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Abstract
Cluster Computing has emerged as a new paradigm for solaigg-scale problems. To enhance QoS and provide
performance guarantees in cluster computing environmeat®us workload models and real-time scheduling algo-
rithms have been investigated. Tdigisible load model, propagated by divisible load theory, models computations
that can be arbitrarily divided into independent pieces@nodides a good approximation of many real-world appli-
cations. However, researchers have not yet investigageprtiblem of providing performance guarantees to divisible
load applications. Two contributions are made in this pag&) divisible load theory is extended to compute the
minimum number of processors required to meet an applitatiteadline; and (2) the first cluster-based, real-time

scheduling algorithm designed specifically for arbitsadivisible loads is presented and evaluated.

1 Introduction

The dawn of the information age has changed how we solve irapigeroblems. Emerging computation and data
intensive applications cannot be solved by a single stdmukamachine. This has led to the emergencel adter
computing as a new paradigm for computing. Cluster computing harsassepower of hundreds and thousands of
machines to facilitate the computation of large and compleblems in many application domains. However, as the

size of a cluster increases, so does the complexity of reeaquanagement and maintenance. Thus, innovations in



automated performance control and resource managemeatuerial for continued evolution of cluster computing.
On one hand, system administrators prefer a system thasyst@ananage. On the other hand, end-users expect high
performance from the cluster, such as receiving computati@sults before specified deadlines.

The challenge, however, in applying real-time schedulivegpty to cluster computing is that computational loads
submitted to clusters are structured in various ways. Soalked sequential jobs, are difficult to compute conculyent
whereas others are comprised of tasks that can be execytadsitel. Parallel jobs can be further categorized based
on the divisibility property of their computational loadslodularly divisible loads can be subdivided a priori into a
certain number of subtasks; these loads are often desaniltledh task (or processing) graph. Arbitrarily divisible
loads can be partitioned into any number of load fractiond,ae quite common in high energy and particle physics.
Usually all elements in such computational loads demandamtical type of processing and relative to the huge total
computation, the processing on each individual elementfigiiesimal. Hence the loads are considered arbitrarily
divisible. For example, the CMS (Compact Muon Solenoidg8dl ATLAS (AToroidal LHC Apparatus) [5] projects,
which are associated with the Large Hadron Collider (LHCEERN (European Laboratory for Particle Physics),
execute cluster-based applications with arbitrarilysible loads.

The cluster and real-time computing research communitee lthoroughly explored the problem of providing
QoS or real-time guarantees for sequential jobs and mdgul&isible jobs in distributed systems. Similarly, sifni
icant progress has been madedivisible load theory [28]. However, despite the increasing importance of aalilyr
divisible applications [22], to the best of our knowledde teal-time scheduling of arbitrarily divisible loads tmex
been addressed before.

This creates a problem for cluster-based research congpfatiilities such as the U.S. CMS Tier-2 sites that are
building high-end clusters for CMS applications [25], wihimay execute for days or even weeks. (The CMS project
will not be fully operational until 2007. Thus, the actualnkdoad generated by this world-wide experiment can only
be simulated at this time.) One of the management goals afineersity of Nebraska-Lincoln (UNL) Research Com-
puting Facility (RCF) is to provide a multi-tiered QoS schilg framework in which applications “pay” according
to the response time requested for each job [25]. Existingtime cluster-based scheduling algorithms assume the
existence of a task graph for all applications, while diisioad theory attempts to minimize schedule length with no
regard for the actual deadline.

Two contributions are made in this paper: (1) divisible |dlaglory is extended to compute the minimum number
of processors required to meet an application deadline(2nithe first cluster-based, real-time scheduling algorith
designed specifically for arbitrarily divisible loads isspented and evaluated. Henceforth, the term “divisibledmse
“arbitrarily divisible” unless specified otherwise.

The remainder of this paper is organized as follows. Se@ipresents related work, and Section 3 describes the

task and system models assumed. Extensions of divisibdetheery to support real-time scheduling are presented in



Section 4, while Section 5 presents the scheduling alguritBection 6 evaluates the performance of the algorithm.

Section 7 presents our conclusions.

2 Reated Work

Development of commodity-based clusters and Grid compuave recently gained considerable momentum. By
linking a large number of computers together, a cluster ides/cost-effective power for solving complex problems.
In a large-scale Grid, the resource management system (RMS8htral to its operation. In order to serve end-users
in a timely fashion, it is essential for the underlying cerSRMS to provide performance guarantees or QoS.

Research has been carried out in utility-driven clustermatng [29, 23] to improve the value of utility delivered
to the users. Proposed cluster RMSs [7, 3] have addressetlieduling of both sequential and parallel programs.
The goal of those schemes is similar to ours—to harness therpaf resources based on user objectives.

The real-time computing community, has made significangpss in scheduling of periodic and/or aperiodic
tasks with deadlines in distributed or multiprocessoresyst The models investigated most often, e.g., in [21, 20, 14
1, 18, 13], assume periodic or aperiodic sequential jobsrthest be allocated to a single resource and executed by
its deadline. With the evolution of cluster computing, @shers have begun to investigate real-time scheduling of
parallel applications on a cluster, e.g., [31, 19, 11, 2Hgwever, [31, 19, 11, 2, 4] all assume the existence of some
form of task graph to describe communication and precedesiagons between computational units called subtasks
(i.e., nodes in the task graph).

The most closely related work is [16], wherein the authoigppse scheduling algorithms for “scalable real-
time tasks” on multiprocessor systems. It is assumed i thedel that tasks can be executed on more than one
processors and that task computation times decrease nmicedtp as more processors are allocated. We show that
this assumption is not true when communication costs arsidered. Moreover, unlike their work, which assumes
the task execution time function is known a priori, this paggeplies divisible load theory to derive the task execution
time functions.

Our work differs significantly from other work in real-time avell as cluster computing in both the task model
assumed and in the computational resources available. ggided in Section 3, we assume a workload in which
each aperiodic task is arbitrarily divisible into indepentisubtasks (i.e., no precedence relations or inter-skibta
communication) that can be executed in parallel on a clasteomputers scheduled by a head node.

Divisible load theory [6, 22, 28] provides an in-depth studylistribution strategies for arbitrarily divisible load
in multiprocessor/multicomputer systems subject to sgstenstraints like link speed, processor speed and intercon
nection topology. The goal of divisible load theory is to iparallelism in computational data so that the workload

can be partitioned and assigned to several processorsisatobxecution completes in the shortest possible time [6].



The application of divisible load theory is widespread [2Zn example related to our work is its application to
[30, 15] and implementation in [27] Grid computing. Compdintary to other work, our paper applies divisible load
theory to the design of a real-time scheduling algorithmdaster computing; specifically, divisible load theory is

applied to the scheduling of applications, such as CMS [H]AFLAS [5], that execute on a large cluster.

3 Task and System Models

Task Model. We investigate real-time scheduling of arbitrarily dibig tasks that arrive aperiodically and execute
non-preemptively (once subtasks are allocated to proc®ssim the real-time aperiodic task model each aperiodic
taskT; typically consists of a single invocation specified by theléu 4;, C;, D;), whereA, > 0 is the arrival time
of the task,C; > 0 is its computational requirement, ag} > 0 is the relative deadline. The absolute deadline of
the task is given byl; + D;. The computational requireme@t is usually considered to be the worst case execution
time of the task. The aperiodic task model adopted here, erveses the data size to represent the computational
requirement. That is, a divisible tagk = (A;,0;, D;) is a single invocation, wherd; is the arrival time of the
task, o; is the total data size of the task, ahy is the relative deadline. As a proof of concept, we model is th
paper those divisible applications, typical in high eneagy particle physics, whose data is partitioned into chunks
to be processed in parallel. Task execution time is dyndimidatermined using its total data sizg and allocated
resources—processing nodes and bandwidth—by leveraggngnbdeling power of divisible load theory [28], as
explained in Section 4.

System Model. A cluster consists of a head node, denotedyN processing nodes, denoted By, P, ..., Py
and a switch in between (see Figure 1). In this work, we asshatall processing nodes have the same computational
power and all links from the switch to the processing node® ltlhe same bandwidth. The system model assumes a
typical cluster environment in which the head node does adtqgipate in computation. The role of the head node is
to accept or reject incoming tasks, execute the schedulgayithm, divide the workload and distribute data chunks
to processing nodes. As nodes will process different datakd) the head node sequentially sends every data chunk
to its corresponding processing node via the switch. Wenasghat data transmission does not happen in parallel,
although it is straight-forward to generalize our model amaude the case where some pipelining of communication
occurs. For the divisible loads we are considering, taskissaibtasks are independent. Therefore, there is no need
for processing nodes to communicate with each other. Adaogrid divisible load theory, linear models are used to
represent processing speeds and transmission times 28 kimplest scenario, the computation time of a loasl
calculated by a cost functiafip(c) = oC),s, whereC,,; represents the time to compute a unit of workload on a single
processing node. The transmission time of a leasl calculated by a cost functiabim (o) = oC,,,s, WhereC,,,; is

the time to transmit a unit workload from the head node to agsesing node. For many applications the output data is



Figure 1: System Topology.

just a short message and is negligible considering the pigtidata. Therefore, we only model application input data
not the output data transfers. Divisible load theory alsavjgles models for heterogeneous networks [28], which will

be used in the future to extend this work to heterogeneosssrk

4 Task Partition and Execution Time Analysis

Executing a divisible load in a cluster entails two decisiewmllocating processing nodes to the task andpartitioning
thetask load among the allocated processing nodes. Divisible load theory states that optimal execution tisebtained

for a divisible load if all processing nodes allocated to tdgk complete their computation at the same time instant
[28]. This is called théptimal Partitioning Rule (or simply, OPR). Development of our cluster schedulingatgm

is guided by the OPR.

In divisible load theory, normally alk nodes of a cluster are allocated to a task. Then, followiegQFR, the
task load is partitioned such that all nodes finish procegsatrthe same time. In contrast to this approach, we first
compute the minimum number of processing nodes needed tbtheetask’s deadline given its schedule, and then
partition the task following the OPR (using at least the mimin number of nodes required to meet the deadline).
The execution time of a task is then trivially computed asdifference between its completion and start times. The

following notations, partially adopted from [28], will besed in these computations.
e T =(A,o,D): Adivisible task, whered = arrival time,o = data size, an@® = relative deadline
o a = (ai,as,..,an): Data distribution vector, whefe< «; < 1 andX}_ja; =1

o Data fraction allocated to thé”" processing node

Cps: Processing time for a unit workload

Cs: Time for transporting a unit workload

ST The setup time (cost) for the head node to initialize comication on a link
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Figure 2: Timing Diagram of System without Setup Cost.

e SC': The setup time (cost) for a processing node to initializeraputation

We analyze the task execution time under two different mo@8]. In the first model (Section 4.1), we assume

there are no setup costs for initializing data communicediod computation. In the second model (Section 4.2), we

consider the communication and computation setup costs.

4.1 Analysiswithout Setup Cost

Assuming no setup cost, we now compute a task’s executiandimd the minimum number of nodes needed to meet

its deadline on a homogeneous system. Based on our systesi (Bedtion 3) we have the following cost functions.

Processing time ojf" node:C,(aj0) = a;0Cs;

Transport time on‘® link: C,,,(ajo) = ajoChys.

The OPR leads to the timing diagram in Figure 2 whenodes are allocated to a task load. KEetlenoteTask

Execution Time andC denoteTask Completion Time. By analyzing the diagram, we have

= 010Chs + a10C) (4.1)
= (al + aQ)UCms + O420'6Yps (42)
= (011 + g + Oz;g)O’Cms + agonS (43)
= (a1+as+as+..+ay)0Chs +

noCps (4.4)



From (4.1) and (4.2), we have

0Cms + 0C,, o
a0 = ap—ms TTPs 2 where
aCyps 5
O'Cps Cps

0Cms +0Chs - Crns + Cps

(4.5)

It follows thatas = Bay. Similarly, from (4.2) and (4.3), we havwes = Ba», and thereforeqs = 5%aq. This
leads to a general formulaz; = 37~ ay. Sinceq; is the data fraction distributed 8" processing node, we have

Y5, a; = 1. Substitutingy; with 3/~ in this equation, we obtain

ay + Paqg + 62051 —+ ...+ ﬂn710¢1 =1.

5 Thus, the execution tim&, for the task is

Solving this equation, we get; = —;

E = OllJ(Cms + Cps)

Assuming that tas” = (A4, o, D) has start time, thenC = s + £ < A + D, because the task must satisfy its

deadline. It follows that,

s+1__§na(cms+cps) < A+D. Thus
1-p
=50 Cns+Cp) < A+D—s. (4.6)

Sinces = cmffcps < 1,1 — g™ > 0. Multiplying both sides of Eq. (4.6) byl — 5™), we get

(1 = B)0(Crns + Cps) < (1 = B")(A+ D — 5).

If (A+ D —s) < 0, the task will miss its deadline no matter how we schedulé iin@e s. Therefore, assuming
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Figure 3: Timing Diagram of System with Setup Cost.

(A+ D — s) > 0 and dividing both sides byl + D — s, we have

(1 - ﬁ)U(CmS + Cps) .

1= = A+D—s Thus,
5n < 1-= (1 — ﬁ)g(c’me + Cpg)
a A+D—s
- 1 (- %fcm)a(cms + Cps)
- A+D~—s
= 1 (%)U(Cme +Cpg)
- A+D—s
_ 1 _9Cms
- A1D_s
= 7

wherey =1 — % It follows thatn > ig—g. Sincen is an integerp > Hﬁ—g]. Therefore, the minimum number
of processing nodes that the task needs to complete befateadline at time is n™" = Hﬁ—g] where~ is defined

above ands in (4.5).

4.2 Analysiswith Setup Cost

The setup cost of communication and computation cannotr@égl in practice. The setup cost of communication
comes from physical network latencies, network protocerbead, or middleware overhead. In the TeraGrid project
[26], the network speed can be up to 40GBit/Sec with latemoyrad 100ms, which means around 1/3 of the time
required to send 1GB of data is due to latency. [8] shows tiesétup cost for computation can be up to 25 seconds
in practice, which is also not neglectable for some smakisas

We now consider the communication and computation setuptocaterive the task execution time and the min-

imum number of processing nodes needed for the task to nseg¢étdline. The processing time on yi& node is



Cp(ajo) = SC + a;0Cp,, and the transmission time on thé link is Cr(ajo) = ST + ajoChry,s. The timing

diagram with setup costs is shown in Figure 3. As before,daseanalysis of the timing diagram, we have

£ = (ST +a10Cms) +(SC+a10C,s) 4.7)
= 25T+ (a1 + a2)oChs +
(SC + azoCls) (4.8)
= 35T+ (a1 +ag+a3)oChps +

(SC + azoChs) (4.9)

= (mn—1)8T+ (4.10)
(a1 +as+as+ ...+ an)oChs +

(SC + anoChs)

From (4.7) and (4.8), we have, = a1 3 — ¢, wheres is defined in (4.5) and

ST
¢ = m (4.11)

Similarly, from (4.8) and (4.9), we geiz = a8 — ¢, and thereforexs = a15% — S¢ — ¢, leading to the general

formula

aj = Pt —xI726%.  Thus,
. 1—pit
o = a7t - Waﬁ.
Now, substitutingy; with (a; 871 — 1_1%71 ¢) inthe equationy ", a; = 1, we get
n j— 1- ﬁjil
S0 (a7 - W(b) =1
T
— Sl -0 - 1

A solution to the above equation leads to

1-8 e o
T1-p T1-p 1-5

aq



where
_1-p no o
B(n)_1—6”'+1—ﬁ"_1—6'

(4.12)

It follows thatE = ST + SC + o(Cps + Cps)B(n) and as before if tas’ = (A, o, D) has start times, then,
E<A+ D —s. Thatis,

ST + SC + 0(Cys + Cps)B(n) < A+ D — 5. (4.13)

Thus, the smallest integer greater than or equal that satisfies the above constraint is the minimum number of
processing nodes that need to be assigned toTaaktime s to satisfy its deadline. This constraint can be solved
numerically.

Note that the model without setup cost (Section 4.1) is aiapease of this model, wher8T = SC = 0
and accordinglyyp = G(cmsiﬁcp) = 0. Therefore, we can reduce constraint (4.13) to constrdi®),(o(C.,.s +

Cps)ll_;ﬂﬁn < A+ D — s, which was derived for the model without setup cost.

5 Dynamic Scheduling of Divisible L oads

In this section, we present an algorithm for scheduling tieaé arbitrarily divisible loads, consisting of aperiodisks
dispatched dynamically. The problem of dynamic scheduimgnultiprocessor systems, without a priori knowledge
of task arrival times is NP-complete [24, 10]. This motiwateir heuristic approach to solve the problenayiamic
scheduling of divisible loads.

Like typical dynamic scheduling algorithms [10, 20, 17],emhnew tasks arrive, our scheduler dynamically de-
termines the feasibility of scheduling the new tasks wittemmpromising the guarantees for the previously admitted
tasks. This feasibility analysis is done before a task isisddto the cluster. A feasible schedule is generated if the
deadlines of all tasks in the cluster can be satisfied. Taskdiapatched according to the feasible schedule devel-
oped. If no feasible schedule is found, the task is rejed®ejection in the cluster environment means that the system
administrator will negotiate a feasible deadline for thektevith the client.

Before describing the details of our algorithm, we introgltize following notations (some of them are adopted

from [16]).

n"(t): the minimum number of processing nodes needed to finishahepatation of task;, dispatched at time

t, before its deadline.
Wi(n) = n x E: cost of taskl; whenn processing nodes are assigned to it. (see Figure 2).
DC; = W;(n™™ + 1) — W;(n™"): the derivative of¥; (n) with respect tow evaluated at its curremt*".

10



The proposed scheduling algorithm, caldeximum Cost Derivative First (MCDF), allocates the minimum num-
ber of processing nodes to a task that satisfies its deadlglea task with high cost derivative is favored to start egrli
just as [16] does.

The motivation for the heuristic is to minimize the total to§ current tasks. It is assumed that the smaller the
total cost of the scheduled tasks, the more likely that thdynarrived tasks will meet their deadlines [16].

It can be proved that following the rules proposed in our tsgigrwill lead to minimized total cost of current tasks.
As a demonstration, we prove Theorem 5.3, which implies fibliawing the first rule — allocating the minimum
number of processing nodes to a task that satisfies its deadliwill minimize the total cost.

Contrary to the scalable task model assumed in [16], we grov@eorem 5.2 that for divisible load model with
setup cost (Section 4.2), as the number of processing ndldeatad to a task increases, its computation titoes
not decrease monotonically. However, for the divisible loaddeiavithout setup cost (Section 4.1) the assertion does

hold as proved in Theorem 5.1.

Theorem 5.1 For adivisibleload model without setup cost, the execution time decreases monotonically as the number

of processing nodes assigned to a task increases.

Proof: For a divisible load model without setup cost (Section 4tH¢,task execution timé =

11:ﬁﬁn U(Cms +

Cls), wherej3 is defined in (4.5). Differentiaté as a function of, we havet” = =5, (1 — 8)0 (Crns + Cps ). AS
0<B<1,In8<0,ando(Cps + Cps) > 0, we have%(l — B)o(Crns + Cps) > 0. Thus,E" < 0, and€ is a

monotonically decreasing function.

Theorem 5.2 For a divisible load model with setup cost, the execution time of the load does not decrease monotoni-

cally as the number of processing nodes assigned to the load increases.

Proof: For a divisible load model with setup cost (Section 4.2) gkecution time
E=8T+5CH+ o(Cps + Cps)B(n),

whereB(n) is defined in (4.12). Differentiat& as a function of., we have

C3 — C18" — Conp"

(C/‘/ = U(CWLS + CPS) (1 _ 577,)2 ’

where,C; = ¢ — (1 — ) Inf, Cy = —¢In 3, Cs = ¢. LetE = 0, we have

Cs

= Cl‘i‘CQn.

11



Giveln to both sides, we get

n=~C4+Cs ln(01 + CQ?”L),

where,Cy = 1.8, G5 = — 15

k
Then, letn = £ 5201 , we have

Thatis,
¥ = Cs — Crk,

where,Cs = CoCy, Cr = CoC5 = ¢.

Sincel < ¢ < 1, we have

ek < Ce < €k+1.

We can seg is bounded, which implies thatis also bounded. Thus, we can conclude that there is a fifite ua,;,,

that minize<£. So, the theory is proved.

We believe these theorems have important implications ifasidle load scheduling in a cluster computing environ-
ment. We design our scheduling algorithm accordingly.
Next, we prove that the co8t;(n) of computation increases monotonically as the number oésatlocated to a

divisible taskT; increases.

Lemmab.1l
1—/3 1—}3
>k

(k+1)1_ﬂk+1 1_ﬂk

Proof: Since0 < § < 1 (see (4.5)), it follows that

L+ B4+ > kp*

12



Adding k(1 + 3+ --- + #*~1) to both sides

(k+DA+8+--+8Y) > kA+8+--+p55
k41 k
113+ 17 ~ 148+ 151
(k+1D)A-p) _ k(1-0)
1 — gk+1 1— gk

which completes the proof.

Lemmab.2

k+1)¢ 10 ko 0]
e - oy s - )

Proof:From its definition we knows > 0. When¢ = 0, the lemma is proved, sindé + 1)(1@;},% -5 =

k(lf(g,c - %). If ¢ > 0, we could divide both sides hyand get

k+1 1 k 1

(k‘+1)(1_6k+1 - 1_5)Zk(1_—6k—m)

Sincel — 3 > 0, multiplying both sides of the above condition by- 3, we get the following condition equivalent to

the lemma.
k(1—0)
1— g8k

E+1D)A -5

(k+ D)=

—1) > k(

~1) (5.14)

Now, sincel < 8 < 1, we know

E+1>14+84... + gF

k+1
14+ B+ 4k
E+1)(1—-p
~ G0
k+1)(1-2
:>(1_)—g(k+1)
kE+1)(1-2
—

-1 > 0

—(k+1) > -k (5.15)
Since we have already proved Lemma 5.1, multiplying botbsif Lemma 5.1 by, we have

e I

K+ D)= > P

13



Combining it with (5.15), we get

1-5  (k+1D){A-0)

1-5
1_ﬁk+1+ 1 — gk+t

1-gF

k(k+1) —(k+1) > k? —k

which implies (5.14). As proved, inequality (5.14) is equlent to Lemma 5.2 whea > 0. Hence, Lemma 5.2 is

proved.

Theorem 5.3 The total cost W;(n) increases monotonically as the number of processing nodes assigned to a task

increases.

Proof: We prove that the theorem holds for the divisible load mod#h wetup cost (Section 4.2). That conse-
guently proves the theorem also holds for the divisible loexiel without setup cost (Section 4.1) because the latter
is a special case of the former.

By definition,

Wi(n) =nx& =nx (ST + SC + 04(Crns + Cps)B(n))

whereB(n) is defined in (4.12). To prove th&t;(n) increases monotonically asincreases, it is sufficient to prove
that for anyk, W;(k + 1) > W; (k).
That s,

(k + 1)(ST + SC + 03(Chs + Cps)B(k + 1))

> k(ST + SC + 0;(Cs + Cps)B(k)) (5.16)
Since(k + 1)(ST + SC) > k(ST + SC), itis sufficient to prove
(k+1)B(k+1) > kB(k)

Thatis

1-8 k1o 6

L
1-p ko ¢

>k(1_ﬂk+1_ﬂk—1_5).

14



From Lemma 5.1, we have
1-7 1-7
> k

(k+1)1_ﬁk+1 1_6k’

and from Lemma 5.2, we have

k+1)¢ 10 ko 0]
ey s - )

Consequently, the theorem follows.

In summary, we have several rules to follow for developmée proposed heuristic: to minimize the total cost, 1)
the number of processing nodes assigned to each task istsetlatent minimum, i.e» 7" (t); 2) tasks are scheduled

in order of decreasing cost derivative, i.e., the t&slwith the highest cost derivativ@C; is always scheduled first.

Data Structuresand Algorithm. We now present the data structures and the pseudo code dfjtirehan.

e NIList <j,t;>: Node-Information-List. The list stores the information about processing nodesreyhdenotes
the index of the node ang denotes the time when the node becomes idle.

e AvailableNodesList <tp, ANy>. This is a list of number of available nodes along with thegtimvheret;, is
the time and4 Ny, is the number of available nodes at time This list can be generated based on the information
of NIList.

e NewTasksList <i,t.arrival;, D;,0;>. The list stores the tasks which just arrive at the systerereitdenotes
the index of the task,arrival; is its arrival time,D; is its relative deadline, and; is its workload.

o AdmittedTasksList <i,t_arrival;, D;, 0;,si, e, n"">. The list stores the tasks that have been admitted
but yet to be dispatched, whetalenotes the index of the taskarrival; is its arrival time,D; is its relative
deadline,o; is its workload,s; will be its starting time,e; will be its completion time, ana.”" will be the
minimum number of processing nodes the task needs atstinmecomplete before its deadline.

e UnScheduledTasksList <i,t_arrival;, Dy, 0;, 5;, e;,n™", DC;>. This list stores the tasks that have not been
scheduled. Its data structure is the sameldsiittedT asksList except that there is an additional tefrC;
representing the derivative costBf at n".

e TempST List: Temporarily-Scheduled-Tasks-List. The data structure of this list is the samedabnittedT'asksList.
It stores the tasks that have been temporarily scheduled &ahedulability-Test stage. If the Schedulability-Test
is passed, meaning that the admitted tasks and the new taak schedulable before their deadlines, the new task
will be admitted and the temporary schedule will be acceptet is, we will overwrite theddmittedT asksList

with the T'empST List, which includes the new scheduling information.

The pseudo code of our algorithm, called Maximum Cost Dévied-irst (MCDF) is as follows.
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10.
11.
12.
13.

14.
15.
16.
17.
18.
19.

© © N o 0 & w NP

R

© N o ou

void M CDF()
whiletrue
if AdmittedTasksList ')
for eachT’; in AdmittedTasksList
if starting times; == currenttime
dispatch Task7; to n™™ nodes
remove T; from AdmittedTasksList
update NIList
end for
if NewTasksList =)
for eachT; in NewTasksList
if SchedulabilityTest(l;) ==true
accept T;
[* accept the new schedule */
AdmittedTasksList— TempSTList
else
reject 7.
end for
end while
end MCDF()
boolearSchedulability Test(7;)
UnScheduledTasksList AdmittedTasksList +7;;
generate AvailableNodesList /* from NIList */
TempSTList— ()

/* index for AvailableNodesLisk ¢, AN, >*/
k—1
while UnScheduledTasksList &

for eachT; in UnScheduledTasksList

calculate ™™ (t,,) and DC;

[* N: total number of processing nodes */

if nmm(tk) >N

K2
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10. returnfalse /*not schedulabe*/
11. end for

[* by nonincreasing order abC; */
12. order UnScheduledTasksList

* from the head to the tail of the list */
13. for eachT; in UnScheduledTasksList
14. if n" (t),) < ANy

[* set scheduled starting time */

15. S; — tr

[* set expected completion time */

16. e; — E(oy, nM" () + t

17. if e; > t_arrival; + D;

18. returnfalse /* deadline misses */
19. remove T; from UnScheduledTasksList
20. insert 7; into TempST List

21. update AvailableNodesList

[* if no more idle nodes at time, */

22. if ANy ==
23. break
24. end for

25. k++;

26. end while

[* all tasks in the cluster are schedulable */
27. returntrue

28. end Schedulability_Test()

Note that this scheduling algorithm may cause fragmematiwhere processing nodes are idle. In our future work,

we plan to reduce processing idle times by leveraging maltiad divisible load scheduling [6].
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6 Performance Evaluation

We use a discrete simulator to model the system and evahmfgroposed scheduling algorithm with respect to the
metricsTask Miss Ratio or Task Reject Ratio. The Task Miss Ratio is the number of tasks that miss theidlidess to

the total number of tasks that arrive at the system. For dlgos without admission control, we u3ask Miss Ratio

to evaluate them. For algorithms with admission conffatk Reject Ratio, the ratio of the number of tasks that are
rejected by the scheduler to the total number of tasks thiakaat the system, is used. Thus, our algorithm focuses on

minimizing theTask Reject Ratio.

6.1 Simulation Setup

The system loadl,, is defined as the sum of the minimum execution time of allgalkided by the total simulation
time 1. The data sizes of tasks are assumed to be normally distdbuth a mean o100 and a standard deviation
equal to the mean. The two system parameigrs andC,,; are assumed equal 10. The deadline of a task is chosen
to be larger than its minimum computation time and is assuimééd uniformly distributed between the minimum and
maximum computation time. The total number of processirgdgsan the system is assumed tollbe

We assume a Poisson task arrival process, with the averteggahtime of the Poisson Distribution defined as
the average minimum execution time of tasks divided by ttstesy load. At each arrival point, the number of tasks
arriving is a randomly chosen number between one and teh,ibdusive. The simulation time is set 45000, 000

time units, which is considered to be sufficiently long. Timedation is run ten times and the mean value is computed.

6.2 Comparative Evaluation without Set-up Cost

We compare our algorithm with six popular algorithms. Theaporithms belong to two groups. The first group
are FIFO (First In First Out) based. According to the surweyli2] prominent commercial cluster management
software suites, such as Moab/Maui, LoadLeveler, LSF, FBSE, and OSCAR, are packaged with FIFO as the
default scheduling algorithm. The second group is EDF §Hadadline First). Algorithms in both groups are further
divided into three typeswithout admission control, using all nodes for every task, andusing the minimum number

of nodes for every task. Thus, these algorithms are FIFOANNA (FIFO using All Nodad &lo Admission control),
FIFOAN (FIFO using All Nodes), FIFOMN (FIFO using Minimum mber of Nodes), EDFANNA (EDF using All
Nodes and No Admission control),EDFAN (EDF using All Nodesd EDFMN (EDF using Minimum number of
Nodes).

1To achieve the minimum execution time of a task, the requinember of processing nodes is chosen according to Theorean8.5.2. That
is, for the divisible load model without setup cost, the mmaim execution time is achieved when all the processing nadeassigned to it, while
for the divisible load model with setup cost, the minimumax®n time could be achieved when less than the total numbgrocessing nodes
are assigned to it.
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Figure 5: Performance Evaluation—-2 (Without Setup Cost)

Figures 4 and 5 compare the performance of the proposedthlydviCDF to the six algorithms described above.
The algorithm MCDF, performs much better than the otherrdtlgms. We observe in Figure 5 that the two algorithms
without admission control miss deadlines for more than 99#betasks. This is because the delays propagate. Among
the four algorithms with admission control (Figures 4), fegformance of FIFOAN and EDFAN is close to MCDF,

but MCDF still exhibits better performance than either @frthwith a margin of about 10% decrement of Task Reject

Ratio.

6.3 Comparative Evaluation with Set-up Cost

Figures 6, 7, 8 and 9 show the comparative performance oflgaritnm with respect to the six algorithms when setup
cost is considered. Since the algorithms without admiss@nirol do not really perform well, we do not consider
them here. The simulation setup is the same as before, etktpte consider the setup costs where the values of
ST and SC are varied from 5 to 20. From these graphs, we can see that MB@Falgorithm, still has the best
performance. Furthermore, it can be observed that as setipiacrease, the gain in performance of MDCF over the
other algorithms increases. Under this simulation, MDClrileits much more stability than the other four algorithms:

FIFOAN, FIFOMN, EDFAN, EDFMN. Moreover, as the setup cosisrease, the Task Reject Ratio increases for the
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four algorithms, while the Task Reject Ratio of MDCF remaiglaitively unchanged.

Performance Evaluation (ST=5, SC=5)

0.7

0.6 ?/‘
2 05 - | [FFOAN
o ’ ¥
g 04 — o —=— FIFOMN
Ry —— 4 EDFAN
% 02 L — / EDFMN
8T — ——MDCF

0.1

0 : — ‘ ‘ —
03 04 05 06 07 08 09 1
System Load

Figure 6: Performance Evaluation—3 (ST=5, SC=5)
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Figure 7: Performance Evaluation—4 (ST=10, SC=10)

6.4 Impact of C,,,; and C),

In this section we study the impact of changing the rati@pf; to C,, that is, the ratio of communication cost to
computation cost. These two parameters are the most sgmifi@rameters, and thus sensitivity of our algorithm to

changes in their ratio is significant.

From Figure 10, we can observe that when the ratio of'gf to C,, is small, the Task Reject Ratio of our
algorithm is very sensitive to the system load. However siesitivity of our algorithm to system load decreases as

the ratio ofC,, ;s to C,, increases. Moreover, the algorithm looses all its serisitio the system load as the ratio of

Cms 10 Cp, increases beyorglo.

7 Conclusion

The work presented here addresses the problem of providitegrdinistic QoS to arbitrarily divisible applications

executing in a cluster. Two specific contributions are makiest, divisible load theory was extended to compute
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Performance Evaluation (ST=20, SC=20)

08
07
Soef = w ® m w4 [ 4 FIFOAN
< ~— N N —
€ o5 —a—FIFOMN
8 04 EDFAN
¢ o3 a EDFMN
X /
8 02 ——MDCF
0.1
0 —

03 04 05 06 07 08 09 1
System Load

Figure 9: Performance Evaluation—6 (ST=20, SC=20)

the minimum number of processors required to meet an apiplice deadline, Second, MDCF, the first cluster-
based, real-time scheduling algorithm designed spedififtalarbitrarily divisible loads, was presented and eaddal.
Evaluations show that it out performs six other FIFO and EBBdd algorithms. Moreover, MDCF is remarkably
stable with respect to changes in load parameters. In thesfuthis work will be extended by addressing heterogeneous

clusters and eliminating processing idle times during Idiattibutions using multi-round divisible load schedglin
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Figure 10: Sensitivity of MDCF
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