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Abstract
Cluster computing has emerged as a new paradigm for solving large-scale problems. To enhance QoS and provide perfor-

mance guarantees in cluster computing environments, various real-time scheduling algorithms and workload models have been
investigated. Computational loads that can be arbitrarily divided into independent pieces represent many real-world applications.
Divisible load theory (DLT) provides insight into distribution strategies for such computations. However, the problem of providing
performance guarantees to divisible load applications has not yet been systematically studied. This paper investigates such algo-
rithms for a cluster environment. Design parameters that affect the performance of these algorithms and scenarios when the choice
of these parameters have significant effects are studied. A novel algorithmic approach integrating DLT and EDF (earliest deadline
first) scheduling is proposed. For comparison, we also propose a heuristic algorithm. Intensive experimental results show that the
application of DLT to real-time cluster-based scheduling leads to significantly better scheduling approaches.

1 Introduction
The dawn of the information age has changed how we solve important problems. Emerging computation and data intensive appli-
cations cannot be solved by a single stand-alone machine. This has led to the emergence of cluster computing—which harnesses
the power of hundreds and thousands of machines—as a new paradigm for computing. However, as the size of a cluster increases,
so does the complexity of resource management and maintenance. Automated performance control and resource management is
crucial to achieve continued evolution of cluster computing. Current cluster scheduling practice is similar in sophistication to early
supercomputer batch scheduling algorithms, and no consideration is given to desired quality-of-service (QoS) attributes. To fully
avail the power of computational clusters, new scheduling theory that provides high performance, QoS assurance, and streamlined
management of the cluster resources needs to be developed.

The challenge, however, in developing real-time scheduling theory for cluster computing is to support various types of cluster
applications. Broadly speaking, computational loads submitted to a cluster are structured in two primary ways: indivisible and
divisible. An indivisible load is essentially a sequential job and thus must be assigned to a single processor. The divisible loads are
comprised of tasks that can be executed in parallel and can be further divided into two categories: modularly divisible and arbitrarily
divisible loads. Modularly divisible loads are divided a priori into a certain number of subtasks and are often described by a task
(or processing) graph. Arbitrarily divisible loads can be partitioned into an arbitrarily large number of load fractions. Examples of
arbitrarily divisible loads can be easily found in high energy and particle physics. For example, the CMS (Compact Muon Solenoid)
[10] and ATLAS (AToroidal LHC Apparatus) [5] projects, which are associated with the Large Hadron Collider (LHC) at CERN
(European Laboratory for Particle Physics), execute cluster-based applications with arbitrarily divisible loads. Usually all elements
in such computational loads demand an identical type of processing, and relative to the huge total computation, the processing on
each individual element is infinitesimally small.

The problem of providing QoS or real-time guarantees for sequential and modularly divisible jobs in distributed systems has
been studied extensively. Similarly, significant progress has been made in divisible load theory (DLT)[29]. However, despite the
increasing importance of arbitrarily divisible applications [24], to the best of our knowledge, the real-time scheduling of arbitrarily
divisible loads has not been systematically investigated.

Scheduling of arbitrarily divisible loads represents a problem of great significance for cluster-based research computing facilities
such as the U.S. CMS Tier-2 sites [26]. (The CMS project will not be fully operational until 2007.) One of the management
goals at the University of Nebraska-Lincoln (UNL) Research Computing Facility (RCF) is to provide a multi-tiered QoS scheduling
framework in which applications “pay” according to the response time requested for each job [26]. Existing real-time cluster
scheduling algorithms assume the existence of a task graph for all applications, which are not appropriate for arbitrarily divisible
loads. To better manage these high-end clusters and control their performance, we need new real-time scheduling algorithms for
arbitrarily divisible applications.
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Four contributions are made in this paper. First, DLT is extended to compute the minimum number of processors required to meet
an application’s deadline. Second, based on this, a novel algorithmic approach integrating DLT and EDF (earliest deadline first)
scheduling is proposed. For comparison, we also propose a heuristic algorithm. Third, important design parameters are identified
that affect the performance of real-time divisible-load scheduling algorithms. Fourth, we systematically investigated the effects of
these design parameters on a set of real-time scheduling algorithms, and show that the application of DLT to real-time, cluster-based
scheduling leads to significantly better scheduling approaches.

The remainder of this paper is organized as follows. Related work is presented in Section 2. Section 3 describes both task and
system models. In Section 4, real-time scheduling algorithms investigated in this paper are discussed. We evaluate the performance
of algorithms in Section 5 and conclude the paper in Section 6.

2 Related Work
Development of commodity-based clusters and Grid computing has recently gained considerable momentum. By linking a large
number of computers together, a cluster provides a cost-effective facility for solving complex problems. In a large-scale Grid, the
resource management system (RMS), which provides real-time guarantees or QoS, is central to its operation.

Research has been carried out in utility-driven cluster computing [30, 25] to improve the value of utility delivered to users.
Proposed cluster RMSs [8, 3] have addressed the scheduling of both sequential and parallel loads. The goal of those schemes is
similar to ours: to harness the power of resources based on user objectives.

The scheduling models investigated for distributed or multiprocessor systems most often (e.g., [23, 22, 14, 1, 20, 13]) assume
periodic or aperiodic sequential jobs that must be allocated to a single resource and executed by their deadlines. With the evolution of
cluster computing, researchers have begun to investigate real-time scheduling of parallel applications on a cluster [32, 21, 12, 2, 4].
However, most of these studies assume the existence of some form of task graph to describe communication and precedence relations
between computational units called subtasks (i.e., nodes in the task graph).

The most closely related work to our problem is scheduling algorithms for “scalable real-time tasks” running in a multiprocessor
system presented in [16]. In that paper, like divisible loads, it is assumed that a task can be executed on more than one processor
and as more processors are allocated to it, its pure computation time decreases monotonically. The paper notes that the decision
on the number of processors allocated to tasks is an important factor in the design of parallel scheduling algorithms. However, the
simulations described in the paper are limited and are favorably biased towards their proposed schemes. Therefore, their conclusions
on comparing their proposed MWF (Maximum Workload derivative First) schemes with the EDF and FIXED algorithms [19, 6]
hold true only in certain scenarios.

Our work differs significantly from previous work in real-time as well as cluster computing in both the task model assumed
and in the comprehensiveness of our study. In this paper unlike the previous study [16], we do not assume task execution times are
known a priori. Instead, we apply DLT to guide task partitioning, to derive its execution time function, and to compute the minimum
number of processors required to meet its deadline.

DLT provides an in-depth study of distribution strategies for arbitrarily divisible loads [7, 24, 29]. The goal of DLT is to
exploit parallelism in computational data so that the workload can be partitioned and assigned to several processors such that
execution completes in the shortest possible time [7]. DLT has been previously applied to and implemented in Grid computing
[31, 15, 28]. Complimentary to that work, our paper applies DLT in the design of real-time scheduling algorithms for cluster
computing; specifically, DLT is applied in the partitioning of applications, such as CMS [10] and ATLAS [5], that execute on a large
cluster.

3 Task and System Models
In this section we describe our task and system models briefly, and state assumptions related to these models.

Task Model. We assume a real-time aperiodic task model in which each aperiodic task Ti consists of a single invocation specified
by the tuple (Ai, σi, Di), where Ai ≥ 0 is the arrival time of the task, σi > 0 is the total data size of the task, and Di > 0 is its
relative deadline. The absolute deadline of the task is given by Ai + Di. Section 4.2 presents, in detail, how task execution time is
dynamically computed based on total data size σi, resources allocated (i.e., processing nodes and bandwidth) and the partitioning
method applied to parallelize the computation.

System Model. A cluster consists of a head node, denoted by P0, connected via a switch to N processing nodes, denoted by
P1, P2, . . . , PN . We assume that all processing nodes have the same computational power and all links from the switch to the
processing nodes have the same bandwidth. The system model assumes a typical cluster environment in which the head node does
not participate in computation. The role of the head node is to accept or reject incoming tasks, execute the scheduling algorithm,
divide the workload and distribute data chunks to processing nodes. Since different nodes process different data chunks, the head
node sequentially sends every data chunk to its corresponding processing node via the switch. We assume that data transmission
does not happen in parallel, although it is straightforward to generalize our model and include the case where some pipelining of
communication may occur. For the divisible loads we assume that tasks and subtasks are independent. Therefore, there is no need
for processing nodes to communicate with each other.
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According to divisible load theory, linear models are used to represent processing and transmission times [29]. In the simplest
scenario, the computation time of a load σ is calculated by a cost function Cp(σ) = σCps, where Cps represents the time to compute
a unit of workload on a single processing node. The transmission time of a load σ is calculated by a cost function Cm(σ) = σCms,
where Cms is the time to transmit a unit of workload from the head node to a processing node. For many applications the output data
is just a short message and is negligible, particularly considering the very large size of the input data. Therefore, in this paper we
only model transfer of application input data but not the transfer of output data. The extension to consider the output data transfer
using DLT is straightforward.

4 Algorithms
This section presents real-time scheduling algorithms for divisible loads. To develop the algorithms, we need to make three important
decisions. The first is to adopt a scheduling policy to determine the order of execution for tasks (Section 4.1). The second decision
is to determine the number n of processing nodes to allocate to each task and the third is to choose a strategy to partition the task
among the allocated n nodes (Section 4.2).

4.1 Scheduling Policies
Three scheduling policies to determine the execution order of tasks are investigated: FIFO, EDF and MWF (Maximum Workload
derivative First) [16]. The FIFO scheduling algorithm executes tasks following their order of arrival. EDF, a well-known real-time
scheduling algorithm, orders tasks by their absolute deadlines. MWF is a real-time scheduling algorithm for divisible tasks.

The main rules of MWF are: 1) a task with the highest workload derivative (DCi) is scheduled first; and 2) the number of nodes
allocated to a task is kept as small as possible (nmin) without violating its deadline. Node assignment is discussed in Section 4.2.
Here, we review how MWF determines task execution order and define the workload derivative metric, DCi, where Wi(n) is used
to represent the workload (cost) of a task Ti when n processing nodes are assigned to it.

DCi = Wi(nmin
i + 1)−Wi(nmin

i ) (4.1)

That is, Wi(n) = n × E(σi, n), where E(σi, n) denotes the task’s execution time (see Section 4.2 for E’s calculation). Therefore,
DCi is the derivative of the task workload Wi(n) at nmin

i (the minimum number of nodes needed by Ti to meet its deadline).

4.2 Node Assignment and Task Partitioning
We study two primary strategies for node assignment. First, assign a task all N nodes and thus try to finish the current task as early
as possible. Second, assign a task the minimum number nmin of nodes it needs to meet its deadline, and thereby save resources for
new tasks.

Similarly, two different partitioning methods are investigated: Optimal Partitioning Rule (OPR) (analyzed in Section 4.2.1), and
Equal Partitioning Rule (EPR) (analyzed in Section 4.2.2). OPR is based on divisible load theory (DLT), which states that the
optimal execution time is obtained when all nodes allocated to the task complete their computation at the same time [29]. For
comparison, we propose EPR, based on a common practice of dividing a task into n equal-sized subtasks when the task is to be
processed by n nodes.

The following notations, partially adopted from [29], are used in the analysis.

• T = (A, σ,D): A divisible task, where A is the arrival time, σ is the data size, and D is the relative deadline.

• α = (α1, α2, ..., αn): Data distribution vector, where n is the number of processing nodes allocated to the task, αj is the
data fraction allocated to the jth node, i.e., αjσ, is the amount of data that is to be transmitted to the jth node for processing,
0 < αj ≤ 1 and Σn

j=1αj = 1.

• Cms: Cost of transmitting a unit workload.

• Cps: Cost of processing a unit workload.

Based on our system model (Section 3) we have the following cost functions: the data transmission time on the jth link is
Cm(αjσ) = αjσCms and the data processing time on the jth node is Cp(αjσ) = αjσCps. We assume that the setup costs
for initializing data transmission and processing are negligible. We have also investigated the case where the setup costs may be
significant (see Appendix for details).
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Figure 1: Time Diagram for OPR-Based Partitioning.

4.2.1 Optimal Partitioning Rule (OPR)
For a given task, we first analyze its execution time function, E(σ, n), assuming n nodes are to be allocated to process a total data
size of σ. Then, we use the function to derive the minimum number, nmin, of nodes needed to meet the task’s deadline.

Task Execution Time Analysis. Figure 1 shows an example task execution time diagram following OPR when n nodes are
allocated to process the task. Let E denote Task Execution Time, which is a function of σ and n. We have,

E(σ, n) = α1σCms + α1σCps (4.2)
= (α1 + α2)σCms + α2σCps (4.3)
= (α1 + α2 + α3)σCms + α3σCps (4.4)
. . .

= (α1 + α2 + α3 + ... + αn)σCms +
αnσCps. (4.5)

From (4.2) and (4.3), we get

α1 = α2
σCms + σCps

σCps
=

α2

β
, where

β =
σCps

σCms + σCps
=

Cps

Cms + Cps
(4.6)

Note that 0 < β < 1. It follows that α2 = βα1. Similarly, from (4.3) and (4.4), we have α3 = βα2, and therefore, α3 = β2α1.
This leads to a general formula: αj = βj−1α1. Since αj is the data fraction distributed to the jth processing node, we have∑n

j=1 αj = 1. Substituting αj with βj−1α1 in this equation, we obtain

α1 + βα1 + β2α1 + ... + βn−1α1 = 1.

Solving this equation, we get α1 = 1−β
1−βn . Substituting it into (4.2), we have

E(σ, n) =
1− β

1− βn
σ(Cms + Cps). (4.7)

Derivation of nmin. Given E(σ, n), we can calculate the minimum number nmin of nodes required to meet a task’s deadline.
Let C(n) denote the task completion time function. Assuming that the task T = (A, σ,D) has a start time s, then its completion

time is C(n) = s + E(σ, n), which leads to

C(n) = s +
1− β

1− βn
σ(Cms + Cps). (4.8)

To meet a task’s deadline means its completion time should satisfy the constraint that C(n) ≤ A + D. It follows that
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Figure 2: Time Diagram for EPR-Based Partitioning.

s +
1− β

1− βn
σ(Cms + Cps) ≤ A + D, that is

1− β

1− βn
σ(Cms + Cps) ≤ A + D − s. (4.9)

Since 1− βn > 0. Multiplying both sides of (4.9) by (1− βn), we get

(1− β)σ(Cms + Cps) ≤ (1− βn)(A + D − s). (4.10)

If A + D − s ≤ 0, the task will miss its deadline no matter how many nodes we assign to it and how we partition it. Such a task
will be rejected because it fails the schedulability test of our scheduling algorithms (for details see Sec. 4.3). Thus, A + D− s > 0,
and dividing both sides of (4.10) by (A + D − s) we have

(1− βn) ≥ (1− β)σ(Cms + Cps)
A + D − s

, thus

βn ≤ 1− (1− β)σ(Cms + Cps)
A + D − s

= 1−
(1− Cps

Cms+Cps
)σ(Cms + Cps)

A + D − s

= 1−
( Cms

Cms+Cps
)σ(Cms + Cps)

A + D − s

= 1− σCms

A + D − s

Let γ = 1− σCms

A+D−s . Thus, βn ≤ γ. If γ ≤ 0, starting task T at time s will not leave enough time even for its data transmission and
therefore the task will be rejected as well. Thus, γ > 0, and it follows that n ≥ ln γ

ln β . Since n, the number of nodes assigned, should

be an integer, we have n ≥ d ln γ
ln β e. Therefore, the minimum number of processing nodes that the task needs at time s to meet its

deadline is nmin = d ln γ
ln β e where γ is defined above and β in (4.6).

4.2.2 Equal Partitioning Rule (EPR)
To understand the merits of divisible load theory (DLT) in practical real-time cluster-based scheduling, we analyze EPR as a
comparison. Similar to the analysis for DLT-based OPR, we derive the task execution time function and nmin for EPR.

Task Execution Time Analysis. Assuming n nodes are allocated to a task, an example task execution time diagram following
the EPR is shown in Figure 2. By analyzing the diagram, we have E(σ, n) = σCms + αnσCps, where αn = 1

n . Thus,

E(σ, n) = σCms +
σCps

n
. (4.11)

Derivation of nmin. Assuming that the task T = (A, σ,D) has a start time s, then the task completion time is C(n) =
s + E(σ, n), which must satisfy the constraint that C(n) ≤ A + D. That is,
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s + σCms +
σCps

n
≤ A + D. (4.12)

Thus,

σCps

A + D − s− σCms
≤ n. (4.13)

Therefore, following EPR, the minimum number of processing nodes that the task needs at time s to complete before its deadline is
nmin = d σCps

A+D−s−σCms
e.

4.3 Algorithm Framework
As is typical for dynamic real-time scheduling algorithms [11, 18, 22], when a task arrives, the scheduler dynamically determines

if it is feasible to schedule the new task without compromising the guarantees for previously admitted tasks. The pseudocode for
a general Schedulability Test is shown in Figure 3. It could be configured to generate various real-time divisible load scheduling
algorithms by giving the design decisions on: 1) scheduling policy (FIFO, EDF or MWF), 2) node assignment method (assigning a
task all N or its nmin nodes), and 3) task partitioning rule (OPR or EPR). Upon completion of the test, if all tasks are schedulable
a feasible schedule is developed and the new task is accepted, otherwise, it is rejected1.

By following the aforementioned framework, we generate ten algorithms: EDF-OPR-MN, EDF-OPR-AN, EDF-EPR-MN, EDF-
EPR-AN, FIFO-OPR-MN, FIFO-OPR-AN, FIFO-EPR-MN, FIFO-EPR-AN, MWF-OPR-MN, and MWF-EPR-MN. The nomen-
clature of the algorithms, include three parts corresponding to the three algorithm design decisions. The first part denotes the
scheduling policy adopted: EDF, FIFO or MWF. The second part represents the choice of the partitioning rule: DLT-based OPR or
heuristic EPR. In the third portion of the name, MN means the algorithm assigns a task the minimum number of nodes needed to
meet its deadline, and AN means the algorithm assigns all nodes. Since MWF always allocates a task nmin nodes, the algorithm
only has the MN versions.

5 Performance Evaluation
The previous section proposed various real-time cluster-based scheduling algorithms for divisible loads. This section evaluates their
performance relative to each other and to changes of various configuration parameters.

Cluster Configuration. We use a discrete simulator to simulate a range of clusters that are compliant to the system model
presented in Section 3. For every simulation, three parameters, N , Cms and Cps are specified for a cluster.

Workload Generation. To generate task Ti = (Ai, σi, Di), we assume that the interarrival times follow an exponential dis-
tribution with a specified mean of 1/λ, and task data sizes σi are assumed to be normally distributed with a specified mean of
Avgσ and a standard deviation equal to the mean. Task relative deadlines are assumed to be uniformly distributed in the range of
[AvgD

2 , 3AvgD
2 ], where AvgD is the mean relative deadline. To specify AvgD, a new term DCRatio is introduced. It is defined as

the ratio of mean deadline to mean minimum execution time (cost), that is AvgD
E(Avgσ,N) , where E(Avgσ,N) is the task execution time

computed with Eq (4.7) assuming the task has an average data size Avgσ and runs on all N processing nodes. Given DCRatio, the
cluster size N and the average data size Avgσ, AvgD is implicitly specified as DCRatio×E(Avgσ,N). In this way, by DCRatio,
task relative deadlines are specified relating to the average task execution time. In addition, a task relative deadline Di is chosen
to be larger than its minimum execution time E(σi, N). In summary, we specify the following parameters for every simulation:
(N, Cms, Cps, 1/λ,Avgσ,DCRatio).

To analyze how loaded a cluster is for a simulation, we define another metric SystemLoad. It is derived from the specified
parameters as

SystemLoad =
E(Avgσ,N)

λ
,

which corresponds to

SystemLoad =
TotalTaskNumber × E(N, Avgσ)

TotalSimulationT ime
.

Sometimes, we specify SystemLoad for the simulation instead of average interarrival time 1/λ. Configuring (N, Cms, Cps, SystemLoad, Avgσ,DCRatio)
is equivalent to specifying (N, Cms, Cps, 1/λ,Avgσ,DCRatio), because

1/λ =
SystemLoad

E(Avgσ,N)
.

1Rejection in the cluster environment means that the system administrator (or a program proxy) will negotiate with the client for a feasible task deadline, and the
job will be rescheduled with modified parameters.
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 Data Structure:  � nimin(t)  the minimum number of processing nodes needed to finish Ti before its deadline, assuming it  is dispatched at time t.  � AvailableNodesList <tk, ANk>  a list of number of  available nodes along with the time, where tk is the  time and ANk is the number of available nodes.   Pseudocode: boolean Schedulability-Test(T ) TempTasksList ← T + AdmittedTasksQueue  // According to the chosen scheduling policy:  // EDF, FIFO or MWF (Decision #1)         order TempTasksList  // Obtain the available nodes information  generate AvailableNodesList < tk,ANk >  //Initialization ScheduledTaskList ←φ  while TempTaskList != φ remove Ti(Ai, σi, Di) from TempTasksList  // According to the chosen node assignment policy: // assigning a task nmin or N nodes (Decision #2) identify the earliest time tk when the  available nodes ANk ≥nimin (tk) or ANk ≥ N  // Set scheduled starting time  si ← tk  // According to the chosen partitioning rule: // OPR or EPR (Decision #3), calculate ε following // Eq (4.7) in Section 4.2.1 or Eq (4.11) in Section 4.2.2, // and set the expected completion time ei ← ε (σi, ni) + si  if ei > Ai + Di return false  // Deadline misses    put Ti(Ai, σi, Di, si, ni, ei) into ScheduledTaskList  update AvailableNodesList  end while  /* All tasks in the cluster are schedulable */ AdmittedTasksQueue← ScheduledTaskList  return true  end Schedulability Test() 
Figure 3: Schedulability Test.
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To evaluate the performance of the real-time scheduling algorithms, we use the metric, Task Reject Ratio, which is the ratio of the
number of tasks rejected by a real-time scheduling algorithm to the total number of tasks arriving at the cluster. The smaller the
Task Reject Ratio, the better the real-time scheduling algorithm.

For all figures in this paper, a point on a curve corresponds to the average performance value of ten simulations. In the ten
runs, the same parameters (N, Cms, Cps, 1/λ,Avgσ,DCRatio) are specified but different random numbers are generated for task
arrival times Ai, data sizes σi, and deadlines Di. For each simulation, the TotalSimulationT ime is 10,000,000 time units, which
is sufficiently long.

In Section 4, we identified three important decisions on Task Partitioning, Node Assignment, and Scheduling Policy in designing
real-time, cluster-based scheduling algorithms for divisible loads. The next three subsections evaluate and compare the algorithms
proposed in Section 4 and respectively investigate the scenarios where each of these three decisions matters.

5.1 OPR vs. EPR Partitioning
We first evaluate the performance of the following real-time scheduling algorithms with respect to the two proposed partioning
rules (OPR and EPR): EDF-OPR-MN v.s. EDF-EPR-MN, EDF-OPR-AN v.s. EDF-EPR-AN, FIFO-OPR-MN v.s. FIFO-EPR-MN,
FIFO-OPR-AN v.s. FIFO-EPR-AN, and MWF-OPR-MN v.s. MWF-EPR-MN. Only the comparisons of EDF-OPR-MN v.s. EDF-
EPR-MN and EDF-OPR-AN v.s. EDF-EPR-AN are presented here. The performance results for the other pairs are similar (see
Figure 13-20 in Appendix for details).

5.1.1 Simulation Modeling
For our basic simulation model we chose the following parameters: number of processing nodes in the cluster, N = 16; unit data
transmission time, Cms = 1; unit data processing time, Cps = 100; SystemLoad changes in the range {0.1, 0.2, · · · , 1.0};
Average data size, Avgσ = 200; and the ratio of the average deadline to the average execution time, DCRatio = 2. Our simulation
has a three-fold objective. First, we want to verify our hypothesis that it is advantageous to apply DLT in real-time cluster-based
scheduling. Second, we study the effects of DCRatio, and third, we want to investigate effects of the processing speed.

5.1.2 Merits of DLT for Cluster Scheduling
To study the merits of DLT we employ our basic simulation model without any changes. The four curves in Figure 4a show the
Task Reject Ratio of the four algorithms: EDF-OPR-MN, EDF-EPR-MN, EDF-OPR-AN, and EDF-EPR-AN. Observe that EDF-
OPR-MN always leads to a lower Task Reject Ratio than EDF-EPR-MN. Similarly, observe that EDF-OPR-AN always achieves a
lower Task Reject Ratio than EDF-EPR-AN. These simulation results confirm our hypothesis that it is advantageous to apply DLT in
real-time, cluster-based scheduling algorithms. DLT provides an optimal task partitioning, which leads to minimum task execution
times, and as a result the cluster can satisfy a larger number of task deadlines.

We carried out the same type of simulations by changing, one at a time, the following cluster or workload parameters: cluster
size N , unit transmission time Cms, and average data size Avgσ. Results are similar to Figure 4a, where algorithms with OPR
partitioning always perform better than algorithms with EPR partitioning (see Figure 10, 6d - 6d, 11, and 12 in Appendix for
details).

5.1.3 Effects of DCRatio
To study the effects of the DCRatio, we use the same configuration as the basic simulation except that we vary the DCRatio over
the range {2, 3, 10, 20, 100}. For sake of readability, Figure 4b only shows the performance of EDF-OPR-AN and EDF-EPR-AN
with DCRatio = 2, 10, and 100 (see Figure 6, 7, and 8 in Appendix for other results). Corresponding to different combinations of
algorithm and DCRatio, six curves are produced. Again, Figure 4b shows that the algorithm with OPR partitioning performs better.
In addition, we can see as DCRatio increases, the performance of EDF-EPR-AN becomes closer to that of EDF-OPR-AN. This is
because the higher the DCRatio, the looser the task relative deadlines are. Consequently, the worse execution times caused by a
non-optimal partition, like EPR, will have less impact on the algorithms’ performance. In particular, when DCRatio is extremely
high (100), the two algorithms perform almost the same.

5.1.4 Effects of Processing Speed
To study effects of the processing speed, we vary Cps over the range {10, 50, 100, 500, 1000, 5000, 10000 }. The larger the Cps, the
slower the computation. Figure 4c shows the results of EDF-OPR-MN and EDF-EPR-MN with Cps = 10 and 10000 respectively
(see Figure 9 in Appendix for other results).

From the figure, we can see that the algorithm with OPR partitioning (EDF-OPR-MN) still outperforms the algorithm with
EPR partitioning (EDF-EPR-MN). However, as the processing speed decreases, i.e., Cps increases, the differences between the two
algorithms becomes less and less significant. In particular, when the computation is extremely slow (Cps = 10000), we can see
that the curves for the two algorithms are almost overlapped, indicating non-differentiable Task Reject Ratios. To demonstrate this
point, let us assume Cps is so large that the ratio of Cms to Cps is approaching 0. In the analysis of OPR, we showed that β from
Eq (4.6) will approach 1 in this case, causing the data fractions allocated to processing nodes, α1, α2, · · · , αn, to all be close to 1

n .
Therefore, OPR and EPR will perform the same in this case.
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From the aforementioned intensive experiments, we conclude that no matter what the system parameters are, the algorithms with
DLT-based partitioning (OPR) always perform better than the ones with the equal-sized partitioning heuristic (EPR). This shows
that it is beneficial to apply divisible load theory in real-time, cluster-based scheduling.

5.2 N v.s. nmin Nodes
In this subsection, we compare and analyze the real-time scheduling algorithms with different node assignment methods. We inves-
tigate the performance difference in algorithms assigning all N nodes to every task (ALG-AN) v.s. those assigning the minimum
number nmin of nodes needed to meet a task’s deadline (ALG-MN).

The relative performance of EDF-OPR-MN v.s. EDF-OPR-AN is shown in Section 5.2.1. It is noteworthy that in contrast
to the results in [16] comparing MWF(-MN) and FIXED(-AN) algorithms, our initial data seem to indicate that EDF-OPR-AN
outperforms EDF-OPR-MN most of the time. To gain insight into the performance results, in Section 5.2.2 we carry out rigorous
analysis of a simplified scenario where a scheduling algorithm always assigns K nodes (K < N ) to a periodic divisible task.
This analysis sheds new light on possible scenarios where algorithms assigning nmin nodes (ALG-MN) perform better than those
assigning all N nodes (ALG-AN).

5.2.1 Initial Comparison
In Section 4.2, we have explained the rational behind the two node-assignment strategies: an ALG-AN tries to finish the current
task as soon as possible, while an ALG-MN saves resources for new tasks.

For the N node assignment strategy, the problem is it causes higher parallel execution overhead than the nmin node assignment
counterpart. For the cluster model investigated (Section 3), the higher the transmission cost (Cms), the greater the overhead. As
shown in Figure 1, the node idle time due to data transmission is one type of parallel execution overhead.

On the other hand, the nmin node assignment strategy, trying to save resources for new tasks, will not improve performance if
there is no task coming in the near future. In that case, some number of nodes (potentially N − nmin of them) are left idle and
their processing cycles are wasted. Since the larger the interarrival time 1/λ, the less frequent are the tasks arrivals, we believe that
ALG-MN will loose its performance gain over ALG-AN as the interarrival time 1/λ increases.

We conducted intensive simulations, comparing EDF-OPR-MN v.s. EDF-OPR-AN, to verify the aforementioned analysis and
present some conclusive simulation results.

As explained, EDF-OPR-AN leads to higher overhead than EDF-OPR-MN, and the larger Cms, the higher the parallel overhead.
Thus, we expect that as Cms increases, the performance of EDF-OPR-AN should be affected more than that of EDF-OPR-MN.
Figure 4d shows the relative performance of the two algorithms (Task Reject Ratio of EDF-OPR-MN − Task Reject Ratio of EDF-
OPR-AN) in a simulation where we gradually increase the value of Cms. We can see as Cms gets larger, the difference between
the Task Reject Ratios of EDF-OPR-MN and EDF-OPR-AN decreases, indicating that the relative performance of EDF-OPR-MN
v.s. EDF-OPR-AN improves. Interestingly, for this simulation, the curve is above 0 for most of the cases, indicating EDF-OPR-MN
performs worse than EDF-OPR-AN.

The next group of simulations verifies our prediction that EDF-OPR-MN will perform worse relative to EDF-OPR-AN as task
interarrival time 1/λ increases. As demonstrated in Figure 4e, with the increasing of the interarrival time, Task Reject Ratio of
EDF-OPR-MN − Task Reject Ratio of EDF-OPR-AN also increases. The relative Task Reject Ratio curve once again lies above 0,
meaning EDF-OPR-MN performs worse than EDF-OPR-AN.

The results from our initial simulations contradict the conclusion drawn by [16] that the nmin node assignment strategy performs
better than the maximum node assignment strategy.

We believe that there should be some scenarios where ALG-MN performs better than ALG-AN, while in the other scenarios (for
instance, Figures 4d and 4e) the reverse is true. To show that there are cases where ALG-MN outperforms ALG-AN, we purposely
configure a simulation where ALG-MN should have improved performance.

For this simulation, we choose a similar configuration as that in Figure 4e except changing the DCRatio from 2 to 10. By
increasing the DCRatio, we have longer relative deadlines compared to the mean execution time. For an ALG-MN, a longer
deadline leads to a smaller nmin of nodes allocated to a task, thus smaller overhead. While for an ALG-AN, its node assignment
and resulting overhead will not be affected by deadlines, since a task is always assigned all N nodes. Therefore, we believe, as
DCRatio increases and ALG-MN’s overhead decreases, ALG-MN might perform better than ALG-AN.

Figure 4f validates our analysis. We can successfully create some scenarios (those with interarrival time smaller than 1000 time
units), by increasing DCRatio from 2 to 10, where EDF-OPR-MN outperforms EDF-OPR-AN.

5.2.2 Analysis
In this subsection, we study a simplified scenario where there is only one periodic divisible task. A new algorithm, ALG-K that
always assigns K nodes (K < N ) to every task is investigated, which is compared with an ALG-AN. We demonstrate that with
this simple analysis we could identify some scenarios where an ALG-MN will be better than the corresponding ALG-AN when
handling aperiodic divisible tasks.
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Figure 4: Performance Evaluation.
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The system model is the same as described in Section 3, while the task model is simplified: there is only one periodic task T .
In every period P we assume that a subtask (also called a job) of T with a fixed data size σ and a relative deadline D arrives at the
cluster. For such system and task models, we have proved the following theorems.

Theorem 5.1 Let E(σ, n) denote the execution time of a task with a data size σ running on n nodes. We have E(σ, 1) < NE(σ,N).

Proof According to Divisible Load Theory, the execution times are

E(σ, 1) = σ(Cms + Cps) (5.14)

E(σ,N) =
1− β

1− βN
σ(Cms + Cps) (5.15)

where β is defined in Eq. (4.6). Dividing Eq.(5.14) by Eq.(5.15), we get

E(σ, 1)
E(σ,N)

=
1− βN

1− β

= 1 + β + β2 + · · ·+ βN−1

< N

That is, E(σ, 1) < NE(σ,N).

Corollary 5.2 If first job arrives at time 0, Ai, the arrival time of the ith job, is (i− 1)P . That is

Ai = (i− 1)P. (5.16)

Assertion 5.3 When algorithm ALG-AN is applied, if a task T has a period P such that P ≥ E(σ,N), then the waiting time of
the ith job is 0; On the other hand, if P < E(σ,N), then the waiting time of the ith job is (i− 1)(E(σ,N)− P ).

According to the above Assertion, all deadlines will be met by algorithm ALG-AN if the task period P ≥ E(σ,N).

Theorem 5.4 When an ALG-AN is applied, if P < E(σ,N) and D is finite, some subtasks are doomed to miss their deadlines.

Proof This follows directly from Assertion 5.3: when i is large enough, ALG-AN will miss some job’s deadline sooner or later.

Next, we will prove that under certain conditions, when ALG-K is applied, no subtasks will miss their deadlines.

Corollary 5.5 In any time period [tx, tx + L), for a task T with a period P there are at most dL
P e job arrivals.

Lemma 5.6 When algorithm ALG-K is applied, if P ≥ KE(σ,K)
N−K and Cps > (N − 1)Cms, all subtasks of the periodic task will

start as soon as they arrive.

Proof We prove this Lemma by contradiction. As explained, ALG-K always assigns K nodes (K < N ) to every job. Assume Jx

is the first job that can not start as soon as it arrives. Then at the arrival time Ax of job Jx, the number of available nodes must be
less than K, indicating there are another bN

K c number of jobs running. We order these jobs by their arrival time and get a job list
J1, J2, · · · . Assuming the arrival time of the first job J1 is A1, then in the time period [A1, Ax] there are bN

K c + 1 number of job
arrivals. Since job J1 is still running at time Ax, we have Ax < A1 + E(σ,K). Therefore, in the time period [A1, A1 + E(σ,K))
there are at least bN

K c + 1 number of job arrivals. On the other hand, since P ≥ KE(σ,K)
N−K , according to Corollary 5.5, the number

m of job arrivals in [A1, A1 + E(σ,K)) should be at most bN
K c. This is shown as follows

m ≤ d E(σ,K)
KE(σ,K)

N−K

e

= dN −K

K
e

= dN
K
e − 1

≤ bN
K
c

We find a contradiction.
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K Range EDF-OPR-K
TRR

EDF-OPR-AN
TRR

1 [1263,1359) 0 0.0184
2 [1269,1359) 0 0.0263
4 [1282,1359) 0 0.0251
8 [1307,1359) 0 0.0187

Table 1: For a (N = 16, Cms = 1, Cps = 100) cluster, the verification of the derived range where EDF-OPR-K outperforms
EDF-OPR-AN.

K Range
1 [316, 425)
2 [318, 425)
3 [335, 425)
4 [321, 425)
5 [350, 425)
6 [357, 425)
7 [366, 425)
8 [327, 425)

Table 2: For a (N = 64, Cms = 1, Cps = 100) cluster, the derived range where EDF-OPR-K outperforms EDF-OPR-AN.

Theorem 5.7 When algorithm ALG-K is applied, if P ≥ KE(σ,K)
N−K , Cps > (N − 1)Cms, and D ≥ E(σ,K), then all subtasks of the

periodic task will meet their deadlines.

Proof According to Lemma5.6, all subtasks will start as soon as they arrive. When deadline D ≥ E(σ,K), all subtasks will meet
their deadlines.

From Theorem 5.4 and 5.7, we conclude that if P ∈ [kE(σ,K)
N−k , E(σ,N)), Cps > (N − 1)Cms and D ≥ E(σ,K) for some

K ∈ [1, N ], an ALG-K will perform better than the corresponding ALG-AN.
We carry out simulations to verify this conclusion. A periodic task T that includes subtasks with size σ = 200 and deadline

D = E(σ, 2) is simulated to run in a (N = 16, Cms = 1, Cps = 100) cluster by EDF-OPR-2 or EDF-OPR-AN. According to
the above conclusion, if the task period P ∈ [1263, 1359), EDF-OPR-2 should perform better than EDF-OPR-AN. Simulations are
carried out with the task period changing from 900 to 1700. Figure 4g shows the results, which demonstrate that EDF-OPR-2 has 0
Task Reject Ratio when the task period P falls in [1263, 1359) range, outperforming EDF-OPR-AN. The derived result is verified.

To demonstrate that the above conclusion is also true for aperiodic tasks, we relax the fixed-period assumption. For all the
simulated scenarios, the task interarrival times could be different but are always kept in the derived range where EDF-OPR-K is
guaranteed to perform better than EDF-OPR-AN. Table 1 presents the simulation results. As expected, under these controlled
scenarios, EDF-OPR-K algorithms perform better than EDF-OPR-AN.

Leveraging the Analysis Results. In the last simulation of this subsection, we demonstrate how the insight gained from the
above analysis could be leveraged to derive the scenarios where ALG-MN is guaranteed to outperform its ALG-AN counterpart.
For a (N = 64, Cms = 1, Cps = 100) cluster, we derive the ranges where EDF-OPR-K, K ∈ (1, 2, · · · , 8) outperform EDF-OPR-
AN (Table 2). We can see that the common subrange of the 8 ranges is [366, 425). Thus, if task interarrival times fall into that range
and the task relative deadlines are long enough that ALG-MN always generate nmin ≤ 8, then ALG-MN will perform better than
ALG-AN.

We conduct two simulations, one comparing EDF-OPR-MN v.s. EDF-OPR-AN and the other comparing FIFO-OPR-MN v.s.
FIFO-OPR-AN. A scenario as described above is created. Simulation results show that for such a configuration, the Task Reject Ratios
of EDF-OPR-MN and FIFO-OPR-MN are both 0 while the Task Reject Ratios of EDF-OPR-AN and FIFO-OPR-AN are 0.0523 and
0.0564 respectively. We thus verify under the derived conditions an ALG-MN indeed performs better than its ALG-AN counterpart.

The models in this subsection all assume tasks have the same data size. In the future we plan to extend the analysis to a more
general task model.

5.3 FIFO, EDF and MWF
In this subsection, we examine the effects of different execution order policies and compare algorithms FIFO-OPR-MN, EDF-OPR-
MN v.s. MWF-OPR-MN.
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Recall that the MWF (Maximum Workload derivative First) algorithm, proposed in [16], executes the task with highest workload
derivative (DCi) first, and thus reduces the total workload (cost) of all scheduled tasks. In [16] MWF is compared with EDF
and shown that MWF performs better than EDF. Moreover, the authors claim that MWF is likely to be the best choice for on-line
scheduling of divisible tasks.

We conducted intensive simulations and a systematic study of the three execution order strategies. Our data cast some doubts
on the conclusion drawn in [16] that the MWF algorithm is the best choice. Our hypothesis is that MWF performs well when the
parallel execution overhead (workload) of the tasks is significant compared to their pure computation. To test our theory, a group
of simulations is designed to study how changing parallel overhead affects the performance of scheduling algorithms. In the 20
simulations, we gradually change the data transmission cost (Cms) from 1 to 20, while keeping the data processing cost (Cps)
constant. Since the bigger the Cms, the higher the parallel execution overhead, for the 20 simulations with Cms changing from 1 to
20 the task overhead increases. According to our theory, MWF should perform better than EDF and FIFO when Cms increases.

Figures 4h, 4i and 4j show the results for simulations where Cms = 2, 10 and 20 respectively. As observed, when Cms is
small (Figure 4h), the Task Reject Ratio curve of EDF-OPR-MN lies below that of MWF-OPR-MN, indicating EDF execution
order performs better. As Cms increases (Figures 4i and 4j), the relative performance of the two algorithms changes. When Cms

increases to 20 (Figure 4j), MWF-OPR-MN outperforms EDF-OPR-MN. These data match our analysis and verify our hypothesis
that MWF performs better than EDF and FIFO as workload parallel overhead increases.

Interestingly, for all 20 simulations, EDF-OPR-MN always performs better than FIFO-OPR-MN, while in some scenarios like
the one in Figure 4h, MWF-OPR-MN performs even worse than FIFO-OPR-MN.

Another observation is that as the interarrival time increases, the performance of the three algorithms become non-differentiable
(see Figure 4h). As the interarrival time gets larger and the system load smaller, either EDF and MWF generate the same execution
order as FIFO, or the load is so light that the choice of execution order does not matter anymore.

In summary, our data indicate that the best choice of execution order policy depends on individual system and workload con-
ditions. It might be appropriate and desirable to have an adaptive scheduling algorithm where policies can be configured with
changing conditions. In the future, we plan to study real cluster workload traces and further investigate this problem.

6 Conclusion
In this paper, we address the problem of providing deterministic QoS to arbitrarily divisible applications executing in a cluster. Four
contributions are made. First, we extend DLT to compute the minimum number of processors required to meet an application dead-
line. Second, based on this, a novel algorithmic approach integrating DLT and EDF scheduling is proposed. Third, important design
parameters are identified that affect the performance of real-time divisible-load scheduling algorithms. Finally, we systematically
investigated the effects of these design parameters on a set of real-time scheduling algorithms, and show that the application of DLT
to real-time, cluster-based scheduling leads to significantly better scheduling approaches.
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APPENDIX

Task Execution Time Analysis for OPR with Setup Costs. In Section 4.2.1, we have analyzed for optimal partitioning rule (OPR)
the task execution time function and the minimum nmin number of nodes needed to meet a task’s deadline. There, we assume that
the setup costs for initializing data transmission and processing are negligible. In this appendix, we present the OPR analysis for
the case where the setup costs are significant.

The setup cost of communication comes from physical network latencies, network protocol overhead, or middleware overhead.
In the TeraGrid project [27], the network speed can be up to 40GBit/Sec with latency around 100ms, which means around 1/3 of
the time required to send 1GB of data is due to latency. [9] shows that the setup cost for computation can be up to 25 seconds in
practice, which is not negligible for small tasks.

To integrate the communication and computation setup costs in the analysis, we add the following two notations.
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• ST : The setup time (cost) for the head node to initialize a communication on a link.

• SC: The setup time (cost) for a processing node to initialize a computation.

The goal of the analysis remains the same, to derive the task execution time function and the minimum number of nodes required
to meet a task’s deadline.

Task Execution Time Analysis. Considering the setup costs, the data processing time on the jth node is modeled as Cp(αjσ) =
SC + αjσCps, and the data transmission time on the jth link is Cm(αjσ) = ST + αjσCms. Figure 5 shows an example task
execution time diagram following OPR when n nodes are allocated to a task and setup costs are modeled. Analyzing the time
diagram, we derive the Task Execution Time E , a function of σ and n as follows

E(σ,N) = (ST + α1σCms) + (SC + α1σCps) (6.17)
= 2ST + (α1 + α2)σCms +

(SC + α2σCps) (6.18)
= 3ST + (α1 + α2 + α3)σCms +

(SC + α3σCps) (6.19)
. . .

= (n− 1)ST + (6.20)
(α1 + α2 + α3 + ... + αn)σCms +
(SC + αnσCps)

From (6.17) and (6.18), we have α2 = α1β − φ, where

β =
Cps

Cms + Cps
, and

φ =
ST

σ(Cms + Cps)
. (6.21)

Similarly, from (6.18) and (6.19), we get α3 = α2β − φ, and therefore α3 = α1β
2 − βφ− φ, leading to the general formula

αj = α1β
j−1 − Σj−2

k=0β
kφ, Thus,

αj = α1β
j−1 − 1− βj−1

1− β
φ.

Now, substituting αj with (α1β
j−1 − 1−βj−1

1−β φ) in equation
∑n

j=1 αj = 1, we get

Σn
j=1(α1β

j−1 − 1− βj−1

1− β
φ) = 1

=⇒ Σn−1
j=0 (α1β

j − 1− βj

1− β
φ) = 1.

A solution to the above equation leads to

α1 =
1− β

1− βn
+

nφ

1− βn
− φ

1− β

let
B(n) =

1− β

1− βn
+

nφ

1− βn
− φ

1− β
, (6.22)

it follows that E(σ,N) = ST + SC + σ(Cms + Cps)B(n).
Derivation of nmin. If task T = (A, σ,D) has a start time s, then to meet its deadline E(σ,N) ≤ A+D− s should be satisfied.

That is,

ST + SC + σ(Cms + Cps)B(n) ≤ A + D − s. (6.23)

15



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-EPR-MN
EDF-OPR-MN
EDF-EPR-AN
EDF-OPR-AN

(a) DCRatio = 2, Cms = 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=2, Cps=100, average data size = 200, dcratio=2

EDF-EPR-MN
EDF-OPR-MN
EDF-EPR-AN
EDF-OPR-AN

(b) DCRatio = 2, Cms = 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=4, Cps=100, average data size = 200, dcratio=2

EDF-EPR-MN
EDF-OPR-MN
EDF-EPR-AN
EDF-OPR-AN

(c) DCRatio = 2, Cms = 4
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(d) DCRatio = 2, Cms = 8
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(e) DCRatio = 3, Cms = 1
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(f) DCRatio = 3, Cms = 2
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(g) DCRatio = 3, Cms = 4
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(h) DCRatio = 3, Cms = 8

Figure 6: EDF-OPR v.s. EDF-EPR,DCRatio = 2, 3

This constraint can be solved numerically. The smallest integer n that satisfies the constraint is the minimum number nmin of nodes
that needs to be assigned to task T at time s to satisfy its deadline.

Note that the model without setup costs (Section 4.2.1) is a special case of this model, where ST = SC = 0. Accordingly,
φ = ST

σ(Cms+Cps) = 0 in that case. Thus, we reduce constraint (6.23) to σ(Cms + Cps) 1−β
1−βn ≤ A + D − s, the constraint (4.9)

derived in Section 4.2.1.
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(c) DCRatio = 10, Cms = 4
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(d) DCRatio = 10, Cms = 8
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(e) DCRatio = 20, Cms = 1
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(f) DCRatio = 20, Cms = 2
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(g) DCRatio = 20, Cms = 4
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(h) DCRatio = 20, Cms = 8

Figure 7: EDF-OPR v.s. EDF-EPR,DCRatio = 10, 20
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(b) DCRatio = 100, Cms = 2
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(d) DCRatio = 100, Cms = 8

Figure 8: EDF-OPR v.s. EDF-EPR,DCRatio = 100
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(a) Cps = 10
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(b) Cps = 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=500, average data size = 200, dcratio=2

EDF-EPR-MN
EDF-OPR-MN
EDF-EPR-AN
EDF-OPR-AN

(c) Cps = 500
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(d) Cps = 1000
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(e) Cps = 5000
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(f) Cps = 10000

Figure 9: EDF-OPR v.s. EDF-EPR,CPU
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(a) nodes= 32,Cms = 1
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(d) nodes= 64,Cms = 1
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(e) nodes= 64,Cms = 2
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(f) nodes= 64,Cms = 4

Figure 10: EDF-OPR v.s. EDF-EPR, Nodes=32,64
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(c) Average Datasize= 100, Cms = 4
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(d) Average Datasize= 100, Cms = 8
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(e) Average Datasize= 400, Cms = 1
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(g) Average Datasize= 400, Cms = 4
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Figure 11: EDF-OPR v.s. EDF-EPR, Average Datasize = 100, 400
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(a) Average Datasize= 800, Cms = 1
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Figure 12: EDF-OPR v.s. EDF-EPR, Average Datasize = 800
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(a) DCRatio = 2, Cms = 1
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(e) DCRatio = 3, Cms = 1
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(f) DCRatio = 10, Cms = 1
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(g) DCRatio = 20, Cms = 1
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Figure 13: FIFO-OPR v.s. FIFO-EPR,DCRatio = 2, 3, 10, 20, 100
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(a) Cps = 10
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(c) Cps = 500
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(d) Cps = 1000
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(e) Cps = 5000
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(f) Cps = 10000

Figure 14: FIFO-OPR v.s. FIFO-EPR,CPU
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(b) Average Datasize= 400, Cms = 1
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(c) Average Datasize= 800, Cms = 1

Figure 15: FIFO-OPR v.s. FIFO-EPR, Average Datasize = 100, 400, 800
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Figure 16: MWF-OPR v.s. MWF-EPR,DCRatio = 2, 3, 10, 20, 100

26



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10, average data size = 200, dcratio=2

MWF-EPR-MN
MWF-OPR-MN

(a) Cps = 10

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
T

as
k 

R
ej

ec
t R

at
io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

MWF-EPR-MN
MWF-OPR-MN

(b) Cps = 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=500, average data size = 200, dcratio=2

MWF-EPR-MN
MWF-OPR-MN

(c) Cps = 500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=1000, average data size = 200, dcratio=2

MWF-EPR-MN
MWF-OPR-MN

(d) Cps = 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=5000, average data size = 200, dcratio=2

MWF-EPR-MN
MWF-OPR-MN

(e) Cps = 5000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10000, average data size = 200, dcratio=2

MWF-EPR-MN
MWF-OPR-MN

(f) Cps = 10000

Figure 17: MWF-OPR v.s. MWF-EPR,CPU
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(c) Average Datasize= 800, Cms = 1

Figure 18: MWF-OPR v.s. MWF-EPR, Average Datasize = 100, 400, 800
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(a) Comparison of FIFO, EDF and MWF (Cms=1)
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(b) Comparison of FIFO, EDF and MWF (Cms=3)
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(c) Comparison of FIFO, EDF and MWF (Cms=4)
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(d) Comparison of FIFO, EDF and MWF (Cms=5)
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(e) Comparison of FIFO, EDF and MWF (Cms=6)
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(f) Comparison of FIFO, EDF and MWF (Cms=7)
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(g) Comparison of FIFO, EDF and MWF (Cms=8)
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(h) Comparison of FIFO, EDF and MWF (Cms=9)

Figure 19: FIFO, EDF, MWF.
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(a) Comparison of FIFO, EDF and MWF (Cms=11)
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(b) Comparison of FIFO, EDF and MWF (Cms=13)
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(c) Comparison of FIFO, EDF and MWF (Cms=14)
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(d) Comparison of FIFO, EDF and MWF (Cms=15)
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(e) Comparison of FIFO, EDF and MWF (Cms=16)
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(f) Comparison of FIFO, EDF and MWF (Cms=17)
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(g) Comparison of FIFO, EDF and MWF (Cms=18)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000

T
as

k 
R

ej
ec

t R
at

io

System Load

nodes=64, dcratio=20, Cms=19, Cps=100, average data size = 200

EDF-OPR-MN
FIFO-OPR-MN
MWF-OPR-MN

(h) Comparison of FIFO, EDF and MWF (Cms=19)

Figure 20: FIFO, EDF, MWF.
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