1981

Experimental Envelope Models for Cepheids

Norman R. Simon
University of Nebraska - Lincoln, nsimon@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicssimon

http://digitalcommons.unl.edu/physicssimon/46

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Norman R. Simon Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
35.04 Experimental Envelope Models for Cepheids.
N.R. SIMON, U. Neb.-Lincoln. Numerical experiments are
conducted with a view toward constructing Cepheid models
which satisfy observational and theoretical constraints.
Pulsation analysis is performed in the linear theory.
Radiative models are studied, as well as those in which
the H-zone is spread in a manner that mimics the effect
of mixing-length convection. When the influence of con­
vection on pulsation is examined in two artificial lim­
its, adiabatic and isothermal, the former is found to be
unsatisfactory, the latter tentatively acceptable. Fol­
lowing the results of earlier investigations, we test
the effect of opacity on pulsational period ratios. It
is found that an approximate doubling of the envelope
opacity for temperatures \(\gtrsim 10^6 \text{ K} \) seems sufficient (this
work is still in a preliminary stage) to satisfy observ­
ational constraints with otherwise normal evolutionary
models in both the double mode and bump Cepheid domains.
This work is supported by the National Science Founda­
tion under Grant # AST 8105064.