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Variation in structural geometry is present in adulthood, but when this variation arises and what influences
this variation prior to adulthood remains poorly understood. Ethnicity is commonly the focus of research of
skeletal integrity and appears to explain some of the variation in quantification of bone tissue. However, why
ethnicity explains variation in skeletal integrity is unclear.
Methods: Here we examine predictors of bone cross sectional area (CSA) and section modulus (Z), measured
using dual-energy X-ray absorptiometry (DXA) and the Advanced Hip Analysis (AHA) program at the narrow
neck of the femur in adolescent (9–14 years) girls (n=479) living in the United States who were classified as
Asian, Hispanic, or white if the subject was 75% of a given group based on parental reported ethnicity. Protocols for
measuring height and weight follow standardized procedures. Total body lean mass (LM) and total body fat mass
(FM) were quantified in kilograms using DXA. Total dietary and total dairy calcium intakes from the previous
month were estimated by the use of an electronic semi-quantitative food frequency questionnaire (eFFQ). Physical
activity was estimated for the previous year by a validated self-administered modifiable activity questionnaire for
adolescentswith energy expenditure calculated from themetabolic equivalent (MET) values from theCompendium
of Physical Activities. Multiple regression models were developed to predict CSA and Z.
Results: Age, time frommenarche, total body leanmass (LM), total body fat mass (FM), height, total calcium, and
total dairy calcium all shared a significant (pb0.05), positive relationship with CSA. Age, time from menarche,
LM, FM, and height shared significant (pb0.05), positive relationships with Z. For both CSA and Z, LM was the
most important covariate. Physical activity was not a significant predictor of geometry at the femoral neck
(p≥0.339), even after removing LM as a covariate. After adjusting for covariates, ethnicity was not a significant
predictor in regression models for CSA and Z.
Conclusion: Variability in bone geometry at the narrow neck of the femur is best explained by body size and
pubertal maturation. After controlling for these covariates there were no differences in bone geometry between
ethnic groups.

Published by Elsevier Inc.

Introduction

Bone growth during adolescence is particularly important to the
prevention of bone fragility during senescence. Growth during adoles-
cence is at its maximum velocity; the rate and pattern of growth during

this life stage are regulated by genes and hormones [1–3] as well as the
environment [4–6]. Understanding the variation in bone growth during
adolescence will better equip researchers to develop interventions
targeted at preventing osteoporosis.

Some indicators of bone growth, such as bone mineral content
(BMC) and bone mineral density (BMD), have been well documented
[4–12]. However, less is known about changes in structural geometry
during adolescence. Structural geometry describes the surface-specific
nature of bone loss and acquisition [13]. The surface, or envelope, on
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which bone is deposited determines how large the bone is and also its
shape. These features describe its bending strength or rigidity, with
bending strength increasingmorewith bone deposition at the periosteal
surface [14].

Structural geometry is influenced by physical activity, nutrition, body
size and composition, pubertal development, and ethnicity [7,15–23].
Greater activity levels benefit bone acquisition and maintenance, but
this is dependent on the activity type, duration, intensity of exertion,
and substrate [14,24]. Leanmuscle mass has a strong effect on structural
geometry, but also shares a strong association with activity [25,26]. It is
possible that loads induced by muscles pulling on bone contribute suffi-
cient loading to impact geometry, but partitioning the effects of activity
and leanmass (LM) is difficult at best. Peak lean tissuemass accrual pre-
cedes peak growth in bone cross sectional area and section modulus,
supporting an osteogenic response to increased muscle mass and asso-
ciated hormonal changes that accompany growth in lean tissue [27].
This relationship varies by sex, as girls have on average a greater pro-
portion of bone to muscle mass than do boys [28]. In adolescent girls,
bone responds positively to the interaction between estrogen (E2)
levels and physical activity [15]. Ruff found that growth velocity in
femoral strength was very poorly correlated with growth velocity in
thigh muscle mass and strongly correlated with growth velocity in
body weight×femur length, suggesting perhaps a greater role for body
mass in development of femoral strength [29]. But growth in fat mass
independent of muscle mass appears to have a negative impact on peri-
osteal expansion and thus section modulus [30–32]. However, precisely
when these factors influence growth in structural geometry and to what
degree remains largely unanswered. While more is known about ethnic
variation in structural geometry of adults [33–36], relatively little has
been done to examine ethnic variation in structural geometry during
late childhood and early adolescence. Further, a better understanding
of the cause(s) of variation in structural geometry between ethnic groups
is needed to better assess future risk of bone fragility and intervention.

To this endwe analyzed structural geometry at the femoral neck in a
sample of adolescent girls (n=479) living in the U.S. Subjects identified
as one of three ethnic groups: Asian, Hispanic, or white. In our analysis
of structural geometry we had three goals: 1. consider the relationship
between leanmusclemass and fatmass and bone geometry; 2. evaluate
the relationship betweenphysical activity, total calcium intake and total
dairy intake, and bone geometry; and 3. determine if ethnic differences
in bone geometry develop by late childhood/early adolescence after
controlling for covariates, with Asians presenting smaller measures of
bending rigidity than Hispanics or whites; and whites presenting the
greatest measures of bending rigidity.

Materials and methods

Research design

This cross-sectional analysis used baseline data from the Adequate
Calcium Today (ACT) project, a school-randomized educational inter-
vention conducted at sites in six states (Arizona, California, Hawaii,
Indiana, Nevada, and Ohio). The baseline data from the multi-site
ACT study have been used to investigate the effects of body size and
ethnicity on BMC [12], perceived lactose intolerance and BMC [37],
ethnic differences in the android/gynoid fat ratio [38], development
and reliability testing of psychosocial measurement of calcium intake
[39], assessment of breast density using DXA [40], development and
analysis of a calcium testing tool [41], the effects of race, acculturation,
and SES on obesity, and the relationship between tanning and bone
mass and structure [42]. Subjects used in this analysis were girls in
the sixth grade, with age at baseline measurement ranging from 9 to
14 years.Middle schools within 1-hour driving time of one of the desig-
nated DXA measurement sites were eligible for participation in ACT if
their student populations had a higher proportion of Asian or Hispanic
students than the state average. Sixth-grade girls within participating

schools were recruited as volunteers via presentations, mailings, and
flyers. Recruitment goals for the total number of Asian, Hispanic, and
non-Hispanic white girls within a school were established based on
goals for the overall ACT project and enrollment distributions in each
school.

Subjects were classified as Asian, Hispanic, or white (Table 1). Inclu-
sion into a particular ethnic group required that a subject be 75% of a
given group based on parental or guardian reported percentage ethnicity
of each biological parent [38]. Ethnicity choices given to the parentswere
American Indian or Alaska Native, Asian or Asian American, black or
African-American, Hispanic or Latino, NativeHawaiian or Pacific Islander,
white, or other. Many parents reported multiple ethnic backgrounds, so
each child was assumed to be one half of each of the ethnicities of each
parent. These percentages were summed and had to total 75% of the
recruited ethnic group (Asian, Hispanic, or white). For example, a child
might get 50% of their Asian ancestry from one parent and 25% from
the other parent that was one-half Asian and one-half white. Letters
requesting consent were sent to parents of the interested students and
girls were enrolled into the program subsequent to completion of re-
quired informed consent and assent documentation. The study was
approved by local Institutional Review Boards.

Bone and body composition measurements

Dual energy X-ray absorptiometry (DXA; Lunar Prodigy, software
version 6.5 and 6.7 GE Medical Instruments, Madison, WI) was used to
derive measures of body composition. Matching instruments and soft-
ware were used at each site. Training of DXA staff was conducted by
the same individual at each geographic site, andmeasurements followed
standardized procedures. Within laboratory and between-laboratory
variance in DXA measurements were determined by measuring total-
body, spine, forearm, and femur phantoms (Hologic, Bedford, MA) at
each geographic site. Each phantom was scanned ten times, with
repositioning of the phantom between each scan, so positioning error
is included in the results. The phantom measurements were analyzed
and reviewed for accuracy errors by an independent group at the
University of California-San Francisco. The means and standard devia-
tions were calculated for each scanned phantom including BMD and
BMC for total-body, spine, femur, and forearm as well as whole body
lean mass (LM) and whole body fat mass (FM). Results indicated that
no study site adjustments for DXA measurements were needed. The
coefficient of variation (percent) for BMD ranged from 0.59 (spine) to
5.36 (total forearm 800 density); for BMC from 1.18 (spine) to 1.93
(total-body); and for area from 1.19 (spine) to 4.06 (neck). The coeffi-
cients of variation for LM and FM were 0.72 and 1.10, respectively. A
singleDXAoperator performed all scans at each site, except in California
and Indiana, where two operators were used. The reliability between
operators was 0.96–0.99 for California and 0.97–0.99 for Indiana. [12].
Subjects provided a urine sample for use in a pregnancy testing prior
to the DXA scan. If the test was negative, then a subject could proceed
with scanning.

The Advanced Hip Analysis (AHA) program provided measures of
structural geometry at the femoral neck. The AHA software calculated
several measures of structural geometry using data derived from the
DXA curves calculated from proximal femur scans [16,43,44]. From
this information the following measures of geometry were included
in this analysis:

1. Cross sectional moment of inertia (CSMI, mm4) wasmeasured at the
section of minimum CSMI within the region of interest (ROI) on the
femoral neck. This measure reflects the distribution of material
around the neck axis and is necessary in order to calculate a bone's
resistance to bending stress:

CSMI ¼ k dxð Þ
ρ

∑PBMx2− ∑PBMx
PBM

� �2
" #

mm4
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where PBM is a pseudo-bone mineral value based on the X-ray ab-
sorption data, k is a PBM to BMC conversion factor, ρis the average
physical density of bone (1.85 g/cm3), and dx is the distance be-
tween scan lines. This variable was not a unit of analysis, rather its
calculation was necessary to quantify section modulus.

2. Sectionmodulus (Z, mm4)was derived using CSMI. Sectionmodulus
is a ratio of CSMI to the distance of the outer most point on the
periosteum. Section modulus evaluates the size and shape of the
cross section in a given ROI while controlling for distance from
the neutral axis (y) to the periosteal diameter:

Z ¼ CSMI
y

where y is the distance from the neutral axis to the periosteal
margin.

3. Cross sectional area (CSA, mm2) was used to measure the amount
of cortical bone at the section of minimum CSMI within the ROI on
the femoral neck.

Structural geometrywas calculated for both the left and right femoral
necks. These values were not significantly different from one another, so
the average value of the left and right sides were used in this analysis.

Anthropometry and sexual maturity

Weight was measured with subjects wearing laboratory issued
scrubs and without shoes on an electronic scale or beam balance and
recorded to the nearest 0.1 kg. Sets of three measurements were
taken until two measures were within a 0.2 kg agreement and the
median was used for analysis. Height was measured with the subject
standing barefoot against awall with her head in the Frankfurt horizontal
plane. A stadiometer was used to measure height and measurements
were recorded to the nearest 0.1 cm. Sets of three measurements were
taken until two measures were within a 0.2 cm agreement and the
median was used for analysis. Protocols for measuring height and
weight follow standardized procedures [45]. Total body lean mass
(LM) and total body fat mass (FM) were quantified in kilograms using
DXA. Within-laboratory and between laboratory variance in DXA mea-
surements were determined following the same procedures outlined
for bone above using a whole body phantom (Hologic, Bedford, MA).
The coefficients of variation for lean mass and fat mass were 0.72 and
1.10, respectively.

To assess sexualmaturity, subjectswere asked aboutmenarche status.
Because we have 2 years of follow up data on the subjects analyzed
here, we were able to quantify time to menarche measured as months
away from menarche either pre- or post-menarche. Girls who were
measured/scanned prior to menarche were assigned negative values in
months prior to menarche n ¼ 241; �x ¼ −9:45;σ ¼ 5:34ð Þ at the time
of data collection, while girls who had attainedmenarche were assigned
a positive value denoting the amount of time between menarche
n ¼ 256; �x ¼ 11:06;σ ¼ 10:06ð Þ and data collection.

Lifestyle

Dietary calcium intakes from the previous month were estimated by
the use of an electronic semi-quantitative food frequency questionnaire
(eFFQ) based on a FFQ developed for and evaluatedwith Asian, Hispanic,
and non-Hispanic white youth [46]. The eFFQwas administered through
an interactive multi-media computer program that provided images of
a food or food grouping with a text message of the serving size(s). Re-
spondents were instructed to indicate how often a food was consumed
(e.g., never or less than once per month, 1–3 servings per month, 1
serving per week, 2–4 servings per week, 5 or more servings per
week). Approximately 81 food items containing calcium and foods that
may interferewith calciumconsumption (e.g., soft drinks)were included
in the eFFQ. Calcium intakes from food were categorized in five ways:
(1) calcium exclusively from dairy foods (e.g., milk); (2) calcium from
non-dairy foods (e.g., broccoli); (3) calcium from mixed-foods that
include calcium from both dairy and non-dairy sources (e.g., pizza);
(4) total dairy calcium determined from the sum of both calcium from
dairy foods and calcium from mixed-foods; and (5) total calcium from
food calculated for the entire diet. In this analysis total calcium and
total dairy calcium are used to quantify calcium intake.

An estimate of daily food calcium intake was computed based on a
calcium value assigned to each food item on the eFFQ using mean
methods for assigning nutrient values [47] and multiplying by the
corresponding frequency. Estimated daily food calcium intakes that
were b100 mg/day or >2500 mg/day were considered improbable
and individuals with such values were excluded from analyses using
food calcium intakes.

Physical activity was estimated for the previous year by a validated
self-administered modifiable activity questionnaire for adolescents
[48,49]. Energy expenditure was calculated from the metabolic equiva-
lent (MET) values from the Compendium of Physical Activities [50].
The MET values were expressed as hours of energy expenditure/week
for all activities controlled for body weight. The sum of all MET values

Table 1
Characteristics, bone geometry, and lifestyle among Asian, Hispanic, and white early adolescent girls (10–13 years).

Variable Asian (n=124) Hispanic (n=152) White (n=221) Total (n=497)

Mean±SD (range)

Age (years) 11.1±0.5 (10–13) 11.3±0.6 (10–14) 11.6±0.6 (9–13) 11.4±0.6 (9–14)
Time to menarche (mo) −0.7±10.9 (−17–36.5) 2.4±13.6 (−20.3–38.8) 1.3±13.8 (−23.8–53.3) 1.1±13.1 (−23.8–53.3)
Height (cm)a 147.3±7.1 (129.8–170.3) 151.2±6.4 (131.9–166.3) 155.5±7.1 (139.4–175.1) 152.1±7.7 (129.8–175.1)
Weight (kg)b 43.1±9.7 (27.4–71.1) 51.5±12.7 (28.1–88.7) 52.4±14.2 (29.7–109.2) 49.8±13.4 (27.4–109.2)
Total-body fat mass (kg)b 11.5±6.2 (2.6–28.5) 17.8.7±8.6 (4.1–38.8) 16.7±9.7 (4.1–52.1) 15.8±8.9 (2.6–52.1)
Total-body lean mass (kg)a 29.2±6.2 (20.1–44.5) 31.1±4.9 (20.4–47.9) 33.3±5.4 (22.2–57.1) 31.6±5.3 (20.1–57.1)
CSA (mm2)a 106.5±18.5 (63.5–159.4) 117.6±21.7 (64.2–176.7) 124.8±22.7 (77.9–188.1) 118.1±22.6 (63.5–188.1)
Z (mm4)a 363.9±87.3 (184.8–602.4) 414.1±101.9 (192.7–781.2) 459.1±111.9 (214.1–900.8) 421.7±109.9 (184.8–900.8)
Calcium (mg)a 1118.8±733.7 (108.7–3878.1) 1536.8±916.6 (108.7–3980.6) 1206.2±707.4 (110.4–3980.6) 1285.0±799.8 (108.7–3980.6)
Dairy (mg)c 675.7±456.7 (38.5–105.2) 835.3±582.4 (39.3–270.8) 766.2±502.2 (51.2–609.5) 764.9±519.9 (38.5–609.5)
Physical activity (MET hours/week)d 41.7±41.4 (0.0–235.7) 36.3±45.4 (0.0–323.5) 54.6±60.0 (0.0–443.9) 45.8±52.1 (0.0–443.9)

CSA=cross sectional area; Z=section modulus; MET=metabolic equivalent.
Table footnotes below show Bonferroni comparisons by ethnic groups.

a AbHbW (Pb0.001).
b AbH, AbW (Pb0.001).
c AbH (Pb0.001).
d HbW (Pb0.001).

890 D.L. Osborne et al. / Bone 51 (2012) 888–895



was used as a proxy for physical activity in the past year. Physical activity
questionnaires were entered and checked for accuracy at the Coordi-
nating Center (Purdue University). Inconsistent or incomplete question-
naires were returned to the appropriate site for further clarification from
the subject.

Statistical analysis

Prior to analysis, outliers (±3 standard deviations from mean)
were removed from the total sample (n=748). If an individual was
an outlier for any of the variables they were excluded from analyses,
resulting in a reduced sample size (n=678). Subsequently, only sub-
jectswhose time tomenarchewas knownwere included in this analysis
(n=497). Ethnicity was dummy coded in all regression models. Total
calcium intake was log transformed to account for skewness in this
measure, while total dairy calcium intake was transformed using the
square root to correct for skewness. Physical activity data were also
log transformed to account for skewness. Baseline data were summa-
rized using means and standard deviations. ANOVA was used to test
for differences in age, anthropometry, physical activity and calcium in-
take between ethnic groups. Bonferonni correction was used for
post-hoc comparisons of individual groups. Multiple regression was
used to examine ethnic differences in the two bone outcome variables
at the proximal femur. Factors known to predict skeletal integrity
(age, time to menarche, weight, height, lean muscle mass, physical ac-
tivity, total calcium, total dairy, ethnicity) were entered in sequential
models to evaluate improvement in predictive power and significance
of predictors. Chronological age and time to menarche—an indicator of
maturation—were both included in regression models; the former pro-
vides a reference of physical development and the latter indicates how
far from maturity subjects are at the time of measurement. A series of
statistics and plots were performed to check the assumptions underly-
ing regression. The Durbin–Watson statistic was used to test for auto-
correlation in regression models, while tolerance was used to evaluate
the likelihood of multicolinearity. Standardized residuals were plotted
against standardized predicted values to evaluate the assumptions of
homoscedasticity, while predicted outcomes were plotted against
their actual, respective values to evaluate linearity. The Levene's test
statistic tested for homogeneity of variances. Statistics were performed
using SPSS Version 19 [51].

Results

Subject characteristics

In this sample, ethnic groups differed significantly in age, CSA, Z, and
anthropometry (Table 1). Therewere no differences in time tomenarche.
In post-hoc comparisons of age, CSA, Z, height, and LMAsianswere signif-
icantly smaller than Hispanics and whites, and Hispanics were signifi-
cantly smaller than whites (P≤0.02). Asians weighed significantly less
than Hispanics and whites (Pb0.001), but there were no differences in
weight between Hispanics and whites. Asians had significantly less FM
than Hispanics and whites (Pb0.001), but Hispanics and whites did not
differ in FM. White girls were significantly more active than Hispanics
(P≤0.001), but not Asians and there were no differences between
Hispanics and Asians. Hispanics consumed significantly more total
calcium than whites (Pb0.03) and Asians (Pb0.001), but total calcium
consumption in Asians and whites were not different. Total dairy
calcium consumption was also significantly higher in Hispanics than
Asians (Pb0.04), but this was the only significant difference in total
dairy calcium. To evaluate the effects of physical activity on CSA and Z
models were analyzed without the variable LM. The results of these
models were not different from those that included LM and thus only
models including physical activity and LM are discussed.

Evaluating predictors of cross sectional area and section modulus

All models met the assumptions underlying regression. In the
baseline regression models predicting CSA and Z, weight, height, LM
and FM shared low tolerance values and likely share variation explained
in outcomemeasures. Total body fat and leanmass aswell as heightwere
used as anthropometric indicators in subsequent models as they directly
relate to one of our research questions, while weight provides a proxy of
body composition and body size. While including measures of body size
are important for understanding variation in 2-dimensional DXA scans,
LM, FM, height and weight are strongly correlated with one another
and if included in the same regression model would increase the
likelihood of collinearity. Because results affected by collinearity can
be tenuous, only height was included with LM and FM in regression
models. Total calcium and total dairy calcium were used as indicators
of calcium intake in separate regressionmodels as they are not indepen-
dent of one another and thuswould result in problemswith collinearity.
Subsequent to these modifications there were no issues with tolerance,
suggesting collinearity was not a problem in successive models.

Cross sectional area

Results from regression models to predict CSA at the hip are shown
in Table 2 and Fig. 1. In general, age, time to menarche, FM, LM, height,
total calcium, and total dairy calciumwere significant predictors of CSA.
Ethnicity and physical activity failed to reach significance in any of the
models. The standardized coefficients (β) provided a useful means of
analyzing the relative importance of predictors in each model and LM,
time to menarche, and height produced the highest β values across all
models. In the final model, age and FM were relatively equivalent to
one another in terms of importance to predicting CSA. Predictive
power of the models did not differ substantially between the three
models, although the final model produced the highest R2 value.

Section modulus

Multiple regression results for Z are also included in Table 2 and
Fig. 1. Age, time to menarche, LM, FM, and height were significant pre-
dictors across all models. Ethnicity, physical activity, total calcium, and
total dairy calcium failed to reach significance in all models. The β
values for LM suggest that this variable is a very important predictor
of Z in all models, followed by height, time to menarche, and age. The
R2 value varies little in each model and ethnicity does not add any ex-
planatory power to the model.

Discussion

The results of this study are unique in that structural geometry at
the neck of femur was analyzed in a large, multi-ethnic, multi-site
sample of adolescent girls living in the US. Our results suggest that
ethnic differences in CSA and Z at adolescence are best explained by
covariates. These results are consistent with our observations of BMC
in this sample [12], but are contrary to some of the literature on ethnic
differences in bone geometry [7,19,32,33,36].

By this stage of development, age, time to menarche, FM, LM, and
height are all significant predictors of CSA and Z. Total calcium and total
dairy calciumwere significant predictors of CSA, but not Z. It is possible
that increases in calcium and protein contribute to the amount of bone
present in a given section, but do not contribute to the bone's shape
as it pertains to bending stress. Physical activity was not a significant
predictor of either outcome. After controlling for body size, ethnicity
was not a significant predictor of CSA or Z. LM appears to be a very im-
portant predictor of structural geometry which is not surprising given
its role in loading of bone and its association with body size, consistent
with previous research in this area [25,26,28]. Age was significantly
different across ethnic groups, but multiple regression allowed for
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the effects of this covariate to be included in subsequent statistical
models as physiological processes associated with age during this
period are clearly associated with physical growth.

When multiple predictors were included in regression models to
predict CSA and Z, ethnicity was not significant. These findings are
consistent with prior observations in this age group for BMC [12].
There is evidence, however, that ethnic differences are present in
bone geometry [7,19,32,33,36]. Ethnicity's significance as a predictor
in some studies may support an underlying genetic basis to differ-
ences in skeletal integrity. This assumption is tacit when ethnicity

or race are used to group individuals, although relatively few have actu-
ally employed genetic analyses to confirm this. There is a clear genetic
basis to femoral neck geometry [53–56] and this variation interacts
with the environment, but not all bones respond to environmental
stimuli to the same degree [29,57]. Even with this knowledge we still
do not know how these genes vary across ethnic groups. The efficiency
with which early adolescent African American girls [58] and Chinese
girls [59] maintain calcium homeostasis relative to other groups and
the observation that Asian young women maintain greater trabecular
bone thickness than do white young women [60] also supports use of

Table 2
Regression models describing the relationship between predictors and bone CSA and Z.

Models and R2 Cross sectional area (CSA) Section modulus (Z)

(n=479) (n=479)

Model I
Constant B=−134.04 SE B=28.88 B=−764.29 SE B=136.05
Age (years) B=1.87 SE B=0.93 β=0.05 B=10.57 SE B=4.36 β=0.06⁎

Time to menarche (months) B=0.32 SE B=0.05 β=0.19⁎⁎ B=1.14 SE B=0.22 β=0.14⁎⁎

Total body fat mass (kg) B=8.79 SE B=3.00 β=0.22⁎⁎ B=27.36 SE B=14.12 β=0.14
Total body lean mass (kg) B=0.00 SE B=0.00 β=0.59⁎⁎ B=0.01 SE B=0.01 β=0.53⁎⁎

Height (cm) B=0.54 SE B=0.12 β=0.19⁎⁎ B=3.08 SE B=0.57 β=0.22⁎⁎

Weight (kg) B=−0.29 SE B=0.19 β=−0.17⁎⁎ B=−2.55 SE B=0.88 β=−0.03
R2 0.73 0.75

Model II
Constant B=−113.71 SE B=19.69 B=−766.20 SE B=93.57
Age (years) B=2.25 SE B=0.92 β=0.06⁎ B=11.88 SE B=4.35 β=0.07⁎

Time to menarche (months) B=0.33 SE B=0.05 β=0.20⁎⁎ B=1.09 SE B=0.21 β=0.13⁎⁎

Total body fat mass (kg) B=4.72 SE B=1.19 β=0.11⁎⁎ B=22.28 SE B=5.67 β=0.11⁎⁎

Total body lean mass (kg) B=0.00 SE B=0.00 β=0.52⁎⁎ B=0.01 SE B=0.00 β=0.53⁎⁎

Height (cm) B=0.54 SE B=0.12 β=0.19⁎⁎ B=2.99 SE B=0.57 β=0.21⁎⁎

Physical activity(MET hours/week) B=0.47 SE B=0.49 β=0.02 B=0.94 SE B=2.33 β=0.01
Calcium (mg) B=1.68 SE B=0.79 β=0.05⁎ B=4.48 SE B=3.77 β=0.03
R2 0.74 0.76

Model III
Constant B=−106.70 SE B=19.00 B=−751.35 SE B=90.21
Age (years) B=2.33 SE B=0.92 β=0.06⁎ B=12.24 SE B=4.35 β=0.07⁎

Time to menarche (months) B=0.33 SE B=0.05 β=0.19⁎⁎ B=1.08 SE B=0.21 β=0.13⁎⁎

Total body fat mass (kg) B=4.32 SE B=1.91 β=0.11⁎⁎ B=22.38 SE B=5.65 β=0.10⁎⁎

Total body lean mass (kg) B=0.00 SE B=0.00 β=0.51⁎⁎ B=0.01 SE B=0.00 β=0.53⁎⁎

Height (cm) B=0.54 SE B=0.12 β=0.19⁎⁎ B=2.99 SE B=0.57 β=0.21⁎⁎

Physical activity(MET hours/week) B=0.46 SE B=0.49 β=0.02 B=0.85 SE B=2.33 β=0.01
Dairy (mg) B=0.13 SE B=0.06 β=0.05⁎ B=0.45 SE B=0.27 β=0.04
R2 0.75 0.76

Model IV
Constant B=−105.85 SE B=22.34 B=−714.63 SE B=105.81
Age (years) B=2.07 SE B=0.94 β=0.06⁎ B=10.39 SE B=4.45 β=0.06⁎

Time to menarche (months) B=0.33 SE B=0.05 β=0.19⁎⁎ B=1.15 SE B=0.22 β=0.14⁎⁎

Total body fat mass (kg) B=4.22 SE B=1.24 β=0.11⁎ B=22.99 SE B=5.87 β=0.12⁎⁎

Total body lean mass (kg) B=0.00 SE B=0.00 β=0.52⁎⁎ B=0.01 SE B=0.00 β=0.53⁎⁎

Height (cm) B=0.51 SE B=0.13 β=0.17⁎⁎ B=2.75 SE B=0.60 β=0.19⁎⁎

Calcium (mg) B=1.67 SE B=0.81 β=0.05⁎ B=4.96 SE B=3.83 β=0.03
aEthnicity (Asian) B=−1.26 SE B=1.52 β=−0.02 B=−9.58 SE B=7.20 β=−0.04
(Hispanic) B=−11.33 SE B=6.33 β=−0.05 B=10.45 SE B=3.44 β=0.08⁎

R2 0.74 0.76

Model V
Constant B=−99.17 SE B=21.56 B=−699.17 SE B=102.08
Age (years) B=2.16 SE B=0.94 β=0.06⁎ B=10.80 SE B=4.46 β=0.06⁎

Time to Menarche (months) B=0.33 SE B=0.05 β=0.19⁎⁎ B=1.14 SE B=0.22 β=0.14⁎⁎

Total body fat mass (kg) B=4.24 SE B=1.24 β=0.11⁎ B=23.09 SE B=5.87 β=0.12⁎⁎

Total body lean mass (kg) B=0.00 SE B=0.00 β=0.52⁎⁎ B=0.01 SE B=0.00 β=0.53⁎⁎

Height (cm) B=0.51 SE B=0.13 β=0.18⁎⁎ B=2.76 SE B=0.60 β=0.19⁎⁎

Physical activity(MET hours/week) B=0.45 SE B=0.49 β=0.02 B=0.46 SE B=0.27 β=0.01
Dairy (mg) B=0.13 SE B=0.06 β=0.05⁎ B=0.45 SE B=0.27 β=0.04
Ethnicity (Asian)a B=−1.18 SE B=1.52 β=−0.02 B=−9.12 SE B=7.20 β=−0.04
(Hispanic) B=−0.68 SE B=1.33 β=−0.01 B=−10.84 SE B=6.28 β=− 0.06
R2 0.75 0.76

Unstandardized coefficients (B) with standard error and standardized coefficients (β) are provided.
a Ethnic comparisons were in reference to white subjects.
⁎ Pb0.05.

⁎⁎ Pb0.001.
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ethnicity or race as a proxy for some underlying biological basis to
variability in skeletal health. But pooling of subjects by ethnicity or
race may also miss important variation. For example, Finklestein et
al., found significant differences in unadjusted bone mineral apparent
density (BMAD) at the lumbar spine and femur between Chinese and
Japanese women, a difference that would have gone unnoticed had
subjects been pooled as Asian [61]. The ability to define meaningful
categories, however, may not be possible in many situations. The degree
towhich these differences reflect genetic or epigenetic influence remains
unknown.

Variables that captured aspects of growth and development, age and
time tomenarche, were also significant in everymodel predicting CSA or
Z. These results support previous findings suggesting that growth and
pubertal development are important contributors to skeletal integrity
[15,27,62,63]. Fluctuations in hormone levels responsible for this are in
turn affected by genes and energy availability [64,65]. This relationship
likely affects bone growth and development.

Height was important for predicting CSA and Z. These results corre-
spond with our previous findings for BMC and body size in this sample
[12] and support other observations regarding the relationship between
bone geometry and body size in general [17,30,52]. If indicators of body

size are important covariates of bone geometry, then the effects of body
composition must also be considered to investigate potential differ-
ences in LM and FM, each of which correspond to body size.

LM was a significant predictor of CSA and Z in all models and
explained most of the variance in these outcomes. Although, in this
sample, levels of physical activity were not significantly different across
ethnic groups; these results do not reflect long term loading history or
the intensity, duration, and substrate on which loading has occurred.
There is some evidence that load bearing bones are less sensitive to
physical activity in pre- and early pubertal girls than in boys [66],
whichmay also factor into our findings. Further, LMmay share variance
with physical activity, with the former explainingmore of the variation
in CSA and Z and thus masking the effects of the latter. LM also shares a
strong positive relationship with body size. Anthropometric indicators
of body size have been previously noted as important predictors of
bone health outcome [7,12,29], so some of the variation in CSA and Z
explained by LM may be owed in part to differences in body size.
Body size is relevant in terms of functional loading of the axial and
lower appendicular skeleton during locomotion and thus affects skeletal
integrity. Differences in LM and body size across the lifespan would
certainly have an effect on variability in bone quantity and quality.
This relationship is certainly complex in that variability in type of
movement, substrate, and frequency of activity would interact to pro-
duce variability in loading regimes. Some have argued that muscle
and bone should be viewed as a functional unit with muscle develop-
ment driving bone development [25]. Indeed peak LM growth velocity
occurs prior to peak growth in bone, perhaps suggesting that loads im-
posed by muscle are largely responsible for the timing and pattern of
bone growth [25,28,67]. However, the data presented here are cross
sectional and relate to early adolescence, so it is not possible to deter-
mine if our data support these findings.

In this sample, FM was also a significant, positively associated pre-
dictor of CSA and Z, although clearly not as important a predictor as
LM. There is equivocal evidence that FM can influence bone growth.
There is evidence that increases in FM during late adolescence/early
adulthood limits periosteal expansion among girls and thus decreases
bone strength relative to the load imposed on it [31]. However, there is
also evidence that during adolescence FM in girls is positively associated
with periosteal circumference and thus increased bending strength,
similar to our results [67]. Itmay be that body composition is interacting
with physical activity; more active, heavier individuals with greater LM
impose larger loads, inducing skeletal growth to accommodate these
loads.

In terms of lifestyle, total calcium and total dairy calcium indepen-
dent of one anotherwere significant predictors of CSA, but not Z. Physical
activity failed to achieve significance. Research using calcium “intakes” or
“intake of dairy foods” as a predictor of geometry has been equivocal,
with some studies finding significant results [22,68] and others not
[20,69,70]. Dairy foods contribute protein and calcium and may be the
more appropriate predictor of bone geometry [22]. The importance of
physical activity as a determinant of structural geometry is well docu-
mented [17,18,20,21,28,66,71], with some evidence that these effects
last into early adulthood [72,73], so failure of physical activity to predict
bone geometry here is at odds with most of the published literature.
However, our findings support the observations of Macdonald et al.,
who found no significant increase in bone strength in pre- and early ad-
olescent girls exposed to a jumping intervention compared to controls
[21]. Bone growth and maintenance are influenced by intensity and du-
ration of activity, with greater loading at irregular intervals producing
the strongest effects [14,24]. Because MET values are quantified as
hours of energy expenditure/week for all activities controlled for body
weight,we cannot comment on variability in osteogenic effect by activity
type or intensity. Additionally, because LM and physical activity are not
independent of one another it is possible that the former is accounting
for the variation in geometry explained by physical activity. However,
tolerance values for these variables remain high (≥0.72) suggesting
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Fig. 1. Comparison of actual versus predicted (A) cross sectional area and (B) section
modulus at the femoral neck for multiple regression models V. 95% confidence intervals
are indicated adjacent to the line of best fit.
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that the amount of the variance in geometry shared by LM and physical
activity is insufficient to produce collinearity. Additionally, to see if phys-
ical activity had an effect on bone geometry regressionmodels including
all covariates except LM were evaluated, but physical activity still failed
to reach significance (results not shown).

After controlling for covariates, however, these differences disappear.
Covariates indicative of body size—LM, height, FM—explainedmost of the
variation in CSA and Z, suggesting structural geometry scales positively
with body size. If ethnic differences in bone geometry are explained by
body size, then our understanding of when and why these differences
arise may best be framed within an intergenerational perspective.
There is a strong possibility that health and lifestyle across generations
can influence skeletal integrity, particularly given the strong association
between body size and measures of bone health outcome. Growth insult
is dependent on severity of environment, duration and timing. For in-
stance, a sample of adults whose mothers experienced and survived
the DutchWinter Famine (winter of 1944–1945) presentedwith differ-
ent patterns of methylation on the IGF2 gene, with those exposed to
stresses earlier in development deviating the most from unexposed
same sex siblings [74]. Because IGF2 plays a major role in promoting
intrauterine growth, modifications to expressionmay influence skeletal
integrity later in life. Migration studies examining changes across gen-
erations have consistently demonstrated that increasing body size is as-
sociated with improvements in health and nutrition [75,76]. Secular
trends in increasing body size also associated with improvements in
health and nutrition seem to corroborate this as well. Genetic potential
limits body size attainment and thus ultimately height would plateau
following generations of life in a healthy environment. Therefore, this
type of change may not completely buffer against poor bone health
and the infrastructure to insure optimal health and nutrition alone is
likely impossible to attain. However, awareness of these issueswill con-
tribute greater understanding of factors influencing bone health and in-
form future intervention.

There are limitations to this studyworthy of discussion. For instance,
we only measured girls and thus our results are not generalizable to
both sexes. Although our sample was large, ethnically diverse, and
representative of cities in six states, it may not be representative of
the population of girls since not all ethnicities were represented in the
sample. Additionally, all subjects lived and attended school in the United
States, so results may not be generalizable to other cultures. In terms of
methods, the physical activity questionnaire used in this study was vali-
dated on adolescents aged 15–18 years; our sample ranged in age from9
to 14 years so this may have influenced our results for physical activity.
Variation in AHA precision across sites has not been quantified with a
phantom to date, but %CV for BMC across sites suggested that no adjust-
ments were needed to control for scanner/operator differences. Addi-
tionally, scanners were consistently calibrated using a daily calibration
phantom. Finally, these results are limited in that they are cross sectional,
although a longitudinal analysis of geometric change in this sample is
currently underway.

Conclusion

Our results suggest that CSA and Z in early adolescence are associated
with LM and FM, but LM explains most of the variance in all regression
models. This further supports the relationship between muscle and
bone as a functional unit. In terms of lifestyle, physical activity and
calcium and dairy intake were not significant predictors of bone geom-
etry. There were no significant differences between ethnic groups after
controlling for body size. These results contribute to a growing body of
literature on variation in structural geometry at adolescence.
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