However, the condition under
which this assumption is applicable remains an open ques-
tion. To accurately evaluate the rate of nucleation of target
gas, one should examine the extent to which the carrier gas
affects the target-gas nucleation under various experimental
conditions.

Recently, several nucleation experiments have shown
that the influence of carrier gas to rate of nucleation can be
appreciable under certain conditions. In diffusion cloud-
chamber experiments,1–5 for example, marked effects of
carrier-gas pressure on the rate of nucleation and the critical
supersaturation were seen. For a water/nitrogen system, how-
ever, a recent experiment6 using a high pressure pulse-
expansion wave tube demonstrated that when the nucleation
rate is plotted as a function of conventional supersaturation
~i.e., the ratio of the partial vapor pressure of the supersatu-
rated vapor to the equilibrium vapor pressure of the pure
component!, the carrier-gas pressure effect is hardly discern-
ible.

In an attempt to explain the carrier-gas effect observed
in diffusion cloud-chamber experiments, Fisk and Katz7 ex-
amined effects of nonideality of carrier gas and nonzero

compressibility of the critical nuclei on the rate of nucle-
ation. They found that none of these effects accounts for the
observation of an apparent decrease in nucleation rate with
increasing total pressure. Kane and El-Shall8 found that the
carrier-gas effect observed in diffusion cloud chamber ex-
periments arises from the slowdown of the dynamics of
growth of the nuclei into detectable droplets. Reiss and
co-workers9–11 suggested that the carrier-gas effect may be
due to the screening effect of a kinetic origin by which the
drop’s attractive potential is weakened by encounters of in-
coming molecules with other vapor or carrier-gas molecules.
Luijten et al.6,12,13proposed that the carrier-gas effect can be
explained by two competing factors: the enhanced vapor
pressure which hampers nucleation and the reduced surface
tension which facilitates nucleation. Based on the nucleation
theorem for binary nucleation, Oxtoby and Laaksonen14

showed that the carrier-gas effect is generally small. A simi-
lar conclusion was also drawn by Ford within the framework
of the classical nucleation theory.15,16 Kashchiev17 showed
that when the pressure is not much greater than the atmo-
spheric pressure the carrier-gas effect is relatively small but
is more pronounced for less supersaturated vapor.

In this paper we present, to our knowledge, the first mo-
lecular simulation study of the carrier-gas effect on vapor
nucleation. Molecular simulation allows us to gain more in-
sight on the carrier-gas effect at the molecular level. Specifi-
cally, we studied the nucleation of a model water in the
presence of nitrogen gas. We calculated the free energy of
formation of water clusters as a function of nitrogen gas
pressure. To this end, we used a small-ensemble Monte
Carlo simulation method18,19 which is similar to the one
originally developed by Kusakaet al.20 This Monte Carlo
method is particularly useful when applied to highly compact
clusters.19,21,22a!Electronic mail: xzeng1@unl.edu
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II. THEORETICAL FORMALISM

We view the supersaturated vapor as a mixture of physi-
cal clusters. Each configuration of a supersaturated vapor is
characterized by a specific cluster size distribution which sat-
isfies the equation

N5(
i 51

i max

ini , ~1!

whereni is the number of clusters withi molecules, andi max

is the upper bound of the cluster size used to maintain the
supersaturated vapor in metastable equilibrium. By maximiz-
ing the total partition function of the supersaturated vapor~in
the framework of physical cluster theory!, we obtain the
most probable cluster size distribution

ni5qie
bm i ~pi !, ~2!

where b51/kBT, m i(pi) is the chemical potential of the
clusters at their partial pressurepi , and qi is the cluster
partition function. Note that in deriving Eq.~2! we neglect
the cluster–vapor and cluster–cluster interactions based on
the fact that the vapor density is extremely small. We also
obtain the well-known law of mass action

m i~pi !5 im1~p1!, ~3!

wherem1 is the chemical potential of the monomers in the
vapor. We define the free energy of formationDGi of an
i-mer as

DGi5m i~p1!2m i~pi !. ~4!

By employing a simple formula of ideal gasm i(p1)
'm i(pi)1kBT ln n1 /ni , we arrive at the expression

DGi52kBT ln
ni

n1
. ~5!

DGi in Eq. ~5! is also the Gibbs free-energy change in the
association reaction ofi monomers to ani-mer at constant
pressure p1 . Thus, we can use the standard relation
DGi52kBT ln Kp , whereKp is the equilibrium constant for
the association reaction.

In the computer simulation, Eq.~5! is written as

DGi52kBT ln
Pi

P1
, ~6!

where Pi5ni /M and represents the probability of finding
i-mers in the supersaturated vapor. Here,M acts as the par-
tition function of a statistical ensemble

M5(
i 51

i max

ni5(
i 51

i max

qie
bm i ~pi !, ~7!

in which exchange of cluster molecules with the monomers
is allowed.Pi can be evaluated using an umbrella-sampling
simulation method18,19 which will be described in the next
section.

In the physical cluster theory18 the cluster partition func-
tion qi can be written as

qi5
gT

i gR
i

i ! E
V
H~r1 ,...,r i !

3exp~2bWi !dr1 ,...,dr i dV1 ,...,dVi ~8!

5
gT

i 21gR
i i 3V

i ! E
v
H~r18 ,...,r i 218 !

3exp~2bWi !dr18 ,...,dr i 218 dV1 ,...,dVi ~9!

5
gTi 3V

i !
qi* , ~10!

whereV is the volume of the supersaturated vapor,gT and
gR are the terms related to thermal de Broglie wavelength of
water molecules corresponding to translational and rotational
motion, respectively, andqi* is the cluster partition function
in the center-of-mass coordinate. In Eqs.~8! and ~9!, Wi is
the potential energy of cluster, i.e.,

Wi5Ui1Uic , ~11!

whereUi is the interaction energy amongi water molecules
and Uic is the interaction energy between water molecules
and carrier-gas molecules;r and V represent translational
and rotational coordinates of water molecules, and*dV
5V58p2. The prime in Eq.~9! represents the coordinates
with respect to the center of mass of the cluster and the term
V comes from the integration over the center-of-mass coor-
dinate of the cluster. The cluster criterion is imposed through
a step functionH, which is 1 if the cluster criterion is met
and 0 otherwise. In practice, the integration in Eq.~9! is
taken only over a small volumev as long asv is larger than
the excluded volume of the cluster. This is becauseqi* would
not be affected by enlarging the range of integration beyond
v.

The presence of carrier-gas molecules is included im-
plicitly in the termWi in Eq. ~11!. This means that only the
first-order contribution of the carrier-gas molecules to the
free energy of formation of water clusters is taken into ac-
count. Higher order contributions such as the cluster–cluster
interactions mediated by the carrier-gas molecules are ne-
glected because of the extremely low density of vapor and
small concentration of clusters compared to that of mono-
mers.

The physical cluster is generally defined in the center-
of-mass coordinate system.22 Because water molecules are
highly associative, water clusters are quite compact. As a
result, the center-of-mass fluctuation can be reduced by just
fixing an arbitrary water molecule in the cluster. Theoreti-
cally, this means thatqi* can be also written as

qi* '
gT

i 21gR
i

i ! E
v

exp~2bWi !dr2 ,...,dr i dV1 ,...,dVi ,

~12!

where the position of an arbitrary molecule in the cluster is
fixed, instead of the center of mass of the cluster. This ap-
proximation is operationally similar to the one used by
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Kusakaet al.20 in the study of pure water nucleation. Our
study indicates that the free energy of formation of water
clusters was insensitive to the condition whether the center
of mass of the cluster is fixed or one of the molecules in the
cluster is fixed.

III. MONTE CARLO SIMULATION

In the Monte Carlo simulation we used the SPC/E model
of water,23 which is a three-site potential model. Only the
oxygen site interacts with the other oxygen sites as well as
the carrier-gas molecules via the Lennard-Jones~LJ! poten-
tial. The nitrogen carrier-gas molecule is modeled as a
single-site Lennard-Jones sphere with LJ parameterse
50.7608 kJ/mol ands53.68 Å. The LJ mixing parameters
between the oxygen site and nitrogen molecule are given by
the mixing rule,s i j 5(s i i 1s j j )/2 ande i j 5Ae i i e j j .

The Monte Carlo simulation is as follows.~i! Place wa-
ter molecules in a spherical container.~ii ! Move, rotate the
water molecules, and exchange water molecules in the clus-
ter with monomers in the vapor. To reduce the center-of-
mass motion of the cluster, one water molecule is kept at a
fixed position. For this molecule, only rotational move is
taken. The volume of the spherical containerv is chosen
large enough so that the cluster properties are not affected by
the wall of the container. Following the previous study, the
radius of the spherical container is taken to be 15 Å.20,19,21

With this radius, the frequency of the water molecules hitting
the wall was found to be extremely small, that is to say, the
volume occupied by the cluster is much smaller than the
volume of the container. The carrier-gas particles are placed
in a rectangular cell which encloses the spherical container.
Only the translational move is attempted for carrier-gas par-
ticles. The periodic boundary condition is imposed if any
carrier-gas molecule moves outside the cell. Note that any
translational move of a water molecule would be rejected if
the molecule moved outside the spherical container.

In the simulation,Pi is evaluated from the ratio of the
number of Monte Carlo steps of the occurrence of thei-mer
in the container to the total number of Monte Carlo steps. To
carry out the simulation more efficiently, we divided the in-
terval @1,i max# into a number of smaller intervals.Pi is then
computed within one small interval at a time. Eventually, we
patch the results ofPi in each interval together to obtain the
completePi versusi curve. In each interval, we terminate the
Monte Carlo simulation after 100 000 cycles equilibration if
the least frequent cluster has been sampled 10 000 times. For
those intervals in which the cluster size is less than 10, the
probability distribution is a steep function ofi. In these cases
we terminated the simulation after the least frequent cluster
was sampled a few thousand times. Note that in each inter-
val, the sampling was recorded every 100 Monte Carlo
cycles.

IV. RESULTS AND DISCUSSION

Figure 1 showsDGi curves for the carrier-gas pressure
p50 and 40 bar. The temperature of the system is fixed at
T5298.15 K. The supersaturated-vapor density of water is
given byVz50.1231025 Å 23 wherez5em1kBT/gTgR . We

found the nucleation barrier at 40 bar carrier-gas pressure is
only slightly higher than that at 0 bar. In fact, their difference
is hard to see. The conclusion is that the effect of carrier-gas
pressure on the barrier height to nucleation is indeed negli-
gible when the system temperature is high. Experimental
evidence has already demonstrated that the carrier-gas
effect is more pronounced at relatively low temperatures.6

To confirm the experimental finding, we carried out
Monte Carlo simulation for the system at a lower
temperature, i.e.,T5240 K. Figure 2 shows theDGi

curves at carrier-gas pressurep50 and 60 bar. We
set the supersaturated-vapor density of water,Vz50.2
31027 Å 23. The size of critical cluster at these conditions is
about 30, which is nearly the same as that when the system is
at the higher temperature 298.15 K. Clearly, one can see that
the barrier height of nucleation is appreciably higher for the
higher carrier-gas pressure~60 bar!. The barrier-height en-
hancement amounts to about 2.5kBT.

FIG. 1. The free energy of formation of water clusterDGi /kBT at carrier-
gas pressure 0 bar~solid line! and 40 bar~dotted line!. The supersaturated
vapor is at the temperature 298.15 K and densityVz50.1231025 Å 23.

FIG. 2. The free energy of formation of water clusterDGi /kBT at the
carrier-gas pressure 0 bar~solid line! and 60 bar~dotted line!. The super-
saturated vapor is at the temperature 240 K and densityVz50.2
31027 Å 23.
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We examined whether our simulation results are consis-
tent with the nucleation theorem for binary nucleation.24 Ac-
cording to that theorem, the derivative of the nucleation bar-
rier W* with respect to the chemical potentialmk of the
componentk at fixed temperature is directly related to the
size the critical cluster, that is,

S ]W*

]mk
D

T

52Dnk* , ~13!

whereDnk* is the excess number of molecules of component
k in the critical cluster over that in the vapor. IfDnk* is
known, one can easily determine whether the nucleation bar-
rier increases or decreases with the chemical potential~or
pressure! of the carrier gas. LetDnc* denoteDnk* for the
carrier-gas component. It can be evaluated via

Dnc* 5E
v
r~r !4pr dr 2rvv, ~14!

wherev is the excluded volume of water cluster,rv is the
vapor density of the carrier gas, andr(r ) is the density pro-
file of the carrier gas molecules inside the water cluster. Spe-
cifically, in the Monte Carlo simulation,r(r ) is determined
via

r~r !5^N~r !&/DV, ~15!

whereDV54p/3@(r 1Dr )32r 3# is the volume of a spheri-
cal bin with thicknessDr andN(r ) is the number of carrier-
gas particles in the bin. Note thatr is measured from the
center of mass of the water cluster. Thus,Dnc* (r ) can be
calculated numerically via

Dnc* ~r !5( r~r !DV2r( DV, ~16!

where( denotes the sum over those spherical bins up to the
distancer.

Figure 3 showsr(r ) of the carrier-gas particles inside
the water cluster of size 30 at carrier-gas pressure 60 bar and
temperature 240 K. To guide the eye, we also plotted density

profiles of oxygen and hydrogen sites near the surface of the
water cluster. We usedDr 50.2 Å. One can see in Fig. 3 that
a hump is shown in ther(r ) curve, indicating that some
carrier-gas molecules are adsorbed at the surface of water
cluster. This behavior is also seen in the density profile of
planar surface, evaluated from the density functional
theory,12 of a simple Lennard-Jones fluid in the presence of a
carrier gas. This surface adsorption may lead to a positive
value of Dnc* , but sometimes may not. Figure 4 shows
Dnc* (r ) calculated from the density profile of carrier gas
shown in Fig. 3.rv is estimated from the value ofr(r ) at the
region where it levels off~at aboutr 512 Å!. At about r
57 Å, Dnc* (r ) shows a minimum and it starts to increase
with r because of the surface adsorption. Eventually,Dnc* (r )
becomes flat nearr 512 Å. Dnc* is estimated from the value
of Dnc* (r ) at the flat region, which givesDnc* ;22. Ac-
cording to the nucleation theorem@Eq. ~13!#, a negative
Dnc* (r ) indicates that the barrier height of nucleation should
increase with the carrier-gas pressure, which is consistent
with the result shown in Fig. 2.

Figures 5 and 6 show the same curves as those in Figs. 3
and 4, but the system is at a higher temperature, 298.15 K,
and a carrier-gas pressure of 40 bar. In this case, we found
Dnc* ;21. Again, our finding is consistent with the nucle-
ation theorem that the barrier-height change at the higher
temperature~see Fig. 1! is less than that at the lower tem-
perature~see Fig. 2!.

Generally, the surface adsorption of the carrier-gas mol-
ecules onto the surface of the cluster will result in a
reduction25,26 of surface tension. In fact, this reduction alone
would give rise to a smaller barrier height of nucleation,
opposite to our results. However, this apparent contradiction
can be resolved by using an argument of Luijtenet al.,6,12,13

who suggested that the carrier-gas effect in water /nitrogen
system can be viewed as a result of two competing factors:
the enhancement of equilibrium vapor pressure which lowers
the supersaturation, and the reduction of surface tension due
to the surface adsorption of carrier-gas molecules. Our re-
sults therefore suggest that the increased barrier height of

FIG. 3. r(r ) of the carrier gas~solid line! inside a water cluster of size 30.
Density profiles of O~dashed line! and H ~dotted line! are also shown to
locate the surface of the water cluster. The carrier-gas pressure is 60 bar and
the temperature is 240 K.r is in unit of Å andr is in unit of Å23.

FIG. 4. Dnc* (r ) ~solid line! calculated from the density profile of carrier gas
shown in Fig. 3. The dotted and the dashed lines represent data for the first
and second term in Eq.~16!, respectively.r is in unit of Å.
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nucleation at the higher carrier-gas pressure stems from the
decrease of supersaturation.

Kashchiev17 recently proposed a simple theory to ex-
plain the effect of carrier-gas pressure on nucleation. He
found that the carrier pressure can either stimulate or inhibit
the nucleation process, depending upon the sign of the effec-
tive molecular volume

b52b122b222v0 , ~17!

whereb12 andb22 are, respectively, the second mixed virial
coefficient of the target and carrier gases and the second
virial coefficient of the carrier gas, andv0 is the molecular
volume of the target gas. Ifb,0, the supersaturation~or the
chemical potential difference,Dm! will be reduced compared
to that in the absence of the carrier gas. Ifubu is on the order
of 10227m3, the theory predicts that the carrier-gas pressure
should be on the order of tens or hundreds of atmospheric
pressure to yield appreciable effect. This theoretical predic-

tion appears to be consistent with our simulation results. Fur-
thermore, the effective molecular volumeb should be nega-
tive in the case of water/nitrogen system atT5240 K. At a
higher temperature, 298.15 K, it seems thatubu becomes
much smaller than 10227m3, based on Eq.~17! and the
simulation results. Thus, the carrier-gas effect on the barrier
to nucleation is negligible even at 40 bar of carrier gas.

V. CONCLUSION

We have carried out Monte Carlo simulation to compute
the free energy of formation of water clusters in the presence
of nitrogen carrier gas. We find that there are no appreciable
changes in the nucleation barrier as the carrier-gas pressure
increases from 0 to 40 bar when the system is at the higher
temperature, 298.15 K. At the lower temperature, 240 K,
however, we find the barrier height of nucleation increases
appreciably as the carrier-gas pressure increases from 0 to 60
bar.

Our simulation results are consistent with the binary-
nucleation theorem which states that the excess number of
the carrier-gas molecules relative to the background,Dnc* , is
simply the first derivative of the nucleation barrier with re-
spect to the carrier-gas chemical potential. From the Monte
Carlo simulation of the critical cluster, we foundDnc* is
negative. This means that the nucleation barrier will increase
with the carrier-gas pressure.

We also find that the density profile of the carrier gas
shows evidence of surface adsorption, which generally re-
sults in a reduction of surface tension. The latter factor alone
would lead to a lower barrier height to nucleation, opposite
to our finding. However, this apparent contradiction can be
resolved by taking into account another competing factor—a
reduction of the supersaturation due to the presence of the
carrier gas. This factor seems to play a more important role
in the observed carrier-gas effect in water/nitrogen system.
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