
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

1-1-2005

Real-Time Divisible Load Scheduling for Cluster
Computing
Xuan Lin
University of Nebraska - Lincoln, lxuan@cse.unl.edu

Ying Lu
University of Nebraska - Lincoln, ylu4@unl.edu

Jitender S. Deogun
University of Nebraska - Lincoln, jdeogun1@unl.edu

Steve Goddard
University of Nebraska – Lincoln, goddard@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Lin, Xuan; Lu, Ying; Deogun, Jitender S.; and Goddard, Steve, "Real-Time Divisible Load Scheduling for Cluster Computing" (2005).
CSE Technical reports. Paper 44.
http://digitalcommons.unl.edu/csetechreports/44

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/44?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages

(Note: This is a depreciated version. Check TR

UNL-CSE-2006-0016 for the latest version.)

Technical Report UNL-2005-0014

Real-Time Divisible Load Scheduling for Cluster Computing

Xuan Lin, Ying Lu, Jitender Deogun, Steve Goddard

Department of Computer Science and Engineering

University of Nebraska - Lincoln

Lincoln, NE 68588

{lxuan, ylu, deogun, goddard}@cse.unl.edu

Abstract

Cluster Computing has emerged as a new paradigm for solving large-scale problems. To enhance QoS and provide

performance guarantees in cluster computing environments, various workload models and real-time scheduling algo-

rithms have been investigated. Thedivisible load model, propagated by divisible load theory, models computations

that can be arbitrarily divided into independent pieces andprovides a good approximation of many real-world appli-

cations. However, researchers have not yet investigated the problem of providing performance guarantees to divisible

load applications. Two contributions are made in this paper: (1) divisible load theory is extended to compute the

minimum number of processors required to meet an application’s deadline; and (2) the first cluster-based, real-time

scheduling algorithm designed specifically for arbitrarily divisible loads is presented and evaluated.

1 Introduction

The dawn of the information age has changed how we solve important problems. Emerging computation and data

intensive applications cannot be solved by a single stand-alone machine. This has led to the emergence ofcluster

computing as a new paradigm for computing. Cluster computing harnesses the power of hundreds and thousands of

machines to facilitate the computation of large and complexproblems in many application domains. However, as the

size of a cluster increases, so does the complexity of resource management and maintenance. Thus, innovations in

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2005-0014

automated performance control and resource management arecrucial for continued evolution of cluster computing.

On one hand, system administrators prefer a system that is easy to manage. On the other hand, end-users expect high

performance from the cluster, such as receiving computational results before specified deadlines.

The challenge, however, in applying real-time scheduling theory to cluster computing is that computational loads

submitted to clusters are structured in various ways. Some,called sequential jobs, are difficult to compute concurrently

whereas others are comprised of tasks that can be executed inparallel. Parallel jobs can be further categorized based

on the divisibility property of their computational loads.Modularly divisible loads can be subdivided a priori into a

certain number of subtasks; these loads are often describedwith a task (or processing) graph. Arbitrarily divisible

loads can be partitioned into any number of load fractions, and are quite common in high energy and particle physics.

Usually all elements in such computational loads demand an identical type of processing and relative to the huge total

computation, the processing on each individual element is infinitesimal. Hence the loads are considered arbitrarily

divisible. For example, the CMS (Compact Muon Solenoid) [9]and ATLAS (AToroidal LHC Apparatus) [5] projects,

which are associated with the Large Hadron Collider (LHC) atCERN (European Laboratory for Particle Physics),

execute cluster-based applications with arbitrarily divisible loads.

The cluster and real-time computing research communities have thoroughly explored the problem of providing

QoS or real-time guarantees for sequential jobs and modularly divisible jobs in distributed systems. Similarly, signif-

icant progress has been made indivisible load theory [28]. However, despite the increasing importance of arbitrarily

divisible applications [22], to the best of our knowledge, the real-time scheduling of arbitrarily divisible loads hasnot

been addressed before.

This creates a problem for cluster-based research computing facilities such as the U.S. CMS Tier-2 sites that are

building high-end clusters for CMS applications [25], which may execute for days or even weeks. (The CMS project

will not be fully operational until 2007. Thus, the actual work load generated by this world-wide experiment can only

be simulated at this time.) One of the management goals of theUniversity of Nebraska-Lincoln (UNL) Research Com-

puting Facility (RCF) is to provide a multi-tiered QoS scheduling framework in which applications “pay” according

to the response time requested for each job [25]. Existing real-time cluster-based scheduling algorithms assume the

existence of a task graph for all applications, while divisible load theory attempts to minimize schedule length with no

regard for the actual deadline.

Two contributions are made in this paper: (1) divisible loadtheory is extended to compute the minimum number

of processors required to meet an application deadline; and(2) the first cluster-based, real-time scheduling algorithm

designed specifically for arbitrarily divisible loads is presented and evaluated. Henceforth, the term “divisible” means

“arbitrarily divisible” unless specified otherwise.

The remainder of this paper is organized as follows. Section2 presents related work, and Section 3 describes the

task and system models assumed. Extensions of divisible load theory to support real-time scheduling are presented in

2

Section 4, while Section 5 presents the scheduling algorithm. Section 6 evaluates the performance of the algorithm.

Section 7 presents our conclusions.

2 Related Work

Development of commodity-based clusters and Grid computing have recently gained considerable momentum. By

linking a large number of computers together, a cluster provides cost-effective power for solving complex problems.

In a large-scale Grid, the resource management system (RMS)is central to its operation. In order to serve end-users

in a timely fashion, it is essential for the underlying cluster RMS to provide performance guarantees or QoS.

Research has been carried out in utility-driven cluster computing [29, 23] to improve the value of utility delivered

to the users. Proposed cluster RMSs [7, 3] have addressed thescheduling of both sequential and parallel programs.

The goal of those schemes is similar to ours—to harness the power of resources based on user objectives.

The real-time computing community, has made significant progress in scheduling of periodic and/or aperiodic

tasks with deadlines in distributed or multiprocessor systems. The models investigated most often, e.g., in [21, 20, 14,

1, 18, 13], assume periodic or aperiodic sequential jobs that must be allocated to a single resource and executed by

its deadline. With the evolution of cluster computing, researchers have begun to investigate real-time scheduling of

parallel applications on a cluster, e.g., [31, 19, 11, 2, 4].However, [31, 19, 11, 2, 4] all assume the existence of some

form of task graph to describe communication and precedencerelations between computational units called subtasks

(i.e., nodes in the task graph).

The most closely related work is [16], wherein the authors propose scheduling algorithms for “scalable real-

time tasks” on multiprocessor systems. It is assumed in their model that tasks can be executed on more than one

processors and that task computation times decrease monotonically as more processors are allocated. We show that

this assumption is not true when communication costs are considered. Moreover, unlike their work, which assumes

the task execution time function is known a priori, this paper applies divisible load theory to derive the task execution

time functions.

Our work differs significantly from other work in real-time as well as cluster computing in both the task model

assumed and in the computational resources available. As described in Section 3, we assume a workload in which

each aperiodic task is arbitrarily divisible into independent subtasks (i.e., no precedence relations or inter-subtask

communication) that can be executed in parallel on a clusterof computers scheduled by a head node.

Divisible load theory [6, 22, 28] provides an in-depth studyof distribution strategies for arbitrarily divisible loads

in multiprocessor/multicomputer systems subject to system constraints like link speed, processor speed and intercon-

nection topology. The goal of divisible load theory is to exploit parallelism in computational data so that the workload

can be partitioned and assigned to several processors such that execution completes in the shortest possible time [6].

3

The application of divisible load theory is widespread [22]. An example related to our work is its application to

[30, 15] and implementation in [27] Grid computing. Complimentary to other work, our paper applies divisible load

theory to the design of a real-time scheduling algorithm forcluster computing; specifically, divisible load theory is

applied to the scheduling of applications, such as CMS [9] and ATLAS [5], that execute on a large cluster.

3 Task and System Models

Task Model. We investigate real-time scheduling of arbitrarily divisible tasks that arrive aperiodically and execute

non-preemptively (once subtasks are allocated to processors). In the real-time aperiodic task model each aperiodic

taskTi typically consists of a single invocation specified by the tuple (Ai, Ci, Di), whereAi ≥ 0 is the arrival time

of the task,Ci > 0 is its computational requirement, andDi > 0 is the relative deadline. The absolute deadline of

the task is given byAi + Di. The computational requirementCi is usually considered to be the worst case execution

time of the task. The aperiodic task model adopted here, however, uses the data sizeσi to represent the computational

requirement. That is, a divisible taskTi = (Ai, σi, Di) is a single invocation, whereAi is the arrival time of the

task,σi is the total data size of the task, andDi is the relative deadline. As a proof of concept, we model in this

paper those divisible applications, typical in high energyand particle physics, whose data is partitioned into chunks

to be processed in parallel. Task execution time is dynamically determined using its total data sizeσi and allocated

resources—processing nodes and bandwidth—by leveraging the modeling power of divisible load theory [28], as

explained in Section 4.

System Model. A cluster consists of a head node, denoted byP0, N processing nodes, denoted byP1, P2, . . . ,PN

and a switch in between (see Figure 1). In this work, we assumethat all processing nodes have the same computational

power and all links from the switch to the processing nodes have the same bandwidth. The system model assumes a

typical cluster environment in which the head node does not participate in computation. The role of the head node is

to accept or reject incoming tasks, execute the scheduling algorithm, divide the workload and distribute data chunks

to processing nodes. As nodes will process different data chunks, the head node sequentially sends every data chunk

to its corresponding processing node via the switch. We assume that data transmission does not happen in parallel,

although it is straight-forward to generalize our model andinclude the case where some pipelining of communication

occurs. For the divisible loads we are considering, tasks and subtasks are independent. Therefore, there is no need

for processing nodes to communicate with each other. According to divisible load theory, linear models are used to

represent processing speeds and transmission times [28]. In the simplest scenario, the computation time of a loadσ is

calculated by a cost functionCp(σ) = σCps, whereCps represents the time to compute a unit of workload on a single

processing node. The transmission time of a loadσ is calculated by a cost functionCm(σ) = σCms, whereCms is

the time to transmit a unit workload from the head node to a processing node. For many applications the output data is

4

P0

P1 PNPiP2
.....

L1

L2

Li LN

Figure 1: System Topology.

just a short message and is negligible considering the big input data. Therefore, we only model application input data

not the output data transfers. Divisible load theory also provides models for heterogeneous networks [28], which will

be used in the future to extend this work to heterogeneous clusters.

4 Task Partition and Execution Time Analysis

Executing a divisible load in a cluster entails two decisions—allocating processing nodes to the task andpartitioning

the task load among the allocated processing nodes. Divisible load theory states that optimal execution time is obtained

for a divisible load if all processing nodes allocated to thetask complete their computation at the same time instant

[28]. This is called theOptimal Partitioning Rule (or simply, OPR). Development of our cluster scheduling algorithm

is guided by the OPR.

In divisible load theory, normally alln nodes of a cluster are allocated to a task. Then, following the OPR, the

task load is partitioned such that all nodes finish processing at the same time. In contrast to this approach, we first

compute the minimum number of processing nodes needed to meet the task’s deadline given its schedule, and then

partition the task following the OPR (using at least the minimum number of nodes required to meet the deadline).

The execution time of a task is then trivially computed as thedifference between its completion and start times. The

following notations, partially adopted from [28], will be used in these computations.

• T = (A, σ, D): A divisible task, whereA = arrival time,σ = data size, andD = relative deadline

• α = (α1, α2, ..., αn): Data distribution vector, where0 < αj < 1 andΣn
j=1αj = 1

• αj : Data fraction allocated to thejth processing node

• Cps: Processing time for a unit workload

• Cms: Time for transporting a unit workload

• ST : The setup time (cost) for the head node to initialize communication on a link

5

ασ1
.......Cms Cms Cmsα α α

α

α

α

α

2σ σ

σ

σ

σ

σ

3 n Cms

n Cps

Cps

Cps

Cps

σ

1

2

3

P0

P1

P2

P3

Pn

.

.

.

.

.

.

Execution Timeε

Figure 2: Timing Diagram of System without Setup Cost.

• SC: The setup time (cost) for a processing node to initialize a computation

We analyze the task execution time under two different models [28]. In the first model (Section 4.1), we assume

there are no setup costs for initializing data communication and computation. In the second model (Section 4.2), we

consider the communication and computation setup costs.

4.1 Analysis without Setup Cost

Assuming no setup cost, we now compute a task’s execution time and the minimum number of nodes needed to meet

its deadline on a homogeneous system. Based on our system model (Section 3) we have the following cost functions.

Processing time onjth node:Cp(αjσ) = αjσCps;

Transport time onjth link: Cm(αjσ) = αjσCms.

The OPR leads to the timing diagram in Figure 2 whenn nodes are allocated to a task load. LetE denoteTask

Execution Time andC denoteTask Completion Time. By analyzing the diagram, we have

E = α1σCms + α1σCps (4.1)

= (α1 + α2)σCms + α2σCps (4.2)

= (α1 + α2 + α3)σCms + α3σCps (4.3)

. . .

= (α1 + α2 + α3 + ... + αn)σCms +

αnσCps (4.4)

6

From (4.1) and (4.2), we have

α1 = α2
σCms + σCps

σCps

=
α2

β
, where

β =
σCps

σCms + σCps

=
Cps

Cms + Cps

. (4.5)

It follows that α2 = βα1. Similarly, from (4.2) and (4.3), we haveα3 = βα2, and therefore,α3 = β2α1. This

leads to a general formula:αj = βj−1α1. Sinceαj is the data fraction distributed tojth processing node, we have
∑n

j=1 αj = 1. Substitutingαj with βj−1α1 in this equation, we obtain

α1 + βα1 + β2α1 + ... + βn−1α1 = 1.

Solving this equation, we getα1 = 1−β
1−βn . Thus, the execution time,E , for the task is

E = α1σ(Cms + Cps)

=
1− β

1− βn
σ(Cms + Cps).

Assuming that taskT = (A, σ, D) has start times, thenC = s + E ≤ A + D, because the task must satisfy its

deadline. It follows that,

s +
1− β

1− βn
σ(Cms + Cps) ≤ A + D. Thus

1− β

1− βn
σ(Cms + Cps) ≤ A + D − s. (4.6)

Sinceβ =
Cps

Cms+Cps
< 1, 1− βn > 0. Multiplying both sides of Eq. (4.6) by(1− βn), we get

(1− β)σ(Cms + Cps) ≤ (1− βn)(A + D − s).

If (A + D − s) ≤ 0, the task will miss its deadline no matter how we schedule it at time s. Therefore, assuming

7

P0

P1

P2

P3

1ασ σ

σ

σ σ

σ

σ

σ

Cms CmsCms Cms α

α

α

α

α2 STST ST

.

.

.

.

.

.

Pn

3

nSC Cps

Cps

Cps

Cps

nST

SC

SC

SC

α

α

1

2

3

Figure 3: Timing Diagram of System with Setup Cost.

(A + D − s) > 0 and dividing both sides byA + D − s, we have

(1− βn) ≥
(1− β)σ(Cms + Cps)

A + D − s
. Thus,

βn ≤ 1−
(1− β)σ(Cms + Cps)

A + D − s

= 1−
(1− Cps

Cms+Cps
)σ(Cms + Cps)

A + D − s

= 1−
(Cms

Cms+Cps
)σ(Cms + Cps)

A + D − s

= 1−
σCms

A + D − s

= γ

whereγ = 1− σCms

A+D−s
. It follows thatn ≥ lnγ

lnβ
. Sincen is an integer,n ≥ ⌈ lnγ

lnβ
⌉. Therefore, the minimum number

of processing nodes that the task needs to complete before its deadline at times is nmin = ⌈ lnγ
ln β
⌉ whereγ is defined

above andβ in (4.5).

4.2 Analysis with Setup Cost

The setup cost of communication and computation cannot be ignored in practice. The setup cost of communication

comes from physical network latencies, network protocol overhead, or middleware overhead. In the TeraGrid project

[26], the network speed can be up to 40GBit/Sec with latency around 100ms, which means around 1/3 of the time

required to send 1GB of data is due to latency. [8] shows that the setup cost for computation can be up to 25 seconds

in practice, which is also not neglectable for some small tasks.

We now consider the communication and computation setup cost to derive the task execution time and the min-

imum number of processing nodes needed for the task to meet its deadline. The processing time on thejth node is

8

Cp(αjσ) = SC + αjσCps, and the transmission time on thejth link is Cm(αjσ) = ST + αjσCms. The timing

diagram with setup costs is shown in Figure 3. As before, based an analysis of the timing diagram, we have

E = (ST + α1σCms) + (SC + α1σCps) (4.7)

= 2ST + (α1 + α2)σCms +

(SC + α2σCps) (4.8)

= 3ST + (α1 + α2 + α3)σCms +

(SC + α3σCps) (4.9)

. . .

= (n− 1)ST + (4.10)

(α1 + α2 + α3 + ... + αn)σCms +

(SC + αnσCps)

From (4.7) and (4.8), we haveα2 = α1β − φ, whereβ is defined in (4.5) and

φ =
ST

σ(Cms + Cps)
(4.11)

Similarly, from (4.8) and (4.9), we getα3 = α2β − φ, and thereforeα3 = α1β
2 − βφ − φ, leading to the general

formula

αj = α1β
j−1 − Σj−2

k=0β
kφ. Thus,

αj = α1β
j−1 −

1− βj−1

1− β
φ.

Now, substitutingαj with (α1β
j−1 − 1−βj−1

1−β
φ) in the equation

∑n
j=1 αj = 1, we get

Σn
j=1(α1β

j−1 −
1− βj−1

1− β
φ) = 1

=⇒ Σn−1
j=0 (α1β

j −
1− βj

1− β
φ) = 1.

A solution to the above equation leads to

α1 =
1− β

1− βn
+

nφ

1− βn
−

φ

1− β
= B(n).

9

where

B(n) =
1− β

1− βn
+

nφ

1− βn
−

φ

1− β
. (4.12)

It follows that E = ST + SC + σ(Cms + Cps)B(n) and as before if taskT = (A, σ, D) has start times, then,

E ≤ A + D − s. That is,

ST + SC + σ(Cms + Cps)B(n) ≤ A + D − s. (4.13)

Thus, the smallest integer greater than or equal ton that satisfies the above constraint is the minimum number of

processing nodes that need to be assigned to taskT at times to satisfy its deadline. This constraint can be solved

numerically.

Note that the model without setup cost (Section 4.1) is a special case of this model, whereST = SC = 0

and accordingly,φ = ST
σ(Cms+Cps)

= 0. Therefore, we can reduce constraint (4.13) to constraint (4.6), σ(Cms +

Cps)
1−β
1−βn ≤ A + D − s, which was derived for the model without setup cost.

5 Dynamic Scheduling of Divisible Loads

In this section, we present an algorithm for scheduling real-time arbitrarily divisible loads, consisting of aperiodic tasks

dispatched dynamically. The problem of dynamic schedulingon multiprocessor systems, without a priori knowledge

of task arrival times is NP-complete [24, 10]. This motivates our heuristic approach to solve the problem ofdynamic

scheduling of divisible loads.

Like typical dynamic scheduling algorithms [10, 20, 17], when new tasks arrive, our scheduler dynamically de-

termines the feasibility of scheduling the new tasks without compromising the guarantees for the previously admitted

tasks. This feasibility analysis is done before a task is admitted to the cluster. A feasible schedule is generated if the

deadlines of all tasks in the cluster can be satisfied. Tasks are dispatched according to the feasible schedule devel-

oped. If no feasible schedule is found, the task is rejected.Rejection in the cluster environment means that the system

administrator will negotiate a feasible deadline for the task with the client.

Before describing the details of our algorithm, we introduce the following notations (some of them are adopted

from [16]).

nmin
i (t): the minimum number of processing nodes needed to finish the computation of taskTi, dispatched at time

t, before its deadline.

Wi(n) = n ∗ E : cost of taskTi whenn processing nodes are assigned to it. (see Figure 2).

DCi = Wi(n
min
i + 1)−Wi(n

min
i): the derivative ofWi(n) with respect ton evaluated at its currentnmin

i .

10

The proposed scheduling algorithm, calledMaximum Cost Derivative First (MCDF), allocates the minimum num-

ber of processing nodes to a task that satisfies its deadline;and a task with high cost derivative is favored to start earlier,

just as [16] does.

The motivation for the heuristic is to minimize the total cost of current tasks. It is assumed that the smaller the

total cost of the scheduled tasks, the more likely that the newly arrived tasks will meet their deadlines [16].

It can be proved that following the rules proposed in our heuristic will lead to minimized total cost of current tasks.

As a demonstration, we prove Theorem 5.3, which implies thatfollowing the first rule — allocating the minimum

number of processing nodes to a task that satisfies its deadline — will minimize the total cost.

Contrary to the scalable task model assumed in [16], we provein Theorem 5.2 that for divisible load model with

setup cost (Section 4.2), as the number of processing nodes allocated to a task increases, its computation timedoes

not decrease monotonically. However, for the divisible load model without setup cost (Section 4.1) the assertion does

hold as proved in Theorem 5.1.

Theorem 5.1 For a divisible load model without setup cost, the execution time decreases monotonically as the number

of processing nodes assigned to a task increases.

Proof: For a divisible load model without setup cost (Section 4.1),the task execution timeE = 1−β
1−βn σ(Cms +

Cps), whereβ is defined in (4.5). DifferentiateE as a function ofn, we haveE
′

= βn lnβ
(1−βn)2 (1− β)σ(Cms + Cps). As

0 < β < 1, lnβ < 0, andσ(Cms + Cps) > 0, we have βn

(1−βn)2 (1− β)σ(Cms + Cps) > 0. Thus,E
′

< 0, andE is a

monotonically decreasing function.

Theorem 5.2 For a divisible load model with setup cost, the execution time of the load does not decrease monotoni-

cally as the number of processing nodes assigned to the load increases.

Proof: For a divisible load model with setup cost (Section 4.2), theexecution time

E = ST + SC + σ(Cms + Cps)B(n),

whereB(n) is defined in (4.12). DifferentiateE as a function ofn, we have

E
′

= σ(Cms + Cps)
C3 − C1β

n − C2nβn

(1− βn)2
,

where,C1 = φ− (1− β) lnβ, C2 = −φ lnβ, C3 = φ. Let E
′

= 0, we have

βn =
C3

C1 + C2n
.

11

Give ln to both sides, we get

n = C4 + C5 ln(C1 + C2n),

where,C4 = lnC3

ln β
, C5 = − 1

lnβ

Then, letn = ek
−C1

C2
, we have

ek − C1

C2
= C4 − k.

That is,

ek = C6 − C7k,

where,C6 = C2C4, C7 = C2C5 = φ.

Since0 < φ < 1, we have

ek < C6 < ek+1.

We can seek is bounded, which implies thatn is also bounded. Thus, we can conclude that there is a finite valuenmin

that minizesE . So, the theory is proved.

We believe these theorems have important implications for divisible load scheduling in a cluster computing environ-

ment. We design our scheduling algorithm accordingly.

Next, we prove that the costWi(n) of computation increases monotonically as the number of nodes allocated to a

divisible taskTi increases.

Lemma 5.1

(k + 1)
1− β

1− βk+1
> k

1− β

1− βk

Proof: Since0 < β < 1 (see (4.5)), it follows that

1 + β + · · ·+ βk−1 > kβk

12

Addingk(1 + β + · · ·+ βk−1) to both sides

(k + 1)(1 + β + · · ·+ βk−1) > k(1 + β + · · ·+ βk)

=⇒
k + 1

1 + β + · · ·+ βk
>

k

1 + β + · · ·+ βk−1

=⇒
(k + 1)(1− β)

1− βk+1
>

k(1− β)

1− βk

which completes the proof.

Lemma 5.2

(k + 1)(
(k + 1)φ

1− βk+1
−

φ

1− β
) ≥ k(

kφ

1− βk
−

φ

1− β
)

Proof:From its definition we knowφ ≥ 0. Whenφ = 0, the lemma is proved, since(k + 1)((k+1)φ
1−βk+1 −

φ
1−β

) =

k(kφ
1−βk −

φ
1−β

). If φ > 0, we could divide both sides byφ and get

(k + 1)(
k + 1

1− βk+1
−

1

1− β
) ≥ k(

k

1− βk
−

1

1− β
)

Since1− β > 0, multiplying both sides of the above condition by1− β, we get the following condition equivalent to

the lemma.

(k + 1)(
(k + 1)(1− β)

1− βk+1
− 1) ≥ k(

k(1− β)

1− βk
− 1) (5.14)

Now, since0 < β < 1, we know

k + 1 > 1 + β + . . . + βk

=⇒
k + 1

1 + β + · · ·+ βk
> 1

=⇒
(k + 1)(1− β)

1− βk+1
> 1

=⇒
(k + 1)(1− β)

1− βk+1
− 1 > 0

=⇒
(k + 1)(1− β)

1− βk+1
− (k + 1) > −k (5.15)

Since we have already proved Lemma 5.1, multiplying both sides of Lemma 5.1 byk, we have

k(k + 1)
1− β

1− βk+1
> k2 1− β

1− βk

13

Combining it with (5.15), we get

k(k + 1)
1− β

1− βk+1
+

(k + 1)(1− β)

1− βk+1
− (k + 1) > k2 1− β

1− βk
− k

which implies (5.14). As proved, inequality (5.14) is equivalent to Lemma 5.2 whenφ > 0. Hence, Lemma 5.2 is

proved.

Theorem 5.3 The total cost Wi(n) increases monotonically as the number of processing nodes assigned to a task

increases.

Proof: We prove that the theorem holds for the divisible load model with setup cost (Section 4.2). That conse-

quently proves the theorem also holds for the divisible loadmodel without setup cost (Section 4.1) because the latter

is a special case of the former.

By definition,

Wi(n) = n ∗ E = n ∗ (ST + SC + σi(Cms + Cps)B(n))

whereB(n) is defined in (4.12). To prove thatWi(n) increases monotonically asn increases, it is sufficient to prove

that for anyk, Wi(k + 1) > Wi(k).

That is,

(k + 1)(ST + SC + σi(Cms + Cps)B(k + 1))

> k(ST + SC + σi(Cms + Cps)B(k)) (5.16)

Since(k + 1)(ST + SC) ≥ k(ST + SC), it is sufficient to prove

(k + 1)B(k + 1) > kB(k)

That is

(k + 1)(
1− β

1− βk+1
+

(k + 1)φ

1− βk+1
−

φ

1− β
)

> k(
1− β

1− βk
+

kφ

1− βk
−

φ

1− β
).

14

From Lemma 5.1, we have

(k + 1)
1− β

1− βk+1
> k

1− β

1− βk
,

and from Lemma 5.2, we have

(k + 1)(
(k + 1)φ

1− βk+1
−

φ

1− β
) ≥ k(

kφ

1− βk
−

φ

1− β
)

Consequently, the theorem follows.

In summary, we have several rules to follow for development of the proposed heuristic: to minimize the total cost, 1)

the number of processing nodes assigned to each task is set atits current minimum, i.e.,nmin
i (t); 2) tasks are scheduled

in order of decreasing cost derivative, i.e., the taskTi with the highest cost derivativeDCi is always scheduled first.

Data Structures and Algorithm. We now present the data structures and the pseudo code of the algorithm.

• NIList <j, tj>: Node-Information-List. The list stores the information about processing nodes, wherej denotes

the index of the node andtj denotes the time when the node becomes idle.

• AvailableNodesList <tk, ANk>. This is a list of number of available nodes along with the time, wheretk is

the time andANk is the number of available nodes at timetk. This list can be generated based on the information

of NIList.

• NewTasksList <i, t arrivali, Di, σi>. The list stores the tasks which just arrive at the system, wherei denotes

the index of the task,t arrivali is its arrival time,Di is its relative deadline, andσi is its workload.

• AdmittedTasksList <i, t arrivali, Di, σi, si, ei, n
min
i >. The list stores the tasks that have been admitted

but yet to be dispatched, wherei denotes the index of the task,t arrivali is its arrival time,Di is its relative

deadline,σi is its workload,si will be its starting time,ei will be its completion time, andnmin
i will be the

minimum number of processing nodes the task needs at timesi to complete before its deadline.

• UnScheduledTasksList<i, t arrivali, Di, σi, si, ei, n
min
i , DCi>. This list stores the tasks that have not been

scheduled. Its data structure is the same asAdmittedTasksList except that there is an additional termDCi

representing the derivative cost ofTi atnmin
i .

• TempSTList: Temporarily-Scheduled-Tasks-List. The data structure of this list is the same asAdmittedTasksList.

It stores the tasks that have been temporarily scheduled at the Schedulability-Test stage. If the Schedulability-Test

is passed, meaning that the admitted tasks and the new task are all schedulable before their deadlines, the new task

will be admitted and the temporary schedule will be accepted, that is, we will overwrite theAdmittedTasksList

with theTempSTList, which includes the new scheduling information.

The pseudo code of our algorithm, called Maximum Cost Derivative First (MCDF) is as follows.

15

1. voidMCDF()

2. while true

3. if AdmittedTasksList !=∅

4. for eachTi in AdmittedTasksList

5. if starting timesi == currenttime

6. dispatch TaskTi to nmin
i nodes

7. remove Ti from AdmittedTasksList

8. update NIList

9. end for

10. if NewTasksList !=∅

11. for eachTi in NewTasksList

12. if SchedulabilityTest(Ti) == true

13. accept Ti

/* accept the new schedule */

14. AdmittedTasksList← TempSTList

15. else

16. reject Ti.

17. end for

18. end while

19. end MCDF()

1. booleanSchedulability Test(Ti)

2. UnScheduledTasksList← AdmittedTasksList +Ti

3. generate AvailableNodesList /* from NIList */

4. TempSTList← ∅

/* index for AvailableNodesList< tk, ANk >*/

5. k ← 1

6. while UnScheduledTasksList !=∅

7. for eachTi in UnScheduledTasksList

8. calculate nmin
i (tk) and DCi

/* N : total number of processing nodes */

9. if nmin
i (tk) > N

16

10. return false /*not schedulabe*/

11. end for

/* by nonincreasing order ofDCi */

12. order UnScheduledTasksList

/* from the head to the tail of the list */

13. for eachTi in UnScheduledTasksList

14. if nmin
i (tk) ≤ ANk

/* set scheduled starting time */

15. si ← tk

/* set expected completion time */

16. ei ← E(σi, n
min
i (tk)) + tk

17. if ei > t arrivali + Di

18. return false /* deadline misses */

19. remove Ti from UnScheduledTasksList

20. insert Ti into TempSTList

21. update AvailableNodesList

/* if no more idle nodes at timetk */

22. if ANk == 0

23. break

24. end for

25. k++;

26. end while

/* all tasks in the cluster are schedulable */

27. return true

28. end Schedulability Test()

Note that this scheduling algorithm may cause fragmentations where processing nodes are idle. In our future work,

we plan to reduce processing idle times by leveraging multi-round divisible load scheduling [6].

17

6 Performance Evaluation

We use a discrete simulator to model the system and evaluate the proposed scheduling algorithm with respect to the

metricsTask Miss Ratio or Task Reject Ratio. The Task Miss Ratio is the number of tasks that miss their deadlines to

the total number of tasks that arrive at the system. For algorithms without admission control, we useTask Miss Ratio

to evaluate them. For algorithms with admission control,Task Reject Ratio, the ratio of the number of tasks that are

rejected by the scheduler to the total number of tasks that arrive at the system, is used. Thus, our algorithm focuses on

minimizing theTask Reject Ratio.

6.1 Simulation Setup

The system load,L, is defined as the sum of the minimum execution time of all tasks divided by the total simulation

time 1. The data sizes of tasks are assumed to be normally distributed with a mean of100 and a standard deviation

equal to the mean. The two system parametersCms andCps are assumed equal to10. The deadline of a task is chosen

to be larger than its minimum computation time and is assumedto be uniformly distributed between the minimum and

maximum computation time. The total number of processing nodes in the system is assumed to be10.

We assume a Poisson task arrival process, with the average interval time of the Poisson Distribution defined as

the average minimum execution time of tasks divided by the system load. At each arrival point, the number of tasks

arriving is a randomly chosen number between one and ten, both inclusive. The simulation time is set as1, 000, 000

time units, which is considered to be sufficiently long. The simulation is run ten times and the mean value is computed.

6.2 Comparative Evaluation without Set-up Cost

We compare our algorithm with six popular algorithms. The six algorithms belong to two groups. The first group

are FIFO (First In First Out) based. According to the survey in [12] prominent commercial cluster management

software suites, such as Moab/Maui, LoadLeveler, LSF, PBS,SGE, and OSCAR, are packaged with FIFO as the

default scheduling algorithm. The second group is EDF (Early Deadline First). Algorithms in both groups are further

divided into three types:without admission control, using all nodes for every task, andusing the minimum number

of nodes for every task. Thus, these algorithms are FIFOANNA (FIFO using All Nodes and No Admission control),

FIFOAN (FIFO using All Nodes), FIFOMN (FIFO using Minimum number of Nodes), EDFANNA (EDF using All

Nodes and No Admission control),EDFAN (EDF using All Nodes)and EDFMN (EDF using Minimum number of

Nodes).

1To achieve the minimum execution time of a task, the requirednumber of processing nodes is chosen according to Theorem 5.1 and 5.2. That
is, for the divisible load model without setup cost, the minimum execution time is achieved when all the processing nodesare assigned to it, while
for the divisible load model with setup cost, the minimum execution time could be achieved when less than the total numberof processing nodes
are assigned to it.

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

T
a
s
k
 R

e
je

c
t

R
a
ti

o FIFOAN

FIFOMN

EDFAN

EDFMN

MCDF

Figure 4: Performance Evaluation–1 (Without Setup Cost)

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

T
a
s
k
 M

is
s
 R

a
ti

o

FIFOANNA

EDFANNA

Figure 5: Performance Evaluation–2 (Without Setup Cost)

Figures 4 and 5 compare the performance of the proposed algorithm MCDF to the six algorithms described above.

The algorithm MCDF, performs much better than the other algorithms. We observe in Figure 5 that the two algorithms

without admission control miss deadlines for more than 99% of the tasks. This is because the delays propagate. Among

the four algorithms with admission control (Figures 4), theperformance of FIFOAN and EDFAN is close to MCDF,

but MCDF still exhibits better performance than either of them with a margin of about 10% decrement of Task Reject

Ratio.

6.3 Comparative Evaluation with Set-up Cost

Figures 6, 7, 8 and 9 show the comparative performance of our algorithm with respect to the six algorithms when setup

cost is considered. Since the algorithms without admissioncontrol do not really perform well, we do not consider

them here. The simulation setup is the same as before, exceptthat we consider the setup costs where the values of

ST andSC are varied from 5 to 20. From these graphs, we can see that MDCF, our algorithm, still has the best

performance. Furthermore, it can be observed that as setup costs increase, the gain in performance of MDCF over the

other algorithms increases. Under this simulation, MDCF exhibits much more stability than the other four algorithms:

FIFOAN, FIFOMN, EDFAN, EDFMN. Moreover, as the setup costs increase, the Task Reject Ratio increases for the

19

four algorithms, while the Task Reject Ratio of MDCF remainsrelatively unchanged.

Performance Evaluation (ST=5, SC=5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

T
a
s
k
 R

e
je

c
t

R
a
ti

o

FIFOAN

FIFOMN

EDFAN

EDFMN

MDCF

Figure 6: Performance Evaluation–3 (ST=5, SC=5)

Performance Evaluation (ST=10, SC=10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

T
a
s
k
 R

e
je

c
t

R
a
ti

o FIFOAN

FIFOMN

EDFAN

EDFMN

MDCF

Figure 7: Performance Evaluation–4 (ST=10, SC=10)

6.4 Impact of Cms and Cps

In this section we study the impact of changing the ratio ofCms to Cps, that is, the ratio of communication cost to

computation cost. These two parameters are the most significant parameters, and thus sensitivity of our algorithm to

changes in their ratio is significant.

From Figure 10, we can observe that when the ratio of ofCms to Cps is small, the Task Reject Ratio of our

algorithm is very sensitive to the system load. However, thesensitivity of our algorithm to system load decreases as

the ratio ofCms to Cps increases. Moreover, the algorithm looses all its sensitivity to the system load as the ratio of

Cms to Cps increases beyond3.0.

7 Conclusion

The work presented here addresses the problem of providing deterministic QoS to arbitrarily divisible applications

executing in a cluster. Two specific contributions are made.First, divisible load theory was extended to compute

20

Performance Evaluation (ST=15, SC=15)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

T
a
s
k
 R

e
je

c
t

R
a
ti

o

FIFOAN

FIFOMN

EDFAN

EDFMN

MDCF

Figure 8: Performance Evaluation–5 (ST=15, SC=15)

Performance Evaluation (ST=20, SC=20)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

T
a
s
k
 R

e
je

c
t

R
a
ti

o

FIFOAN

FIFOMN

EDFAN

EDFMN

MDCF

Figure 9: Performance Evaluation–6 (ST=20, SC=20)

the minimum number of processors required to meet an application’s deadline, Second, MDCF, the first cluster-

based, real-time scheduling algorithm designed specifically for arbitrarily divisible loads, was presented and evaluated.

Evaluations show that it out performs six other FIFO and EDF based algorithms. Moreover, MDCF is remarkably

stable with respect to changes in load parameters. In the future, this work will be extended by addressing heterogeneous

clusters and eliminating processing idle times during loaddistributions using multi-round divisible load scheduling.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
1

0.
3

0.
5

0.
7

0.
9 2 4 6 8 10

Ratio of Cms to Cps

T
a

s
k

 R
e

je
c

t
R

a
ti

o

System Load = 0.3

System Load = 0.6

System Load = 1

Figure 10: Sensitivity of MDCF

21

References

[1] T. F. Abdelzaher and V. Sharma. A synthetic utilization bound for aperiodic tasks with resource requirements. InProceedings

of the 15th Euromicro Conference on Real-Time Systems (ECRTS 2003), pages 141–150, Porto, Portugal, July 2003.

[2] A. Amin, R. Ammar, and A. E. Dessouly. Scheduling real time parallel structure on cluster computing with possible processor

failures. InProceedings of the Ninth IEEE International Symposium on Computers and Communications (ISCC 2004), pages

62–67, July 2004.

[3] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren. An opportunity cost approach for job assignment in a

scalable computing cluster.IEEE Transactions on Parallel and Distributed Systems, 11(7):760+, 2000.

[4] R. A. Ammar and A. Alhamdan. Scheduling real time parallel structure on cluster computing. InProceedings of the Seventh

IEEE International Symposium on Computers and Communications (ISCC 2002), pages 69–74, Taormina, Italy, July 2002.

[5] ATLAS (AToroidal LHC Apparatus) Experiment, CERN (European Laboratory for Particle Physics). Atlas web page.

http://atlas.ch/.

[6] V. Bharadwaj, T. G. Robertazzi, and D. Ghose.Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE

Computer Society Press, Los Alamitos, CA, USA, 1996.

[7] B. N. Chun and D. E. Culler. Market-based proportional resource sharing for clusters. Technical Report UCB/CSD-00-1092,

EECS Department, University of California, Berkeley, 2000.

[8] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmark probes for grid assessment. InIPDPS, 2004.

[9] Compact Muon Solenoid (CMS) Experiment for the Large Hadron Collider at CERN (European Laboratory for Particle

Physics). Cms web page. http://cmsinfo.cern.ch/Welcome.html/.

[10] M. L. Dertouzos and A. K. Mok. Multiprocessor online scheduling of hard-real-time tasks.IEEE Trans. Softw. Eng.,

15(12):1497–1506, 1989.

[11] M. Eltayeb, A. Dogan, and F.̈Ozgüner. A data scheduling algorithm for autonomous distributed real-time applications in

grid computing. InProceedings of the 33rd International Conference on Parallel Processing (ICPP 2004), pages 388–395,

Montreal, Quebec, Canada, August 2004.

[12] Y. Etsion and D. Tsafrir. A short survey of commercial cluster batch schedulers.Technical Report 2005-13, Hebrew Univer-

sity, May 2005.

[13] S. Funk and S. Baruah. Task assignment on uniform heterogeneous multiprocessors. InProceedings of the 17th Euromicro

Conference on Real-Time Systems (ECRTS 2005), pages 219–226, July 2005.

[14] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex constraints.In Proc. of

the 21st IEEE Real-Time Systems Symposium, Orlando, Florida, USA, November 2000.

[15] S. Kim and J. B. Weissman. A genetic algorithm based approach for scheduling decomposable data grid applications. In

Proceedings of the International Conference on Parallel Processing (ICPP04), pages 406–413, Montreal, Quebec, Canada,

August 2004.

[16] W. Y. Lee, S. J. Hong, and J. Kim. On-line scheduling of scalable real-time tasks on multiprocessor systems.J. Parallel

Distrib. Comput., 63(12):1315–1324, 2003.

[17] G. Manimaran and C. S. R. Murthy. An efficient dynamic scheduling algorithm for multiprocessor real-time systems.IEEE

Transactions on Parallel and Distributed Systems, 9(3):312–319, 1998.

[18] P. Pop, P. Eles, Z. Peng, and V. Izosimov. Schedulability-driven partitioning and mapping for multi-cluster real-time systems.

In Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 2004), pages 91–100, July 2004.

22

[19] X. Qin and H. Jiang. Dynamic, reliability-driven scheduling of parallel real-time jobs in heterogeneous systems.In Proceed-

ings of the 30th International Conference on Parallel Processing (ICPP 2001), pages 113–122, Valencia, Spain, September

2001.

[20] K. Ramamritham, J. A. Stankovic, and P. fei Shiah. Efficient scheduling algorithms for real-time multiprocessor systems.

IEEE Transactions on Parallel and Distributed Systems, 1(2):184–194, April 1990.

[21] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed scheduling of tasks with deadlines and resource requirements.

IEEE Trans. Comput., 38(8):1110–1123, 1989.

[22] T. G. Robertazzi. Ten reasons to use divisible load theory. Computer, 36(5):63–68, 2003.

[23] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: a computational economy-based job scheduling system for

clusters.Software: Practice and Experience, 34(6):573–590, 2004.

[24] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications of classical scheduling results for real-time systems.

Computer, 28(6):16–25, 1995.

[25] D. Swanson. Personal communication. Director of UNL Research Computing Facility (RCF) and UNL CMS Tier-2 Site,

August 2005.

[26] TERAGRID. http://www.teragrid.org/.

[27] K. van der Raadt, Y. Yang, and H. Casanova. Practical divisible load scheduling on grid platforms with apst-dv. InProceedings

of the 19th International Parallel and Distributed Processing Symposium (IPDPS 2005), Denver, CA, USA, April 2005.

[28] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible load theory: A new paradigm for load scheduling in distributed

systems.Cluster Computing, 6(1):7–17, 2003.

[29] C. S. Yeo and R. Buyya. A taxonomy of market-based resource management systems for utility-driven cluster computing.

Software: Practice and Experience, accepted in Sept. 2005.

[30] D. Yu and T. G. Robertazzi. Divisible load scheduling for grid computing. InProceedings of the IASTED International

Conference on Paralle and Distributed Computing and Systems (PDCS 2003), Los Angeles, CA, USA, November 2003.

[31] L. Zhang. Scheduling algorithm for real-time applications in grid environment. InProceedings of the 2002 IEEE International

Conference on Systems, Man and Cybernetics, October 2002.

23

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2005

	Real-Time Divisible Load Scheduling for Cluster Computing
	Xuan Lin
	Ying Lu
	Jitender S. Deogun
	Steve Goddard

