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CLASSROOM NOTES 

EDITED BY GERTRUDE EHRLICH, University of Maryland 

This department welcomes brief expository articles on problems and topics closely related 
to classroom experience i n  courses that are normally available to undergraduate students, from 
the freshman year through early graduate work. Items of interest to teachers, such as pedagog- 
ical tactics, course improvement, new proofs and counterexamples, and fresh viewpoints i n  gen- 
eral, are invited. All material should be sent to Gertrude' Ehrlich, Mathematics Department, 
University of Maryland, College Park, Maryland 20740. 

MODULES OVER COMMUTATIVE RINGS 

W. G.  LEAVITT, University of Nebraska 

The following is another short proof of the fact that for a commutative ring 
with unit R, any finitely based R-module is "dimensional" in the sense that all 
of its bases have the same number of elements. 

THEOREM. Let R be a commutative ring with unit. I f  M i s  a unitary R-module 
with a basis of n elements, then all bases of M contain exactly n elements. 

Proof. (The method is that of [I] ,  p. 115.) Let {ail (i = 1, . . . , n )  be a basis 
for M. I t  is easy to see that M cannot have an infinite basis. (See 121, p. 241-2. 
Applied to modules, the method shows that for a module with an infinite basis 
all bases have the same cardinality.) Thus let (flj] (j= 1, . , . , m )  be another 
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basis of M. Write ai = xc, atj& (i = 1, - . . , n) and Pj = xgml b j k a k  

( j =  1, . - - , m). If A = [aij] and B = [bij], i t  follows from the independence of 
the ai's and the Pj's that 

(1) AB = I, and (2) B A  = Im, 

where In and Im are unit matrices. Conversely, the existence of relations (1) and 
(2) in a ring R implies the existence of an R-module with bases of lengths m 
and n, namely the module of all m-tuples. This module has, of course, the rows 
of I ,  as a basis, but also has as an alternative basis the rows of A.  This is clear, 
since from (2) each row of I,  is a linear combination of the rows of A ,  while 
from (I), XA = 0 implies XIn = X = 0, so the rows of A are independent. 

Now any homomorphism of R preserves the relations (1) and (2), and so any 
nonzero homomorphic image of R also admits a module with bases of lengths 
m and n. But if we apply Zorn's lemma in the usual way (relative to ideals not 
containing the unit, partially ordered by set inclusion) we obtain a maximal 
ideal I  of R. Since R/I is a field, its modules are vector spaces 'all of whose bases 
are of the same length. Thus since R/I  is a homomorphic image of R, we must 
conclude that  m = n. 
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