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biochem). Stock solutions of 10 mM CHX and 310 mM CAP
were prepared in absolute ethanol, while 0.5 mM MC was

dissolved in 20% (vol/vol) methanol.
Feeding of Protein Synthesis and Protein Phosphatase In-

hibitors. Preilluminated leaves (-2 g fresh wt each) from 4-
to 6-week-old maize plants were excised underwater, in-
serted into 150-ml beakers containing 100 ml of distilled water
(control), 5 ILM CHX, 310 ,uM CAP, or 10 nM MC in water
and maintained at room temperature. When feeding was done
in the dark, the beakers were placed in a darkened fume hood
overnight. The dark sample was then prepared from these
leaves and the corresponding light sample was collected after
a 90-min illumination of the tissue. When feeding was done in
the light, detached control leaves that had been preillumi-
nated for 1.5 hr in water were either maintained in water or

fed inhibitors for 4 hr in continued light, followed by prep-

aration of leaf extracts. Illumination was provided by a

forced-air cooled 300-W, low-temperature lamp at an incident
light intensity of 600-800 /iE m 2 s-' (E, einstein) (400-700
nm).

Preparation of Leaf Extracts. Samples (0.3 g fresh wt) from
the control or inhibitor-treated leaf material were chopped
and ground at 40C in a prechilled mortar containing washed
sand, 2% (wt/vol) insoluble polyvinylpyrrolidone, and 1.5 ml
of the appropriate extraction buffer. Buffer A [0.1 M
Tris HC1, pH 8.0/20% (vol/vol) glycerol/10 mM MgCl2/14
mM 2-mercaptoethanol/1 mM EDTA] was used for prepa-

ration ofPEPC and its protein-serine kinase; buffer B (buffer
A plus 2 mM pyruvate) was used for PPDK; buffer C (50mM
Mops-NaOH, pH 7.5/15 mM MgCl2/2.5 mM dithiothreitol/1
mM EDTA/0.1% Triton X-100) was used for SPS; and buffer
D (0.1 M Tris-HCl, pH 8.0/1 mM EDTA/14 mM 2-mercap-
toethanol) was used for MDH. The crude leaf homogenates
were filtered through an 80-,tm nylon net and centrifuged for
1.5 min at 8700 x g. The supernatant fluid was either used
immediately (PPDK, MDH) or after a 0.2-ml aliquot was

rapidly desalted at 4°C on a Sephadex G-25 column (1 x 5 cm)
equilibrated with 0.1 M Tris-HCI, pH 7.5/10 mM MgCI2/20%
(vol/vol) glycerol for PEPC and PEPC-PK or buffer C minus
Triton X-100 for SPS.

Activity Assays. PEPC activity was determined spectro-
photometrically at 340 nm and 30°C. The assay mixture (12)
contained, in a total vol of 1 ml, 50mM Hepes-KOH (pH 7.3),
2.5 mM phosphoenolpyruvate, 5 mM MgCI2, 1 mM NaHCO3,
0.2 mM NADH, 10 units of malate dehydrogenase, various
concentrations of L-malate, and 10 ,ul of desalted extract
(added last). Malate IC50 values were taken as the malate
concentration required for 50%o inhibition of PEPC activity
under these assay conditions. PEPC-PK activity was mea-
sured by 32p incorporation from [y32P]ATP into purified
dark-form PEPC (10). The phosphorylation mixture con-
tained 35 ,ul of desalted extract, 10 ug of purified dark-form
maize PEPC, an adenylate kinase inhibitor plus a creatine
kinase/phosphocreatine ADP-scavenging system (10), 25
,uM ATP, and 3 ,Ci of [y-32P]ATP in a final vol of60 p1. After
45 min of incubation at 30°C, the reaction was stopped by
adding 20 ,ud of SDS sample buffer (0.25 M Tris-HCl, pH
6.8/8% SDS/40o glycerol/20% 2-mercaptoethanol), fol-
lowed by immediate boiling for 2 min. Vertical SDS/PAGE
was performed as described (13, 14), and autoradiographs
were prepared from the dried gels with Kodak X-Omat AR
film and two Lightning Plus intensifying screens (DuPont) at
-800C.
SPS, PPDK, andMDH activities were measured according

to ref. 15 (at limiting substrate concentrations plus 10 mM P1

at 250C), ref. 16 (forward direction plus 2.5 mM glucose
6-phosphate and 2 units of purified maize PEPC at 300C), and
ref. 17 at 30TC, respectively.

RESULTS AND DISCUSSION

Effects of CHX, CAP, and MC on the Light-Induced
Changes in Malate Sensitivity of Maize Leaf PEPC. The IC50
values for PEPC inhibition by L-malate were used as an

indirect means of following the effect of dark to light transi-
tions on the apparent in vivo activity of the PEPC-PK since
these values reflect the seryl-phosphorylation status of the
target enzyme both in vitro (7, 8) and in vivo in response to
light and dark (9-12). Feeding 5 ,uM CHX to detached
preilluminated maize leaves in the dark overnight completely
and reproducibly prevented the subsequent light-induced
increase in the malate IC50 value ofPEPC without having any
significant effect on the dark-form enzyme (Table 1). In
contrast, CAP treatment had no effect on the light-induced
changes in malate sensitivity of PEPC (Table 1). Overnight
feeding of 5 AM CHX in the dark to predarkened maize leaves
had the same inhibitory effect on light activation of PEPC.
Results similar to those presented in Table 1 were obtained
when detached leaves of sorghum, another C4 grass, and
halved leaves of Portulaca oleracea, a C4 dicot, were fed
CHX (data not shown).
Given that such inhibitors are known not to be absolutely

specific, thus possibly causing detrimental side effects (18),
and that the 3-(3 ,4-dichlorophenyl)-1, 1-dimethylurea-
sensitive light activation/phosphorylation ofPEPC occurs in
the cytoplasm and is somehow related to photosynthetic
electron transport and/or photophosphorylation (5, 6, 19), it
was imperative to examine the effect of CHX treatment on

the in vivo light activation of other photosynthesis-related
enzymes in maize. Cytoplasmic SPS and chloroplast stromal
PPDK are, like PEPC, light-activated by reversible phos-
phorylation/dephosphorylation cycles (2, 3, 6, 15, 20). In
contrast, stromal MDH is light activated by 3-(3,4-
dichlorophenyl)-1,1-dimethylurea-sensitive changes in its SH
redox status mediated by noncyclic electron flow and the
chloroplastic ferredoxin/thioredoxin m system (1, 2, 17, 21).
Notably, the results (Table 2) indicate that the light activation
of these three enzymes was not significantly affected by
feeding 5 A&M CHX to detached maize leaves under condi-
tions identical to those described in Table 1. Similarly, CHX
treatment of detached leaves had no obvious effect on either
their total soluble protein content (mg/g fresh wt) or poly-
peptide pattern (e.g., see Fig. lA, lane 2 versus 3 and lane 5
versus 6) over the duration of these relatively short-term
experiments. Thus, the inhibitory effect of CHX on the
apparent in vivo activity of the PEPC-PK (Table 1) appears
rather selective for the light activation of this specific con-
verter enzyme.
From the results described above, it is clear that de novo

synthesis ofPEPC-PK or some other essential component(s)
(e.g., a putative modifying protein that activates this protein-
serine kinase in vivo) is induced during a 1.5-hr exposure to
light. Thus, it was anticipated that if CHX were fed to
illuminated detached leaf tissue after a point at which suffi-
cient protein (i.e., either PEPC-PK or the putative modifying

Table 1. Effects of protein synthesis inhibitors on light-induced
increase in the malate IC50 value of maize leaf PEPC

Malate IC50, mM

Inhibitor Light (L) Dark (D) L/D
None (control) 0.45 0.18 2.5
CHX 0.20 0.17 1.2
CAP 0.46 0.18 2.6

Preilluminated maize leaves were excised and fed water (control),
5 gM CHX, or 310 jLM CAP in the dark overnight. Dark-form PEPC
extracts were then prepared from these leaves and the corresponding
light-form extracts were made after a 90-min illumination of the
tissue.
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Table 2. Effects of CHX treatment on in vivo light activation of
SPS, PPDK, and MDH in detached maize leaves

Light/dark activity ratio

Enzyme Control* + 5 IAM CHX
SWPt 6.5 5.5
PPDK 7.0 6.9
MDH 11.7 12.7

See Table 1 and Materials and Methods for experimental details.
*The light-activated activities (in ,&mol per min per mg of soluble
protein) of SPS, PPDK, and MDH were 0.14, 0.43, and 0.16,
respectively.

tActivity was determined at limiting substrate concentrations in the
presence of the inhibitor Pi (15).

protein) had already been synthesized in the light so that
PEPC was phosphorylated and in its high malate IC50 form,
continued illumination ofthe inhibitor-fed tissue would main-
tain the target enzyme in its high activation (phosphorylation)
state. This reasoning assumes that the activity of the PEPC
type 2A protein phosphatase (22) is relatively low in the light
and/or that rapid degradation of the newly synthesized
PEPC-PK or putative modifying protein does not take place
in the light. However, when preilluminated (1.5 hr in the light)
control leaf tissue was placed in water or 5 ,M CHX and
maintained in the light for an additional 4 hr, the malate IC50
value remained constant in the absence of the inhibitor but
decreased to a level characteristic of dark-form PEPC in the
presence of CHX (Table 3). These data suggest that (i) the
PEPC type 2A protein phosphatase is active in the light, and
(ii) there is net turnover of the PEPC-PK or putative modi-
fying protein in the light in the absence of its synthesis,
thereby leading to a net dephosphorylation of PEPC and the
resulting decrease in its malate IC50 value. Based on these
observations and suggestions, a more critical and revealing
experiment was designed. Control detached leaves that had
been preilluminated for 1.5 hr were fed 5 AsM CHX and 10 nM
MC, alone and in combination, for 4 hr in the light. This latter
cyclic heptapeptide is a potent and specific inhibitor of plant
and animal type 1 and 2A protein phosphatases both in vitro
and in vivo (23-25). In the absence of the protein synthesis
inhibitor, both the control and MC-treated illuminated tissue
maintained PEPC in its high malate IC50 form (Table 3). In
contrast, in the presence of CHX alone, the activation
(phosphorylation) state of the target enzyme collapsed back
to a malate IC50 value characteristic of the dark-form enzyme
(see above and Table 3). However, in the presence of both
inhibitors, the CHX-induced decrease in the malate IC50
value was largely prevented, clearly indicating that the pro-
tein phosphatase that dephosphorylates light-form PEPC in
vivo remains totally active in the light and is of the type 1 or
type 2A class (23-25), as previously implicated by in vitro
studies (22). Thus, the regulatory phosphorylation status of
PEPC is mainly determined by its light-activated protein-
serine kinase (10), the latter of which appears to be light/dark

Table 3. Effects of protein synthesis and protein phosphatase
inhibitors on the maintenance of the high malate IC50 form of
PEPC in the light

Inhibitor(s) Malate IC50, mM
None (control) 0.46
CHX 0.17*
MC 0.42
CHX + MC 0.35

Detached control leaves, preilluminated for 1.5 hr in water, were

A 1 2 3 4 5 6 7 8 9

modulated by the relative rates of its synthesis and degrada-
tion in the cytoplasm of both C4 monocots (maize, sorghum)
and dicots (P. oleracea).

Effects ofProtein Synthesis Inhibitors on PEPC-PK Activity.
One question arising from the malate-sensitivity experiments
described above (Tables 1 and 3) is whether CHX inhibits the
apparent in vivo PEPC-PK activity by direct interaction with
this converter enzyme, a putative modifying protein, or
PEPC per se. To address this and other issues, in vitro 32P
phosphorylation assays ofPEPC-PK activity were performed
with rapidly prepared, desalted leaf extracts and purified
dark-form PEPC as the protein substrate (10). Fig. 1 shows
the effect of CHX and CAP on light activation of PEPC-PK
activity when the inhibitors were fed to preilluminated de-
tached maize leaves in darkness overnight. While the activity
of the PEPC-PK is low in darkness and high in the light for
the control (10) and CAP-treated tissue (cf. lane 2 versus 5
and lane 4 versus 7, respectively, in Fig. 1B), feeding 5 juM
CHX completely prevented this striking light activation ofthe
protein-serine kinase (cf. lane 3 versus 6 in Fig 1B). When
either CHX (5 gM) or CAP (310 LM) was added directly to
the phosphorylation assay mixture containing the desalted
extract from the illuminated control leaf tissue, no in vitro
inhibition of PEPC-PK activity was observed (cf. lanes 5, 8,
and 9 in Fig. 1B). Similarly, when detached control leaves,
preilluminated for 1.5 hr in water, were fed CHX (5 juM) for
an additional 4 hr in the light, PEPC-PK activity was totally
inhibited (cf. lanes 2 and 4 versus lane 3 in Fig. 2B). The
presence of both CHX and MC also led to a complete
inhibition of PEPC-PK activity (Fig. 2B, lane 5), even though
the malate IC50 value of the endogenous PEPC was relatively

PEPC=_. _ -
PPDK

B 1 2 3 4 5 6 7 8 9

PEPC-

FIG. 1. Light activation of PEPC-PK activity and the effects of
protein synthesis inhibitors in vivo and in vitro. Preilluminated maize
leaves were detached and fed water, 5 ,uM CHX, or 310 ,uM CAP in
the dark overnight. The dark-form PEPC-PK was extracted before
illumination of these leaves and the corresponding light-form protein
kinase was extracted after a 90-min illumination (cf. Table 1).
PEPC-PK activity in desalted leaf extracts was determined by 32P
phosphorylation of purified dark-form PEPC as described in Mate-
rials and Methods and in ref. 10. (A) SDS gel stained with Coomassie
blue R-250. (B) Corresponding autoradiograph of A. Desalted ex-
tracts were prepared from darkened (lanes 2-4) and illuminated
(lanes 5-9) leaf tissue fed water (lanes 2, 5, 8, and 9), 5 ,.M CHX
(lanes 3 and 6), or 310 ,uM CAP (lanes 4 and 7). Lanes 8 and 9,
experiments in which 5 ,uM CHX and 310 ,uM CAP, respectively,
were added directly to the in vitro assay mixture ofPEPC-PK activity
extracted from illuminated control leaf tissue. Lane 1, purified
dark-form PEPC. The 43-kDa creatine kinase monomer [* (see ref.
10)] and the 95-kDa PPDK and 110-kDa PEPC subunits are indicated
in A. Arrows in B point to other light-enhanced but CHX-insensitive
phosphoproteins.

subsequently maintained in water (control) or fedS ,uM CHX, 10 nM
MC, or both for an additional 4 hr in the light before extraction and
assay of PEPC activity with or without L-malate.
*Dark-form PEPC has a malate IC50 value of -0.2 mM (see Table 1).
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FIG. 2. Effects of CHX and MC on PEPC-PK activity when fed
for .4 hr in the light to detached control leaves that had been
preilluminated for 1.5 hr in water before treatment (cf. Table 3).
PEPC-PK was assayed by 32p phosphorylation of purified dark-form
PEPC as described in Materials and Methods and in ref. 10. (A) SDS
gel stained with Coomassie blue R-250. (B) Corresponding autora-
diograph of A. Desalted extracts were prepared from preilluminated
control leaf tissue that was maintained in water (lanes 2) or fed 5 JLM
CHX (lanes 3), 10 nM MC (lanes 4), or 5 IAM CHX plus 10 nM MC
(lanes 5) for an additional 4 hr in the light. Lane 1, purified dark-form
PEPC. The creatine kinase (*), PPDK, and PEPC monomers are
indicated in A.

high under these conditions (Table 3). These collective find-
ings further support the view that the PEPC type 2A protein
phosphatase(s) (22) remains fully active in the light, even in
the presence of CHX, and is effectively inhibited by nano-
molar concentrations of MC in vivo. Except in the presence
of both CHX and MC, whenever the in vitro PEPC-PK
activity was low, so was the malate IC50 value of the
endogenous PEPC from the corresponding leaf tissue and
vice versa (cf. Table 1 versus Fig. 1B and Table 3 versus Fig.
2B).

It is notable that while the in vivo light activation of
PEPC-PK activity is completely inhibited by feeding CHX to
detached leaves (Fig. 1B), other soluble leaf proteins that are
phosphorylated in vitro by endogenous protein kinases are
not affected by such treatment; this includes even those
polypeptides whose in vitro phosphorylation status is greater
in the light than in the dark extracts (see arrows in Fig. 1B).
Therefore, it is evident from the present study that the
inhibitory effect of this cytoplasmic protein synthesis inhib-
itor is quite specific for the PEPC-PK or some other essential
component(s) (e.g., its putative modifying protein), without
having significant effects on other protein kinase and/or
protein phosphatase activities (Fig. 1B) and light-activation
systems (Table 2).

CONCLUDING REMARKS
The present study demonstrates that the in vivo light/dark
regulation ofPEPC-PK activity in C4 leaves (10) involves net
de novo cytoplasmic protein synthesis in the light and sub-
sequent degradation in darkness. At present, it is not known
what essential component(s)-e.g., PEPC-PK itself or a

putative modifying protein-is the target of this unique
light-modulation system. The increasingly complex PEPC
regulatory cascade, involving at least protein synthesis/
degradation and phosphorylation/dephosphorylation cycles,
is totally different from other well-known mechanisms of
reversible light activation ofphotosynthesis-related enzymes
(1-4, 6, 15) and may well explain why the light/dark modu-
lation of PEPC-PK (10) and its target enzyme PEPC (11, 12,
19) is so much slower than that of other photoactivated

enzymes (e.g., PPDK, MDH). It is obvious that further
purification of the PEPC-PK (7) and the subsequent produc-
tion of monospecific antibodies against this protein will
elucidate whether, indeed, this specific enzyme is the target
of this unique, protein turnover-based regulatory system.

In addition, our findings raise several interesting questions
as to how photosynthesis-related (5, 6, 19) light and dark
signals so specifically influence cytoplasmic protein synthe-
sis and degradation, respectively, and whether short-term
protein turnover is, like other posttranslational covalent
modifications, a general mechanism for regulating enzyme
activity in plants in response to external and internal stimuli.
Clearly, our results indicate that this is probably not the case
with respect to the light-activation systems associated with
other photosynthesis-related cytoplasmic and stromal en-
zymes.
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