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University of Nebraska, 2009 

Advisor: Brigette O. Ryalls 

 As infants learn to sit between the ages of 5 and 8 months, they undergo many 

changes in their bodies as well as in their minds, creating conditions for the emergence of 

skills that allow greater interaction with their environment. The present study focused on 

the interaction of developing postural control in sitting with cognition, exemplifying the 

concept of the embodied mind. Look time, or the time an infant looks at an object, served 

as a proxy for the construct of cognitive processing. Three experiments examined 

developmental changes in sitting postural control and looking. The first experiment 

examined archival data of typical infants who were followed longitudinally as they 

learned to sit. Look time was found to decrease as sitting emerged. Postural control 

variables changed toward greater stability and regularity as sitting independence 

emerged. Using an age-held-constant design, infants at the age of 6 months who sat 

independently had significantly shorter look times when compared to their same-age 

peers who were not independent in sitting. Analysis showed that look time was 

consistently shorter for infants who had more postural stability at any sitting stage.  

Experiment 2 examined look time from archival data of infants with motor delay as 

sitting developed. Infants with delays exhibited the same changes in look time as the 

infants with typical development during sitting development. Lastly, a third experiment 

with typical infants beginning to sit found no difference in look time between the two 

conditions of unsupported sitting, and supported sitting, showing that simply being 

provided mechanical stability does not shorten look time.  By exploring the interaction of 

maturation, postural control and look time, the present study reveals that sitting postural 

control interacts with looking in a way that drives cognitive change by expanding the 

infant’s ability to visually explore the environment. Developmental changes in look time 



   

are not simply due to maturation, but rather are due to interactions with experiences and 

movement opportunities. 
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CHAPTER 1: INTRODUCTION 

The Embodied Mind in Early Development: Sitting Postural Control and Visual 

Attention in Infants with Typical Development and Infants with Delays 

 Traditional theories of intelligence rely on notions of representation, symbolic 

thought, and computation, all of which exist in some type of static form akin to a 

computer program which is separate from the body (Newell & Simon, 1972). However, 

evidence from infant studies suggests that the mind is embodied, meaning that a strong 

linkage exists between what we know and what our bodies can do (Smith & Gasser, 

2005; Campos et al, 2000, Thelen, 2000). In essence, the interplay between acting on the 

environment and gathering information about how the world works creates the intellect. 

One of the first acts of body control for an infant is learning to sit. Upright and vertical 

control of the body heralds a new phase in infant development. Unlike an infant who 

succumbs to gravitational force and must be supported externally, an infant who can sit 

independently can maintain his orientation to the rest of the world and begin control of 

his surroundings (Gabbard et al, 2007; Thelen & Spencer, 1998). Thus, the ability to 

orient to the verticality of the world allows the infant to perceive and act on people and 

objects so that lessons about the world can be learned.  

 Infants perceive much information about the world through visual attention 

(Columbo, 2001). By looking at the environment, objects, and people, the infant picks up 

information. Looking is supported by the ability of the child to orient his body, which 

allows the infant to select the object of his attention. Looking is therefore a window to the 

infant’s intellectual processing, and can be used to evaluate cognition and cognitive 

change as the child grows (Cohen & Cashon, 2003).  The focus of the present study was 
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developing sitting postural control and visual attention, because these two developing 

systems are postulated to interact for cognitive change.  

 The interaction of postural control in sitting and visual attention in infancy may 

be critical for future cognitive development when viewed from the perspective of the 

embodiment hypothesis. Evidence supports the idea that visual attention contributes to 

future cognitive skill (Borstein et al, 2006), and that early sitting postural control in 

preterm infants predicts cognitive scores and problem solving behavior at 18 months 

(Wijnrocs & van Veldhoven, 2003). The embodiment hypothesis can be used to explain 

these relationships. In contrast to early theories of information processing wherein the 

nervous system processes information through sensory systems via connections in the 

brain, and then acts on the world as a separate system, embodiment brings the body, the 

mind and the environment together as a dynamic and flexible entity (Figure 1; Thelen, 

2000). 
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Figure 1. Taken from Thelen (2000) Grounded in the world: Developmental origins of 

the embodied mind. The top panel depicts the view that the world is separate from the 

nervous system and the mind, with the world providing information to the nervous 

system, which then directs the body to interact with the world. The lower panel depicts 

the idea of the embodied mind. The interactions between the world, the body and the 

nervous system are interactive and reciprocal. Adapted from Trends in Neuroscience, 20, 

“The brain has a body: Adaptive behavior emerges from interactions of nervous system, 

body, and environment,” 553-557. 

 

So how is a baby built? In order to understand the application of the embodiment 

hypothesis to the developmental problem of learning to interact with the world in an 

efficient and functional posture, we can learn from those attempting to build humanoid 

robots that can accomplish this function (Brooks et al, 1998). Initial attempts to build 
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robots that could serve humans functionally drew upon the assumption that a monolithic 

controller was needed, and that internal representations reflected what was in the world. 

In actuality, humans do not work this way because they do not start out with all the 

materials needed for functioning in the world. Artificial intelligence researchers have 

revised their assumptions now to include a developmental model (Smith & Gasser, 2005). 

Humans are not smart at birth, but learning proceeds incrementally from the simple to the 

complex, adapting along the way. Sensory systems, motor systems, and thinking systems 

all change incrementally and do not create entirely new systems, but build on simpler 

beginnings. Figure 2, modified from Smith & Gasser (2005), depicts the concept that 

vision and haptics interact bi-directionally with each other and with the object to create 

understanding in a redundant way. The figure denotes posture as an additional component 

to the system because posture interacts bi-directionally with vision and other sensory 

systems to help the organism gain knowledge about the world. The idea that cognition is 

embodied stems from findings that thoughts, ideas and problem-solving come from 

interactions of the body with the environment, and is supported by work in neuronal 

selectionism (Sporns & Edelman, 1993), adaptive behavior (Chiel & Beer, 1997), and 

cortical modeling (Almassy, Edelman & Sporns, 1998). 
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Figure 2. Adapted from Smith & Gasser, 2005. The original figure did not contain the 

posture factor, and was meant to show how sensory systems interact in a reciprocal 

fashion to understand objects in the world. The added factor of posture shows that 

posture interacts reciprocally through the sensory systems to understand the world and 

progress developmentally, which describes the embodiment hypothesis.  
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Investigators using the embodiment perspective seek critical periods in infant 

development where a specific cognitive skill follows a known trajectory, which can be 

altered by the advent of a new motor skill. It was this embodiment perspective that was 

explored in the present study, specifically to investigate the trajectory of look duration as 

a reflection of cognitive change during the critical period of sitting development. 

 I will first review the research on sitting postural control in infants. Secondly, 

visual attention in typical infants and its potential effect on cognitive changes during the 

time of sitting development, and on future cognitive skill will be reviewed. Lastly, the 

theory of the embodied mind and supporting evidence will be discussed as a framework 

for the present study. 

Correlates to Motor Development from the 4th through the 8th Month 

 From the 4th through the 8th month, infants develop postural control in a vertically 

oriented sitting position (Folio & Fewell, 2000). Corresponding changes are taking place 

in the areas of cognition, social skills, and perceptual skills. Although many 

developmental tests list changes in these skill areas in a timeline format for normative 

comparisons, no standardized test shows the correlations between motor and cognitive 

skills at any particular time. Therefore, no studies have examined specific changes in 

cognitive, perceptual or social skill as components of sitting develop. Table 1 lists sitting, 

cognitive, and social changes from 4 to 8 months, collated from several standardized 

developmental tests and personal observations (Peabody Developmental Scales [Folio & 

Fewell, 200], Denver Developmental Screening Test [Frankenburg et al, 1992], Bayley 

Test of Infant Development [Bayley, 1969]). However, achievement of each of these 

skills is known to be variable and occur within a range of ages (Folio & Fewell, 2000).  
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Table 1. 

Sitting, Cognitive, Social and Perceptual Skills Summarized from Standardized Tests 

P=Peabody Gross Motor ScaleII , O=Observation, D=Denver Screening Test, B=Bayley Test of Infant Development 

Age Sitting Skill Cognitive Social Perceptual 

4 months Prop sits for several 
seconds if placed  (P) 
Keeps head erect and 
rotates head to follow 
toy when hips are 
lightly supported (P) 
Controls head when 
pulled to sit from 
supine by adult (O) 
Reaches in supported 
sitting (O) 

Orients to sounds 
and speech (D) 
Regards object 
for at least 5 
seconds (B) 
 
Reacts to 
disappearance of 
face (B) 
Habituates within 
30 sec (B) 

Social smile (D) 
 
Interest in toy (B, 
D) 
 
 
Displays 
anticipatory 
excitement (B) 

Regards own 
hands (B, D) 
Grasps rattle (P) 
 
 
 
Shifts attention 
from one object 
to another (B) 

5 months Maintains sitting 
balance with hands 
placed on floor 
beside knees for 8 
second (P) 
Beginning to sit for a 
few seconds without 
arm support (O) 

Persistently 
reaches for object 
(B) 
 

Displays 
awareness of 
novel 
surroundings (B) 

Explores object 
(B) 
 

6 months Sits unsupported for 
60 seconds without 
propping on hands 
(P) 
 
Reaches for toy in 
sitting while 
maintaining balance 
and extending both 
arms for the toy for 8 
seconds (P) 

Plays with mirror 
image by 
looking, smiling, 
patting, mouthing 
(B) 
Plays with string 
on toy (B) 

Works for toy 
(D) 
 
 
 
Feeds self (D) 

Shakes rattle (P) 

7 months Leans over to retrieve 
a toy and comes back 
to upright position 
(P) 

Bangs toys 
during play(B) 

May be anxious 
with strangers 
Plays social 
games like peek-
a-boo 

Looks for source 
of sounds (D) 

8 months Maintains balance in 
sitting while playing 
with a toy with both 
hands (P) 
with control (O) 

Looks toward 
fallen toy by 
looking toward 
floor (B) 

Plays pat-a-cake 
(D) 
 
Indicates wants 
(D) 

Holds 2 blocks 
simultaneously 
for 3 sec (B) 
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 It is also notable that test items in areas outside of the motor area are, never the 

less, dependent on the motor system. For example, grasping a rattle at the age of 4 

months is dependent on the motor skills of controlling the head and arm to see and 

contact the toy, as well as controlling the eyes to target the toy in the first place. All of 

the cognitive items on standard infant tests are somehow dependent on the motor system, 

without a single item being motor-free. Therefore, if an infant is unable or inefficient in 

activating and controlling his motor system, he is unable to display the cognitive 

processes that externally indicate the workings of the mind. At the very least, the infant 

needs to be able to direct the eyes toward an object or face and maintain that gaze using 

the eye muscles for several seconds. Eye gaze and looking duration will be described in 

detail later in the present study as a focus of investigating cognitive change through 

visual attention during motor development. 

 Several major areas have been investigated in relation to the achievement of 

sitting postural control. The emergence of postural responses to a perturbation in sitting 

has been described, as well as the variability inherent in the continuous control of the 

sitting position. Sitting and the development of reaching and grasping are logically tied, 

and this relationship has been investigated due to its potential importance for object 

manipulation and exploration. Visual perception and sitting postural control have been 

researched to examine the developing dynamics of perception of the environment and 

maintaining orientation to the world. These studies will be reviewed to detail skill and 

perceptual development surrounding the development of sitting postural control. This 
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will serve as a background for the research questions examining sitting control and visual 

attention. 

Past Research on the Development of Sitting Postural Control  

 The development of sitting posture control has been studied using various 

experimental paradigms. Most of these paradigms involve a perturbation to the infant, 

either by support surface translation, trunk release, or a moving visual surround. Platform 

perturbation studies are the most prevalent, being favored by several research groups 

(Hadders-Algra, Brogren, & Forssberg, 1996; Hirschfeld & Forssberg, 1994; Woollacott, 

Debu & Mowatt, 1987). Stemming from an innate controller perspective, these studies 

search for a neural maturation mechanism driving sitting postural development, such as a 

built-in group of neurons programmed to respond in an automated way to a stimulus. 

These “central pattern generators” are postulated to drive reflexive movement or 

repetitive cyclical movements, such as walking, kicking, and chewing. To examine these 

central pattern generators, surface electromyography is used to reveal the onset or offset 

of postural muscles in response to the perturbation, and conclusions are drawn from the 

order of muscle firing. Woollacott et al (1987) studied four infants between the ages of 

3.5 and five months and reported that neck muscles activated inconsistently in a 

directionally appropriate manner, and that only five month olds had occasional trunk 

activation. When directionally appropriate muscles were not activated, either 

inappropriate muscles were activated, or no muscle activation pattern could be discerned 

because of highly variable muscle activity. Hirshfeld & Forssberg (1994) studied 15 

infants between the ages of five and eight months. Electromyography recordings revealed 

a large variety of muscle patterns and latencies in children not yet sitting independently. 
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Although the researchers concluded that a postural central pattern generator was activated 

just prior to the emergence of independent sitting, it is not evident how such a neural 

system can be specified from the variability of the many muscle patterns identified. In all 

of these studies, variability is interpreted as random noise. Hadders-Algra, et al. (1996) 

examined 11 healthy infants in a longitudinal study, with data collection at the ages of 5-

6, 7-8, and 9-10 months of age. They investigated whether centrally-generated, direction-

specific muscle activation patterns were evident from the first recording age onwards. 

They selected only trials for analysis with specific, experimenter defined activation 

patterns to prevent confounding by pattern variation. In essence, variability was removed 

from the data because variability was equated with noise. Again, a large variety of muscle 

firing patterns was noted. With increasing age, the variety of muscle patterns decreased, 

with a greater percent of the trials having a common pattern. Although it was clear that 

the muscle activation pattern to improve postural control increased in frequency at 9-10 

months, it was not clear that the decrease in variability was due simply to the maturation 

of a central pattern generator, as concluded by the authors. More efficient muscle activity 

for sitting posture could be driven cognitively, by virtue of the infant discovering 

efficient strategies that allow him to obtain information from the environment with less 

effort. Learning to be more skillful and coordinate the degrees of freedom of the body 

during upright posture could also produce the findings of this study. In fact, other studies 

(Hopkins & Westra, 1988; Hadders-Algra et al, 1996) have also shown that infants can be 

trained to achieve independent sitting earlier, as a result of the handling practices of the 

caregivers. If sitting can be accelerated by handling and practice, it is difficult to make an 
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argument that maturation of a neural central pattern generator is responsible for 

independent sitting. 

  Harbourne et al (1993), using a different paradigm of release of trunk support, 

analyzed seven healthy infants at two stages of sitting development (supported sitting at 

approximately 4 months and prop sitting at approximately 5 months).  The handling of 

the infants was designed to simulate the natural movement of the infant by the caregiver 

during dressing or position change. They found decreased trunk velocity after trunk 

release between the two stages, and a gradual organization of postural muscle responses 

as infants matured. In the first stage, the infants used ten to 30 different combinations of 

muscle activity to maintain posture. From the first stage to the second, some muscle 

synergies were eliminated, and each infant developed a preferred synergy that was used 

most frequently when the trunk was released. This synergy was a combination of 

hamstrings and low back extensor activation. The second most frequently used synergy 

was a combination of low back extensors and quadriceps. It was concluded that the infant 

strives to keep the segments of the body together, and maintain the center of mass over 

the base of support, which would effectively decrease the associated degrees of freedom. 

Use of the predominant synergies of low back-hamstring and low back-quadriceps 

indicated that the infants were keeping the trunk aligned over the pelvis while keeping the 

pelvis from falling too far forward or too far backward from the leg segment. Although 

this study did not specifically address the issue of stability in the development of upright 

posture, the underlying assumption was that the infants sought stability to maintain 

postural control through a variety of muscle synergies. Variability was examined through 
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description of muscle patterns, and was noted to decrease as control of the degrees of 

freedom increased.  

 The above studies provide information about the gradual organization of posture 

during and after a perturbation. However, strategies controlling a reaction to imposed 

perturbation may be different from control strategies used for self-initiated movement 

and continuous control of a stable posture. In addition, the above studies treated 

variability as error rather than information that may be important when evaluating a 

dynamically adapting organism within the environment. Because postural control is 

necessarily dynamic to adapt to changing conditions, variability should be examined as 

part of the behavior of maintaining orientation to important features of the environment.  

Dynamic postural control and the importance of variability. Studies in children and 

adults using the center of pressure (COP) as a reflection of overall postural control have 

provided insight regarding the processes of postural control, age differences, and 

development of body segment control during continuously adapting behavior. However, 

many of these studies have used linear measures to quantify the COP, with the general 

rule that stability is a desired state. To examine changes in stability, measures of the 

amount of sway decrease to indicate increasing stability. Linear measures include the 

length of the COP path, excursion of the COP path, and area of the COP path, along with 

the standard deviations of these variables. These measures provide a value for the amount 

of body sway over the base of support, but have proven inadequate when studies are 

compared for consistent results. Palmiere (2002), in a review of postural control studies 

using the COP methodology, argued that linear measures of the COP do not quantify 

stability of the postural control system, because it is possible to have a large area of the 

COP path while having a stable posture (Hughes et al, 1996) or unstable posture 

(Oppenheimer et al, 1999). Correlations of clinical tests of postural control to the amount 
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of sway have been weak and inconsistent (Duncan et al, 1992). Because of inconsistency 

in the interpretation of linear measures of the COP, the lack of clinical correlation to 

other postural measures, and a lack of standardization, Palmieri (2002) maintained that 

current linear measures are not useful to characterize postural stability, and that new 

measures are needed to examine the COP signal and quantify changes over time.  

 Cavanaugh et al (2005) point out that conventional, linear measures of postural 

stability such as the length of path, range, and area, may be related to stability, but are not 

measuring stability of the system itself. Stability is the response of the postural system to 

a perturbation, which can be internal from the natural sway of the body, or externally 

generated from the environment. A more important construct to measure is dynamic 

stability, which can be quantified by measuring the local behavior of trajectories of the 

system within a state space by using a nonlinear measure. Dynamic stability is a feature 

of a complex system. Increasingly, the variability of other physiological time series is 

being examined in terms of complexity and measured by using nonlinear mathematical 

tools (Lipsitz, 2002; Pincus, Cummins, Haddad, 1993; Stergiou et al, 2003). These 

nonlinear variables reveal the complexity inherent in the system being evaluated and 

measure different aspects of the system than linear variables can not capture. Nonlinear 

techniques have been used to analyze cardiac rhythms (Fleisher, Pincus & Rosenbaum, 

1993), brain activity and neuronal networks (Skarda & Freeman, 1987), as well as other 

motor control issues (Timmer et al, 2000; Morrison & Newell, 1996).  By using nonlinear 

techniques, all these studies reveal complexity in physiological signals over time, which 

is a feature of healthy systems. 

 Recently, center of pressure data has been used by Harbourne & Stergiou (2003) 

to examine the development of early postural control in sitting, allowing examination of 
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the spontaneous and unconstrained movements of infants. These researchers examined 

the continuous, dynamic and adaptive process of developing postural control using 

nonlinear analysis techniques which had not been used in past research. This paradigm 

allowed the infants to sit as independently as possible, while collecting time series data 

on the center of pressure. With monthly data collections from 4-8 months of age, infants 

showed an increase in stability and regularity of the COP, measured using the nonlinear 

tools of the Lyapunov Exponent, and the Approximate Entropy. The standard linear 

measures of the COP, such as the range or area of the COP, did not show any 

developmental trends. 

 Measures of physiological systems taken repeatedly over time allow inspection of 

the health of the system by examining variability. Healthy systems, whether referring to 

heart rate or the COP time series, have a “just right” level of variability within the 

system, which is not too regular, and not too random (Stergiou et al, 2006). This allows 

the system to have a relatively predictable course which can adapt if a change in the 

environment occurs. Without this complexity, adaptability would suffer. Nonlinear 

measures such as the Approximate Entropy (Pincus, 1991) and the Lyapunov Exponent 

are tools useful in describing variability, and therefore can be used to characterize 

postural stability. These tools will be described further in the methods section. 

 In summary, past research of developing sitting in typical infants reveals initial 

variability of postural reactions when trying to control upright posture. In addition to the 

variability present when posture is perturbed, infants have high variability of movement 

when initially learning to sit, which can be visually observed as “wiggly” movement. As 

the infants mature (or learn) and sitting improves, the variability of postural reactions and 

movements appears to decrease, and the stability and regularity of posture increases. 

However, the pervasiveness of variability during normal development of sitting suggests 
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that measures characterizing variability can be used to quantify the stability or control of 

posture as it changes over time. Although the above cited studies provide information on 

the motor aspect of sitting development, the researchers did not examine skills in other 

areas such as reaching, looking and attention, areas that may be directly affected by 

changing postural skill. 

 Sitting control and reaching. Control of sitting posture is correlated with 

developmental change in reaching and manipulation skills. Rochat & Goubet (2000) 

investigated the effect of postural control in sitting on reaching using sitter and non-sitter 

infants. They found that infants who were already sitting used trunk lean along with arm 

reach significantly more than the non-sitting infants. They also showed that infants who 

could not yet sit independently could use more mature reaching patterns when provided 

the “affordance” of pelvic stability by an external stabilization device substituting for 

muscular stability. This substitute for postural control also affected perceptual skill. 

Infants reached with only one hand when the pelvic support was not provided, but 

reached bilaterally when postural stability was provided. Obviously the infants perceived 

the affordance of pelvic stability, leading to a new action of bilateral reach. We can 

speculate that as infants perceive their own developing pelvic stability and learn control, 

they begin to explore new movements with their body and are able to gain more 

information from the environment. This may lead to changes in cognitive skill as the 

infant has new abilities for manipulation and exploration.  

 Thelen and Spencer (1998) studied 4 infants weekly from the age of 3 weeks to 1 

year. They noted that infants achieved controlled stability of the head as a component of 

upright postural control a few weeks before reaching began. The stability of the head and 
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visual stability was postulated as a necessary condition for successful reaching, even as 

beginning reaches occurred. Kamm (1995) followed 5 infants from 8 weeks of age until 

they had one month of sitting experience. She found that vertical orientation had a 

facilitative effect on the frequency and skill of reaching, although infants used a variety 

of reaching strategies. She concluded that postural control and reaching develop as a unit 

as the infant learns control of the head and body for vertical orientation. These 

longitudinal studies of typical infants support the concept that postural control is essential 

for the infant to begin a dynamic interaction with the environment. 

 Visual-spatial perception emerges concurrently with sitting postural control.  

Researchers have extensively investigated vision and its relationship to the development 

of postural control in sitting. The most prevalent experimental situation is the moving 

room paradigm (Butterworth & Hicks, 1977). This paradigm consists of placing the 

infant in a sitting position inside a special room with moving walls and ceiling. The infant 

stays stable, but visual information from the moving visual surroundings causes the 

perception of body sway, and the infant’s head and trunk move to counteract this sway. 

The room provides a perceptual perturbation, similar to the effect noted when one is in a 

stationary car and a large vehicle in peripheral view moves, causing the sensation of self-

movement. With infants, the experimenters oscillate the room and examine the timing 

differences between the room and the infants’ movement. Even prior to independent 

sitting, infants are reacting to the room movement (Barela, Godoi, Junior & Polastri, 

2000). In fact, Barela et al found that the linkage between head and trunk movement and 

the wall movement does not change significantly over time. However, the youngest 

infants in the Barela et al study were 6-months-old, an age when many infants are already 
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sitting independently, at least for short periods. Therefore, the infants may have enough 

experience to have already learned about appropriate postural reactions. This paradigm 

reveals the early bi-directionality and interaction of postural control and the environment 

leading to functional competency for orienting to the environment in an ongoing, 

continuously evolving manner.  

Visual Attention and Cognitive Development  

 Visual attention has been studied extensively in infant cognitive research. 

Measures of visual attention are noted to be useful in determining the efficacy of 

interventions or in quantifying cognitive function that will have some continuity through 

early childhood and into adolescence and adulthood (Columbo, 2001). The theoretical 

underpinning of visual attention research postulates the existence of four components: an 

alerting function, spatial orienting, attention to object features, and endogenous attention 

(Columbo, 2001). The alertness function has to do with the state of preparedness of the 

organism, and in infants relates more to the infant’s state of arousal than with higher 

order attention mechanisms (Thoman, 1990). The spatial orienting function includes 

visual tracking, shifting of attention and the disengagement of attention. This function is 

closely tied to the motor system, and appears to be fairly well established by 6 months of 

age (Posner & Cohen, 1980). The system for attention to object features functions to 

process visual properties of objects for information processing and identification, as well 

as memory for future recognition (Webster & Ungerleider, 1998). The final functional 

area is endogenous attention, which relates to more voluntary attention focus, 

perseverance, and distractibility. In the proposed study, the measures will not tease out 

which of these four functional components of visual attention are being utilized, because 
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looking behavior is the primary interest. However, global measures of visual attention, 

such as looking duration and habituation time, are prevalent in infant cognitive research 

as a reflection of overall cognitive status. The proposed research will focus on simple 

looking duration.  

 There has been an explosion of infant perception and cognition research in the 

past 40 years since the advent of looking paradigm methodology, with looking duration a 

central component of all paradigms. Looking duration is considered to be a reflection of 

the infants’ ability to process information, and has been shown to correlate with other 

measures of infant cognition, as well as relate significantly to later measures of 

intelligence in childhood (Bornstein et al, 2006). Many paradigms utilize looking, 

including visual preference paradigms (Fantz, 1958), the visual habituation paradigm 

(Fantz, 1964; Hunter & Ames, 1988), the violation of expectation paradigm (Spelke, 

2000), and the focused attention paradigm (Ruff & Cappazolli, 2003). I will summarize 

the findings from this body of research, and describe in greater detail a few studies that 

have a direct influence on the present investigation.  

 Summary of looking paradigm findings in investigations of infant cognition.  

Infants’ preferences for certain visual stimuli were among the first findings of researchers 

using looking as a methodology. Fantz (1962) found that measures of infant looking such 

as total looking time were reliable, and determined that infants had natural preferences 

for patterned surfaces rather than uniform surfaces, and complex patterns over simple 

patterns. In addition, when infants show a preference for one object over another, the 

assumption can be made that they can discriminate between two pictures or objects. 

Following the investigations of natural preferences, researchers moved to the visual 
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habituation paradigm. The method here is to show the infant the same stimuli until the 

infant habituates, or looks at the stimuli at least 50% below baseline (first look). Then, 

the examiner adds a new stimulus, and the infants’ attention and looking resumes. By the 

resumption of looking, or looking at the novel stimuli preferentially over the familiar 

stimuli, researchers establish that the infant can differentiate between the two. This visual 

preference paradigm has been used to investigate the capability of infants to have 

particular knowledge about objects, memory, or understand categories and numbers. A 

caveat is that not all infants prefer novelty; some infants will look preferentially at a 

familiar stimulus. However, in general, familiarity preferences should vary according to 

complexity within an age group (Hunter & Ames, 1988). Infants over 6 months of age 

should be shown moderately complex stimuli to exhibit the classic habituation to the 

familiar, and infants younger than 6 months require very simple stimuli to habituate to 

the familiar stimuli. One last paradigm is the focused attention method (Ruff & 

Cappazolli, 2003), in which specific criteria for focused attention vs. casual attention are 

used to time look durations. This paradigm is used with older infants and toddlers who 

are capable of handling objects and moving within the environment.  

Standardized tests have been developed using habituation and dishabituation. One 

of the pioneers in using this methodology was Joseph Fagan, who developed a test called 

the Fagan Test of Infant Intelligence (Fagan, 1991). This test has been shown to be 

significantly correlated to later intelligence test scores (Fagan & Detterman, 1992). 

Infants look at two pictures of the same face until the infant habituates, or stops looking 

at the faces. Then a different face is added and the examiner notes the amount of time the 

infant attends to the novel face (dishabituation). Both abstract designs and faces have 
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been used by Fagan, but he states that the test with just faces has better reliability and 

validity (Fagan, 1992). Reliability of trained observers to score the infants’ visual fixation 

is .94, with a range from .80 - 1.00. The above tests require a laboratory environment 

with a specific, standardized procedure to present the items to the infant. The infants are 

well supported during this testing, and are not required to control their own posture. 

 Look duration can be explained as the amount of time an infant takes to 

extrapolate the information from a visual stimulus. Although there is a greater quantity of 

infant cognitive research using the habituation paradigm than a simple looking time 

paradigm, the findings regarding looking time values are the same. Very young infants 

have long looking times, and take a relatively long time to habituate (Bornstein, 1998). 

As they mature, looking times decrease and it takes less time for them to habituate 

(Bornstein, Pecheux & Lecuyer, 1988). Basically, the infants require less time to extract 

the necessary information from a repeated, constant or non-novel stimulus. It is worth 

noting here that all infant looking time or habituation studies provide postural support to 

the infant when they are too young to sit independently. Generally the infant is held in the 

parent’s lap, but infant seats are sometimes used (Bornstein, 1998).  

 Various procedures for eliciting looking time have been developed. Photos of 

faces or 2-dimensional abstract figures on a screen are the primary targets for infant 

looking. However, variations on this procedure include moving targets, real objects, and 

color differences between looking targets. All of these variations yield essentially the 

same result, which is the developmental change from long looking times at younger ages 

(3 months old), to short looking times as infant’s age (8 months old) (Courage, Reynolds 

& Richards, 2006). In addition, testing of infants born at risk for cognitive developmental 
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delay reveals longer looking times and a slowness of habituation, or a failure to habituate, 

supporting the interpretation of look duration as a reflection of information processing 

efficiency (Cohen, 1981). 

 Looking generalized to objects and faces. As noted above, most of the tests for 

infants investigating the basis of cognition and the continuity of intelligence capacity 

over time utilize looking to pictures of faces. However, can the trend of looking time 

decreasing from 4 to 8 months generalize to looking at stimuli other than faces? 

 Shaddy & Colombo (2004) examined 4 and 6-month-old infants and their 

responses to both dynamic and static stimuli. Infants looked longer to dynamic stimuli 

with an audio track than they did to static stimuli. However, the trend over time was the 

same as for static faces. The researchers found that infants showed the same trend of 

decreasing looking time from 4 to 6 months for dynamic stimuli as found for the static 

stimuli. Another study by Courage, Reynolds & Richards (2006) verified that the trend of 

decreasing looking time from 4 to 7 months was consistent for static and dynamic faces, 

Sesame Street material, and achromatic patterns. These researchers followed infants until 

1 year of age, and found that after 7 months, look times increased for dynamic Sesame 

Street material and faces, but declined for static stimuli. 

 Does this tendency for infants to have shorter looking times generalize to 

situations outside the laboratory? Bornstein & Ludemann (1989) answered this question 

by studying infants in their homes, looking at their mother and at a toy. They studied 

infants in American homes and in Japanese homes to determine whether this naturalistic 

observation applied across different cultures. They found the home data replicated the 

laboratory findings for both cultures. Specifically, infants habituated to either faces or 
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objects within 3 minutes, and showed the same type of qualitative variation noted in the 

laboratory. This variation includes 3 types: 60% of infants show an exponential decrease 

in looking, 10% show an increase followed by a decrease, and 30% fluctuate. They 

concluded that habituation is likely to be a commonplace event for infants in their natural 

environment. It is also likely to affect the behavior of parents (Bornstein, 1985; Tamis-

LeMonda & Bornstein, 1989), in that parents may encourage infants and toddlers in 

different ways depending on the age of the child and the object of attention. This implies 

a different type of interaction between the infant and the environment, a social interaction 

that can affect the evolving cognitive skill of the infant. 

 Relationship to future cognitive skill. Rose et al (1995, 2005) have studied the 

relationship of several aspects of looking and attention to future cognitive skill, and have 

found a relatively strong link between looking skills and cognition, which is interpreted 

to reflect a basis in core information processing skill. The two strongest indicators of 

future cognitive ability at 3 years of age were speed of processing, moderated by visual 

recognition memory. Speed of processing was strongly related to look duration and shift 

rate, or the ability to look between 2 objects or images and quickly compare them. These 

abilities were strongly correlated (r=-.79) at both the age of 2 years and the age of 3 years 

(Rose et al, 2005). In addition, visual recognition memory was strongly correlated (r=.41) 

to IQ at 8 years of age (Rose et al, 1995)  

 Aside from the above correlations, how stable is cognition across childhood? 

Although standardized infant cognitive tests, such as the Bayley, have not been shown to 

be predictive of later IQ (DiLalla et al, 1990), recent multivariate, longitudinal studies are 

finding some stability in cognitive abilities through childhood. The results of a 



   23 

multivariate, prospective, longitudinal study (Bornstein et al, 2006) indicate that infancy 

provides a base of cognitive skill that carries forward throughout early childhood. These 

findings are based on the proposition that cognitive skill is grounded in information 

processing, which is based on being able to gather important information from the world 

efficiently, and connect that information to other ideas, concepts and memories that allow 

appropriate action. The ALSPAC study (2006) examined infant habituation at 4-months-

old, and then used different tests each year until 4 years of age to determine adaptive 

responding, general mental development, language, and standard psychometrically 

assessed intelligence in 375 children. They found that infant habituation had a small but 

significant effect on intelligence at 4 years of age, distinct from exogenous effects such as 

home environment and mother’s education (Figure 3). Therefore, short looking, or the 

ability to look and pick up information quickly in infancy has an enduring effect on the 

child’s skills for processing information to learn within his environment. The importance 

of looking and orienting in the world is part of the child’s evolving intellectual system. 

This brings us to the idea of the embodied mind.  
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Figure 3. Taken from Bornstein, M. H., Hahn, C., Bell, C., Haynes, O. M., Slater, A., 

Golding, J., Wolke, D. (2006). Stability through early childhood is shown by the 

significant contribution of habituation efficiency at 4-months-old to tests of cognition up 

until 4-years-old. 

 

The Embodied Mind 

 Smith and Gasser (2005) offered this description of the embodiment hypothesis:  

“The central idea behind the embodiment hypothesis is that intelligence emerges in the 

interaction of an agent with an environment and as a result of sensorimotor activity”. 

They describe several lessons from infants on embodied cognition. One is that babies live 

in a physical world with much regularity that organizes perception and thought. They 

learn these regularities through physical interaction with the environment. Another lesson 

important to the present study is that babies explore in variable ways that often seem 

random to the observer; but this exploration leads to discoveries and inventive solutions 

to problems encountered, building intelligence in the process. These lessons are based on 
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experimental evidence from research with developing infants that explores the links 

between physical experience and what infants know. Motor skill change and the 

interaction of that change with typical cognitive progression is a typical way to 

investigate the hypothesis of the embodied mind. 

 Campos et al (2000), in a seminal paper chronicling the onset of infant 

locomotion and subsequent experiences leading to cognitive change, describe the motor 

act of crawling as a control parameter for cognitive change. As infants begin prone 

progression, a family of experiences fuels the mind’s expansion in perception, 

socializing, emotional regulation, and cognition. The cognitive task used in one study 

(Kermoian & Campos, 1988) was a test of object permanence, using an age-held constant 

design. They studied ninety-six 8.5 month-old infants, and assigned them to three groups 

based on their locomotor history. One-third of the babies were assigned to each group: a 

prelocomotor group who were unable to locomote; a prelocomotor/walker-assisted group 

who could not independently locomote, but who had used a walker an average of 2 hours 

per day; and a locomotor hands and knees group. They found that both infants with 

walker experience and hands and knees locomotion capability scored higher on the object 

permanence task than the infants with no locomotor experience. The amount of time 

spent locomoting had a significant effect on improved spatial skills as measured by their 

object-permanence scale. 

 In another study of locomotor acceleration, Lagerspatz et al (1971) taught one 

group of typically developing infants to crawl via daily practice of 15 minutes, and 

another group of infants spent an equal amount of daily time in a social situation with an 

adult. The infants in the crawling practice group not only crawled earlier than the social 



   26 

experience group, but they also walked earlier. Surprisingly, they also found superior 

cognitive skills in the crawling practice group. This suggests a link between the advanced 

movement skills available to the crawling infants, and their ability to explore and pick up 

information from the environment.  

 A recent study has examined a very large cohort of individuals (N=5,362) from 

infancy into late adulthood for the relationship between early milestones and intelligence 

(Murray et al, 2007). This study links the achievement of two early motor milestones, 

standing and walking, with intelligence at age 8 and reading comprehension at age 26. 

Earlier standers and walkers had higher IQ’s and reading comprehension. This effect was 

lessened when the slower developing outliers were removed from the analysis, but there 

was still a significant relationship. Although this study does not link specific motor 

development with specific cognitive change, the implication is that movement and 

cognition are linked in early development, which then has an effect on later cognitive 

skill. 

 Vertical posture, looking, and attention. Although few studies have examined 

looking duration during developing sitting posture without physical support for the infant, 

the evidence indicates a link between posture and visual attention. Levit (2006) examined 

9 infants longitudinally at 5 motor milestones: sitting, standing, walking, and 3 and 6 

months post walk onset. Levit compared situations in which the infants had the support of 

their hands to stabilize their posture, vs. no hand support. Levit found that infants had 

longer visual attention when they used hand support, and speculated that the stabilizing 

influence of hand support allowed more visual information pick-up. It was concluded that 

infants modified their postural behavior to support the capacity of the visual system. 
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Levit also noted that infant’s postural sway was attenuated during times of strong visual 

attention. She concluded that infant’s perception, action, and cognition were linked into a 

mind-body system that created a flexible yet stable action system. 

 Sitting behavior and infant perception of environment.  Motor behaviors match, in 

a task-specific way, the infant’s perception of the environment. Adolph (2000) examined 

nineteen 9-month-old infants while reaching across a spatial gap. Infants who were 

experienced in the sitting position, but inexperienced in crawling were placed in sitting at 

the edge of an adjustable gap, with a toy dangling across the gap. The infants were 

encouraged to lean across the gap to get the toy at increasing distances of the gap. 

Experienced sitters knew exactly how far they could safely lean when reaching, and did 

not fall into the open space. Nevertheless, those same infants who were just beginning to 

crawl fall into the chasm when reaching in the new crawling position. Many of the infants 

fell into the gap trial after trial, even though they had been able to perceive the unsafe gap 

in the sitting position. The authors concluded that infants have specificity of knowledge 

of spatial characteristics which is strongly correlated to their experience of a posture. The 

above studies provide information on typically developing infants; does the support for 

the embodiment hypothesis hold up when applied to infants and children with problems 

controlling their bodies?   

 Infants with movement dysfunction. Lefevre (2002) studied infants who were 

undiagnosed, but who she classified into normal tone and hypotonic (low tone) 

categories. Using an adapted seat which tilted in space, she examined visual attention in 

5-month-old infants in a supine sitting position and an upright sitting position, comparing 

the normal tone to the low tone infants. There were no differences between the two infant 
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groups, but all infants showed shorter looking durations in a more upright position. 

Although the author interpreted these shorter looking times as decreased attention, other 

researchers have indicated that shorter looking durations can be interpreted as faster 

information processing, and this speed of processing relates to future cognitive skill. 

 In another study, Barela (2006) studied infants with Down syndrome using the 

moving room paradigm. Inexperienced sitters were compared to experienced sitters over 

4 sessions of practice within 10 days. In the first session the inexperienced sitters were 

significantly different from the experienced sitters, and were not linked to the room 

movement. However, all sessions after that showed that all infants were synchronized 

with the room movement, indicating that even infants with movement problems can 

quickly learn environmental linkages when given opportunities for motor experience. 

 Wijnroks & van Veldhoven (2003) examined 65 pre-term infants and categorized 

their sitting postural control as normal or abnormal. At 18 months, the typical pre-term 

infants and the infants that had been classified with abnormal postures in sitting 

(excessive neck, trunk or arm hyperextension) were compared, and were found to have 

lower cognitive and problem solving skills than the infants who had normal posture in 

sitting at a younger age. Although this study did not include measures of visual attention, 

the direct link between cognitive test scores and sitting posture compensations in this 

population of infants supports the embodiment hypothesis. 

 The above studies support the theory of the embodied mind, and that variables 

representing infant cognitive skill are inextricably linked to the motor system. Like 

locomotion, independence in sitting has the capacity to bring a new world of information 

to the infant by allowing controlled orientation of the visual system to pick up 
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information. The reciprocal connection between posture control and looking was 

examined in the present study.  

Present Study 

 The overall goal of the present study was to reveal linkages between the 

development of sitting postural control and cognition in support of the embodiment 

perspective. The relationship between sitting postural control and cognition as measured 

by look time was examined to emphasize the importance of sitting as a developmental 

transition in infancy. Three experiments were conducted. Experiments 1 and 2 utilized 

archival data and were longitudinal in design. The first experiment documented the 

developing sitting and looking skills of infants who were typically developing from the 

time of beginning prop sitting to mature independent sitting, which occurred between 5 

and 8 months of age. Variables representing stability of postural control were compared 

over time along with look time variables, to determine if significant changes occur 

concurrently in sitting and looking over time. The second experiment examined infants 

with motor delays as they developed sitting, between 1 and 2 years of age. Repeating the 

analysis from Experiment 1 with typical infants, sitting stability variables were examined 

concurrent with the look time variable, to determine if the same changes occured over 

time, even though the infants were older than the infants in Experiment 1. Experiment 2 

was meant to rule out the effect of neuromaturation driving the changes seen in both 

sitting and look time. The third Experiment focused on typically developing infants who 

were just beginning to sit. Experiment 3 compared look time during unsupported sitting, 

and when mechanical support was provided via an infant chair. This last experiment 

examined the effect of mechanical stability in upright as being the driving influence on 
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look time. Following the embodiment hypothesis, a reduction in look time during 

supported sitting should not occur immediately, but rather change incrementally over 

time as postural control develops. 

Experiment #1 Research Hypotheses 

 This experiment examined the naturally occurring changes in sitting postural 

control and look time as typical infants changed over time. In addition, changes in sitting 

postural control stability measures were examined over time, as well as correlations to 

look time changes in typical infants. Because infants attain sitting skills incrementally at 

different times and at different rates, comparisons were made between stages of sitting 

from the immature sitter to the mature sitter. Specific hypotheses were: 

Hypothesis 1. A. Postural stability in sitting increases over time as indicated by 

decreasing values of the Lyapunov Exponent and Approximate Entropy variables from 

Stage 1 to Stage 3 of sitting. 

Hypothesis 1. B. Look time decreases significantly as sitting progresses from Stage 1 to 

Stage 3. 

Hypothesis 1. C. Sitting stability variables correlate significantly and positively with 

changes in look time; and sitting stage and look time correlate negatively. 

 Knowledge gap and rationale. Although looking duration (Courage et al, 2006) 

and sitting stability (Harbourne & Stergiou, 2003) have been studied separately using 

longitudinal designs, and trends of change over time established, no previous study has 

examined these two constructs together with the same infants in a longitudinal manner. In 

addition, looking studies have provided postural support to infants (Bornstein, 1998), so 
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it has not been established whether look times show a decreasing trend when infants must 

control their own posture as they learn to sit. 

 A separate comparison examined, using an age-held-constant design (Campos et 

al, 2000), whether infants who sit independently at a later age have concomitant later 

achievement of short looking durations. The hypothesis was: 

Hypothesis 1. D. Early sitters at 6 months of age exhibit shorter look times than 

infants who are 6 months old but not yet sitting independently. 

 Knowledge gap and rationale: Comparison of “early” typical sitters and “late” 

typical sitters and their respective looking behavior has not been done. The comparison of 

early and later sitters separated the effect of age or neural maturation from the effect of 

sitting postural control on looking behavior. The rationale was to eliminate age as the 

control parameter and examine developing postural control as a possible control 

parameter for looking duration.  

 A last comparison of the typically developing infants contrasted whether the 

infants with “high” stability/regularity postural control in sitting versus “low” 

stability/regularity had differences in look duration.  This comparison determined 

whether high stability sitters within any of the three sitting stages had shorter looking 

times than infants who were not as stable. Infants were classified at each sitting stage as 

high stability if they were below the median in the Lyapunov Exponent variable or the 

Approximate Entropy variable, and low stability if they were above the median.  

 Hypothesis 1. E. Infants who show greater stability (by a lower Lyapunov 

Exponent in the anterior posterior direction) and greater regularity (by a lower 
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Approximate Entropy value in the anterior posterior direction) have shorter look times 

than infants with less stability or regularity. 

 Knowledge gap and rationale. All past studies of infant looking time have given 

support to the infants who could not sit (Bornstein, 1998), so no data is available on 

looking as sitting stability develops. In addition to this gap in knowledge, newer 

nonlinear measures quantifying sitting postural control have not been previously 

available to determine small increments of increasing control over time as looking 

duration is measured. One infant may be a stable sitter in Stage 1 sitting, while another 

infant is much less stable. This hypothesis predicted that the stability of the posture, 

rather than the ability to simply hold a vertical position, affects the infants’ capacity to 

look and attend to environmental information. Quantification of postural control with 

more accurate and sensitive measures may allow a determination of the specific effects of 

postural control on look times. 

Experiment #2 Research Hypotheses 

 This experiment examined the sitting development and look times of infants with 

motor delays. The same first two hypotheses as made for the typical infants, examining 

change over time, were posed, as well as a third hypothesis regarding differences 

between Stages of sitting: 

 Hypothesis 2. A. Infants with motor delays show the same trend in look time as 

sitting develops as typically developing infants. 

Hypothesis 2. B. Infants with motor delays show the same trend in sitting stability 

variables as they learn to sit, and the trend is the same as that in look time. 
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Hypothesis 2. C. Change over time, from Stage 1 sitting to Stage 3 sitting follows the 

same trajectory in infants with motor delays as in typical infants.  

 Knowledge gap and rationale: Infants with motor delays have not been studied to 

determine if look duration is also delayed in developing. If these infants show the same 

changes as the typical infants, the evidence increases that sitting postural control is tightly 

linked to the ability to control the pick-up of information visually. Delays in sitting 

control would thus lead to a cascade of problems in cognitive and social development, 

just as Campos et al (2000) showed in the study of infant crawling and locomotion. This 

relationship is important so that early intervention can address potential future problems 

in the cognitive and social arena when early delays are seen in motor skills. 

Experiment # 3Research Hypothesis 

 This experiment involved the collection of new data with typical infants. In this 

experiment, look time was measured in unsupported immature sitting, and in a supportive 

infant seat that was slightly reclined. These conditions contrasted the dependence on 

sitting stability of look duration. A significant difference in look time between the two 

conditions, with look time shorter in the supported condition, indicated that mechanical 

stability contributed to efficiency in looking. However, equal look times in both 

conditions indicated that efficiency in information processing was not simply due to 

mechanical support. The hypothesis was:  

 Hypothesis 3: There is no significant difference in look time between the two 

conditions of supported sit and unsupported sit in infants who are not yet sitting 

independently.  
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 Knowledge gap and rationale. Looking time has been measured with infants with 

poor or beginning postural control who are being provided support. If providing these 

infants artificial support changes looking time to that of a stable sitter (shorter look 

duration), it would be clear that it is simply a mechanical issue of stabilizing the head and 

trunk for looking, rather than an interactive, reciprocally developing skill of learning to 

coordinate action and perceptual systems. If looking skills do not change significantly 

with the support condition, then it would seem to be the development of a perception-

action system over time that guides looking to extract important information from the 

environment quickly and reduce looking time. 



   35 

 

CHAPTER 2: METHODS 

Experiment #1 

 Experiment 1 utilized archival data of typically developing infants from a 

previous study.  

 Participants. Twenty-eight typically developing infants were recruited for a 

previous longitudinal study (Investigation of the dynamics of development of sitting 

postural control in infants with cerebral palsy, funded by National Institute of Disability 

and Rehabilitation Research and the National Institute of Child Health Development) on 

sitting postural control. Infants were recruited when they were just beginning to prop sit. 

Typical infants were followed from the age of approximately 5 months to eight months, 

the time when infants are learning to sit independently. Mean age and standard deviation 

of the group of typical infants at each stage of sitting is reported in Table 2. The typically 

developing infants were recruited from employee announcements at the University of 

Nebraska Medical Center and the University of Nebraska at Omaha campuses and word 

of mouth. Parental consent was obtained prior to any testing or data collection.  

Table 2.  

Mean Age and Standard Deviation in days and Stage of Sitting 

 Stage 1 Stage 2 Stage 3 

Typical 162 (21) 195 (21) 230 (23) 

Delayed 360 (77) 425 (95) 432 (62) 
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 Inclusion criteria for entry into the study for the typically developing infants were: 

a score on the Peabody Gross Motor Scale of within 0.5 SD of the mean, age of five 

months at the time of initial data collection, and sitting skills as described below in 

beginning sitting. Exclusion criteria for the sample of infants who were typically 

developing were: a score on the Peabody Gross Motor Scale II greater than 0.5 SD below 

the mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. 

  Procedures: For all data collection sessions, the infants were allowed time to get 

used to the laboratory setting, and were at their parent's side for preparation and data 

collection. Infants were provided with a standard set of infant toys for distraction and 

comfort. All attempts were made to maintain a calm, alert state by allowing the infant to 

eat if hungry, be held by a parent for comforting, or adapting the temperature of the room 

to the infant's comfort level. Testing proceeded when the infant was in a quiet and alert 

state (Brazelton, 1984). 

 Center of pressure analysis in sitting was done using an AMTI force plate, which 

was embedded in the floor of the motion analysis lab. The baby was held in the sitting 

position in the middle of the plate when calm and in state four of the Brazelton scale 

(Brazelton, 1984). The investigator and the parent remained at one side and in front of the 

infant respectively during the data collection, to assure the infant did not fall or become 

insecure. The child was held at the trunk for support, and gradually guided into a sitting 

position while being distracted by toys presented by the parent. Once the examiner 

released support of the infant, data was collected for 10 seconds or longer while the child 

attempted to maintain sitting postural control. If the infant was able to sit without support 

for extended time, they were left alone and data was collected continuously for up to 3 
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minutes. Three trials that were acceptable for our criteria were collected, as tolerated by 

the infant. If the child became irritated the session was halted for comforting by the 

parent or a chance for feeding, and then resumed only when the child was again in a calm 

state. 

 Instrumentation. Data was collected at the Munroe-Meyer Institute for Genetics 

and Rehabilitation Motion Analysis Laboratory at the University of Nebraska Medical 

Center using an AMTI force platform (Advanced Mechanical Technology Inc., Model 

OR6-7-1000), and a Vicon 370 3D Motion Capture System. The force platform is 

mounted to a sub-floor concrete slab to prevent vibration interference. The Vicon 370 

Motion Capture System includes a 64 channel 12 bit A-D converter and a computer (1 

GHz PC; Vicon Motion Systems). Data acquisition and processing was controlled 

through Vicon software. Component forces (Fx, Fy, Fz) and moments (Mx, My, Mz) 

were each sampled at 200 Hz and were amplified using an AMTI Model MCA6 

Amplifier. Calculation of center of pressure (COP) coordinates from the forces and 

moments occurred through the Vicon software. A frequency analysis of both the medial-

lateral and anterior-posterior components of all the COP time series from preliminary 

data indicated that the range of signal frequencies that contain 99.99% of the overall 

signal power was between 1 and 29 Hz. Therefore, the sampling frequency was set at 200 

Hz. Data was exported in ASCII format which was used for nonlinear analysis. Video of 

each trial was collected using two Panasonic videocameras (Model 5100 HS) and a 

Panasonic Digital AV Mixer (Model WJ-MX30). The cameras were positioned to record 

a side and a rear view of the subject.  
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Measures 

 Sitting stability measures. Segments of trials were selected based on the following 

criteria: infant was not crying or vocalizing or flapping/waving arms or legs; infant was 

not in the process of falling; infant was not leaning further than 45 degrees in any 

direction. The selected segments are all 8.3 seconds long, the shortest time allowable for 

the nonlinear analysis based on our necessary sampling rate. This time window allowed 

for a time series of 2000 points for each segment. The first three segments that followed 

our selection criteria were chosen from each session. These segments were analyzed for 

linear and nonlinear variables. Each 8.3 second segment has values for the following 

variables. The three selected segments from a session were averaged for the variables 

described below. 

 Lyapunov Exponent. The Lyapunov Exponent (LyE) is a nonlinear measure that 

can characterize the temporal structure of variability in a time series. The LyE measures 

the divergence of the data trajectories in phase space. The LyE value describing purely 

sinusoidal data with no divergence in the data trajectories is zero because the trajectories 

overlap rather than diverging in phase space. This shows minimal change in the structure 

of the variability over time in the data. The LyE for random data indicates greater 

divergence in the data trajectories. Lower LyE values  indicate greater stability in sitting 

postural control. LyE values for both anterior posterior (forward-backward) and medial 

lateral (side-to-side) directions were used. 

 Approximate Entropy. Approximate entropy (ApEn) is a measure used to quantify 

the regularity of a time series or predictability of a time series. Increasing ApEn values 

reveal greater irregularity and increased randomness. Conversely, lower values reveal a 
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more regular or periodic signal. Lower values (closer to zero) indicate greater postural 

stability. ApEn values for both anterior posterior and medial lateral directions were used. 

 Look time measure. Data segments for the look time measure were selected by 

starting with the already selected segments for the sitting stability measures. These 

segments of video were examined for looking behavior. However, the look times did not 

always include the segments selected for the sitting stability variables. Because the infant 

looking times were longer than 8.3 seconds, segments of looking data were sought that 

were as long as possible, within the first 5 minutes of the data collection sessions. The 

sitting stability variables as previously measured in 8.3 second segments were used as a 

representation of the sitting postural control of the infant during that session. Therefore, 

the look times do not correspond exactly in time to the segments selected for the sitting 

stability measures. 

 Look time. Look time was measured as the time an infant fixates vision on an 

object without shifting gaze for more than .5 seconds. Minimum look time was set at .5 

seconds, and to terminate a look, the infant had to look away from the object for at least 

1.5 seconds. All valid look times within the selected window of time (3 minutes from the 

beginning of the already selected sitting stability segment) were recorded, and the longest 

looks within that window of time and the mean look time were derived from the measured 

looks. The mean look time was the average of all the look times within each stage of 

sitting for each child. Longest looks were the looks longer than the median look time for 

the given stage of sitting in the group. The type of stimulus was also recorded. Only 4 

selected objects were used for looks (see below). 
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 Reliability of the look time measure. Inter-rater reliability was determined by 

another coder re-coding 10% of the sample after training by the primary investigator. 

Training consisted of viewing the videotaped segments together and discussing look 

duration behaviors, practicing timing looks, and repeating the training session after one 

week for retention checking. The coding procedure was modified several times to reach 

an acceptable level. The initial number of looks per child was reduced eventually so that 

only looks to four specific objects were coded: a DVD player with a “Baby Einstein” 

video, a “Happy Apple” toy, a caterpillar toy and a spinning toy. The object needed to be 

directly in front of the infant, without another object on top of it or immediately beside it 

so the rater could clearly see what the infant was looking at. Inter-rater reliability was 

thus refined so that there was 95% agreement. 

Independent Variables 

 Stage of sitting. Stages 1, 2, and 3 reflect increasing control and independence in 

sitting, and are behavioral categories that have been used in previous research (Harbourne 

& Stergiou, 2003; Harbourne et al, 1993). All stages were coded by the primary 

investigator. These stages and one intermediate stage are defined below. 

 Stage 1 reflects beginning sitting skills.  Head control is maintained for over one 

minute without bobbing when the trunk is supported at the mid-trunk; the infant can track 

an object across midline without losing head control; the infant may prop his hands on 

the floor or his own legs to lean on the arms, but the infant should not be able to reach 

and maintain balance in the prop sit position. When the infant is supported in sitting he 

can reach for a toy. The infant should be able to prop on his elbows in the prone position 

for at least 30 seconds.   
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 The next stage of sitting is labeled as Stage 2. At this stage the infant is making 

consistent attempts to sit without propping on the arms, but makes many errors and is 

likely to fall. Excursions of the trunk can be large in attempts to find a balance point. The 

infant may hold the arms stiffly in the air to stabilize. The infant can balance up to 30 

seconds independently without falling and without arm support, but not longer than 30 

seconds. 

 Stage 2.5 was another intermediate stage of sitting. This stage included sitting 

attempts that were not using the arms, but that were between 30 seconds and 1 minute 

duration. Parents reported that the infant still could not be left sitting alone without 

supervision because they occasionally fell backward or to the side. This stage was only 

used for hypothesis 1. D. Otherwise, Stage 2 and 2.5 were collapsed into Stage 2. 

 Mature sitting is labeled Stage 3. The infant can sit without falling, and can reach 

for toys in independent sitting with both hands without disrupting balance. The parent is 

not concerned about falling from sitting position at this stage, and will leave the child 

alone in the sitting position without protection. The infant is generally not crawling yet, 

and not yet moving in and out of the sitting position independently.  

Experiment # 2. 

 Participants. Sixteen infants with delayed motor development were recruited as 

part of a previous study (Investigation of the dynamics of development of sitting postural 

control in infants with cerebral palsy, funded by National Institute of Disability and 

Rehabilitation Research). Inclusion criteria were: age from five months to two years, 

score greater than 1.5 SD below the mean for their corrected age on the Peabody Gross 

Motor Scale II, and sitting skills as described above for beginning sitting. In addition, the 
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infants with delays progressed to the stage of independent sitting during the previous 

study to be included in the present study. Therefore, infants with severe delays were 

excluded because sitting independence was not attained by the conclusion of the previous 

study. Other exclusion criteria were: age over two years, a score greater than 1.5 SD 

below the mean for their corrected age on the Peabody Gross Motor Scale, a diagnosed 

visual impairment, or a diagnosed hip dislocation or subluxation greater than 50%. Mean 

age for the infants with delays at the start of the previous study was 12 months; mean 

ages and standard deviations for the infants with delays at progressive stages of sitting are 

listed in Table 2. The archival data for these subjects was analyzed for sitting control 

variables and look time variables using the same procedure and measurement methods as 

in Experiment 1. 

Experiment #3 

 This experiment involved the collection of new data. The design compared 

behavior in two support conditions during one session. 

 Participants. Five infants developing typically between the ages of 4 and 5 

months were recruited by word of mouth. Infants were screened using the Peabody Gross 

Motor Scales II, as described in the previous study, and scored within average range for 

their age. Selection criteria were the same as in Experiment 1 for typically developing 

infants. 

 Instrumentation. Each infant was videotaped from the front with one camera for 

the entire session. The camera distance was standardized to provide a view of the infant 

and the toys used for look stimulation. A standard set of toys was provided, and the toys 

were held constant between children for the two conditions. A commercially available 
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infant seat, the Infant to Toddler Feeding Seat (The First Years) was used as a supportive 

seat for the support condition, and was reclined slightly with a tray for additional trunk 

support. 

 Procedure. Each infant was presented two toys in each of the two conditions. The 

order of the conditions was counter balanced, alternating with each infant. The 

unsupported condition was the prop sitting position on an exercise mat. The investigator 

was beside the infant to position him/her and guard against falling. The infant’s mother 

sat to the other side of the infant. After the infant was sitting independently in either 

condition, and all support was released, toys were presented one at a time at the front of 

the infant but out of their reach. When the infant looked away from the toy for more than 

5 seconds, that toy was removed and replaced with another toy. This was repeated for a 

total of 5 minutes. Then the procedure was repeated for the remaining condition. The 

infant was provided a rest by lying down or being held by the parent after each condition, 

or if he/she was showing any signs of stress such as fussing, crying, or yawning. 

 Measures. The same procedure for coding look time as described in Experiment 1 

was used. All looks for both conditions were recorded. 
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CHAPTER 3: RESULTS 

 Each archived video record was examined for looks that met the criteria 

established in the reliability portion of the study. Because the previous study was not 

designed to collect look time data, some of the children did not have any looks that met 

criteria in one or more of the sitting stages. The number of acceptable looks varied widely 

between children from session to session. The following results report the overall values 

of the groups by sitting stage. Individual trajectories were not attempted because of the 

wide variability in numbers of looks per child.   

Experiment 1  

Hypothesis 1. A. Postural stability in sitting increases over time as indicated by 

decreasing values of the Lyapunov Exponent and Approximate Entropy variables. 

This hypothesis was supported by the data. Each variable was compared across 

sitting stages using a repeated measures ANOVA model. Post-hoc pair-wise comparisons 

between the sitting stages were made using the Tukey method. To adjust for the analysis 

of multiple outcome measurements, a Bonferonni adjustment was used, resulting in an 

alpha level of 0.025.  

This comparison included the mean for each variable for each child at each 

stage of sitting. Significant changes occurred in the nonlinear variables of Lyapunov 

Exponent and Approximate Entropy. In the anterior-posterior direction, LyE decreased 

across stages significantly (F (1, 27)=46.338, P=0.000), as did ApEn (F(1,27)=23.344 

P=0.000). Significant differences were noted between stages 1 and 2, between stages 2 

and 3, and between stages 1 and 3 (Figures 4 & 6 respectively). In the medial lateral 

direction, ApEn showed an increasing trend, but the changes were not significant 
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(F(1,27)=2.785, P=0.107) (Figure 7). There were no significant changes or trend in LyE 

in the medial lateral direction (F(1,27)=0.892, P=.892) (Figure 5). 

 

   

Figure 4. The dark line represents the group mean values over three stages of sitting for 

infants developing typically, and the light line represents the same group mean for infants 

with delayed development for the Lyapunov Exponent, in the anterior-posterior direction. 

Vertical lines represent 95% confidence intervals for each group at each stage of sitting. 
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Figure 5. The dark line represents the group mean values over three stages of sitting for 

infants developing typically, and the light line represents the same group mean for infants 

with delayed development for the Lyapunov Exponent, in the medial-lateral direction. 

Vertical lines represent 95% confidence intervals for each group at each stage of sitting. 
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Figure 6. The dark line represents the group mean values over three stages of sitting for 

infants developing typically, and the light line represents the group mean for infants with 

delayed development for the Approximate Entropy, in the anterior-posterior direction. 

Vertical lines represent 95% confidence intervals for each group in each stage of sitting. 

 



   48 

 

Figure 7. The dark line represents the group mean values over three stages of sitting for 

infants developing typically, and the light line represents the group mean for infants with 

delayed development for the Approximate Entropy, in the medial-lateral direction. 

Vertical bars represent 95% confidence intervals for the groups at each sitting stage. 

 

Hypothesis 1. B. Look time decreases significantly as sitting progresses from 

Stage 1 to Stage 3. 

  This hypothesis was also supported. Repeated measures ANOVA was again used 

for look time and longest look, with paired comparisons analyzed post hoc using the 

Tukey method. Bonferroni correction yielded an alpha level of 0.025. There were 
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significant changes (F(1,27)=5.871, P=0.022) between sitting stages 1 & 3 and 2 & 3 in 

average look time (Figure 7), but not between sitting stages 1 and 2. Longest looks were 

determined by including all looks above the median for the entire group of looks. Longest 

looks showed the same changes over time as average look time, with the longest looks 

decreasing over time across sitting stages. However, the change between stages in longest 

looks was not significant (F(2,318)=3.18, P=0.043).  

 

 Figure 8. The dark line represents the group mean values over three stages of 

sitting for infants developing typically, and the light line represents the group mean for 

infants with delayed development for the look time variable. Vertical bars represent 95% 

confidence intervals for the groups at each sitting stage. 
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Hypothesis 1. C. Sitting stability variables correlate significantly and positively 

with changes in look time; and sitting stage and look time correlate negatively. 

The Pearson correlation coefficient was used to determine relationships between the 

variables of interest. The hypothesis was not strongly supported. Even though these 

correlations were in the predicted direction, the sitting stability variables did not correlate 

strongly with look time. Sitting stability as measured by nonlinear variables varied with 

look time in a positive correlation (Table 3). Looks became shorter as sitting stage 

increased and the infants were able to independently sit. LyeE in the anterior-posterior 

direction decreased over time, indicating an increase in stability, which correlated 

positively with a decrease in looking time. LyE in the medial-lateral direction did not 

correlate with the look durations, and did not change over time. The ApEn variable in 

both directions correlated positively with decreasing looking time.  

Intercorrelations Between Variables for Infants with Typical Development 

Table 3.

 

 Variables  1 2 3 4 5 6 7

 

1. Age (days)  _ -.12 .78 -.46 .04 -.31 .35 

2. Look Time   _ -.15 .09 .01 .15 .09 

3. SitStage123    _ -.58 .05 -.51 .23 

4. LyEAP     _ .37 .61 -.11 

5. LyEML      _ -.07 .20 

6. ApEnAP       _ .30 

7. ApEnML        _ 
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Hypothesis 1. D. Early sitters at 6 months of age exhibit shorter look times than 

infants who are 6 months old but not yet sitting independently.   

 Infants were divided into early sitters (those infants who are in Stage 3 sitting at 

the age of 6-months) and late sitters (those who are not in Stage 3 at the age of 6 months). 

There were 4 outlier look times in the group that were extremely long. These were all 

look times to the DVD player. The few infants who had “outlier” long looks appeared to 

be actually watching the show on the DVD. These infants were known by interview of 

the parents to have learned to watch a computer or TV screen by sitting on the parent’s 

lap and viewing, and seemed to have much previous experience with this activity. 

Because these looks were outliers and seemed different in nature from looking at the 

other objects, and there were only 4 looks out of 109, they were eliminated from the 

analysis. Look times from early sitters and late sitters at 6 months were compared 

between these 2 groups using a Student T-test. 

 Infants who sit early, within the 6th month, had shorter looking times than infants 

at the same age who were not yet sitting independently. Although most infants who were 

typically developing were able to sit with some independence during the 6th month, those 

who were completely independent (stage 3 sitting) had significantly shorter looks 

(T(2,105)=2.152, P=0.034) than infants who were still losing balance and occasionally 

falling at the same age (stage 2.5). Therefore, when age was held constant, infants who 

had greater postural control in sitting were looking at objects with shorter look times. 
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Figure 9. Infants who sat early (Stage 3 sitting at the age of 6 months) are group 2, and 

infants who were not yet independent sitters (Stage 2.5 sitting at the age of 6 months) are 

group 1.  Compared on look time, the independent sitters have significantly shorter look 

times.  

 

 Hypothesis 1. E. Infants who show greater stability (by a lower Lyapunov 

Exponent in the anterior posterior direction) and greater regularity (by a lower 

Approximate Entropy value in the anterior posterior direction) have shorter look times 

than infants with less stability or regularity. 

 This hypothesis was generally supported by the data. For this analysis, the 

selection variable was the Lyapunov Exponent, dividing the looks at the median of the 

LyE values taken from each sitting stage into stable sitters and unstable sitters at each 
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stage of sitting. Look times were analyzed in a one-way ANOVA for each stage of 

sitting, separately for the LyE and ApEn variables. Bonferroni adjustment for the 2 

variables was alpha = 0.025.  

 Overall, in each stage of sitting, the infants with greater postural stability and 

regularity exhibited shorter look times. In Stage 1 sitting, significant differences were 

noted in ApEn in the anterior posterior direction (F(3,178)=5.048, P=0.026. In Stage 2 

the comparisons did not reach significance, but there was a trend for shorter looks in the 

group with greater stability as indicated both by LyE and ApEn in both the anterior 

posterior and medial lateral directions. Significant differences were notable in Stage 3 

sitting for LyE (F(3, 225)=5.623, P=0.019) and for ApEn in the medial-lateral direction 

(F(3,225)=7.49, P=0.007). ApEn in the anterior-posterior direction was close to 

significance (F(3, 225)=4.566, P=0.034). Infants with high stability and regularity scores, 

indicating greater postural control, were achieving shorter look times throughout the 

development of sitting (Figure 10). 
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Figure 10. Top graphs depict Stage 1 sitting comparison of stable sitters (1.00) versus less 
stable sitters (2.00) on look time, with ApEn comparison showing significant difference 
between the two groups on look time. Bottom graphs depict Stage 3 comparison of stable 
sitters (1.00) versus less stable sitters (2.00) on look time, with both LyE and ApEn 
showing significant differences between groups. * indicates P<0.05. 
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Experiment 2 

 Hypothesis 2. A. Infants with motor delays show the same trend in look time as 

sitting develops as typically developing infants. 

 This hypothesis was supported. Infants with motor delays exhibit the same 

changes in look time as they develop the ability to sit, even though they are significantly 

older than the infants who are typically developing. However, infants with delays had 

overall longer look times than infants with typical development. 

 Using a Group by Stage analysis of variance, with repeated measures on Stage, 

there was a main effect of Group (F(1, 42)=5.491, P=0.024), with the infants with delays 

overall showing longer look times across all stages than the typical infants. There was no 

significant interaction effect. There was a significant main effect of Stage, with Tukey 

post hoc analysis revealing a significant difference between Stage 2 and Stage 3 (F(1, 

42)=12.732, P=0.001). Unlike the typical infants, infants with delays showed an increase 

in mean look time from Stage 1 to Stage 2 of sitting, but then significantly decreased in 

Stage 3 (Figure 8). 

 Hypothesis 2. B. Infants with motor delays show the same trend in sitting stability 

variables as they learn to sit, and the trend is the same as that in look time. 

 A Group by Stage analysis of variance was used, with repeated measures on the 

Stage variable. Post-hoc pair-wise comparisons among the sitting stages were made using 

the Tukey method. To adjust for the analysis of multiple outcome measurements, a 

Bonferonni adjustment was used, alpha = 0.016. 

 For the LyE in the anterior posterior direction there was not a significant effect of 

Group. There was a significant main effect of Stage (F(1, 42)=34.129, P=0.000), with 
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specific contrasts showing significant differences between Stage 1 and 2 

(F(1,42)=18.829, P=0.00), and also between Stage 2 and 3 (F(1,42)=20.218, P=0.00), and 

between Stage 1 and 3 (F(1,42)=34.129, P=.000). There was not a significant interaction 

effect (F(1,42)=4.673, P=0.036). For ApEn in the anterior posterior direction, there was a 

significant main effect of Stage, but no interaction effect and no significant difference 

between groups. Stage 1 and 2 did not differ significantly (F(1,42)=5.603, P=0.023), but 

there was a significant difference between Stage 2 and 3 (F(1,42)=13.871, P=0.001), and 

between Stage 1 and 3 (F(1,42)=18.815, P=.000).See Figures 4 and 6 for a graphical 

depiction of the results for LyE and ApEn in the anterior posterior direction. 

 ApEn in the medial lateral direction showed no significant difference for Group 

and no interaction effect. There was a significant main effect for Stage, with specific 

contrast showing the significant difference between Stage 1 and 2 (F(1, 42)=5.702, 

P=0.022), and between Stage 1 and 3 (F(1,42)=5.259, P=.009). There were no significant 

findings for the LyE in the medial lateral direction (F(1, 42)=.770, P=.466) (Figure 5). 

See Figure 7 for a graphical comparison of the group by stage comparison for ApEn in 

the medial lateral direction. 

 Hypothesis 2. C. Change over time, from Stage 1 sitting to Stage 3 sitting is the 

same for look time in infants with motor delays as in typical infants.  

 The hypothesis was partially supported. Change scores for look time between 

stages were calculated, and the difference between Stage 1 and 2 was compared to the 

difference between Stage 2 and 3, in a 2 X 2 repeated measures, group by Stage score 

ANOVA. There was a significant difference of the change scores (F(1,42)=6.318, 

P=0.016), between groups. The infants with motor delays increased in look time between 



   57 

Stages 1 and 2, giving them a negative value look time change, and the infants with 

typical development showed a slight decrease in look time, giving a positive value for 

look time change (Figure 11). However, both groups had positive change scores between 

Stages 2 and 3, indicating a decrease in look time during that interval.  

  

Figure 11. The dark line represents typically developing infants, and the gray line the 

infants with delays, showing change scores between sitting stages 1 & 2, and between 

sitting stages 2 & 3. 

Experiment 3 

 Hypothesis 3: There is no significant difference in look time between the two 

conditions of supported sit and unsupported sit in infants who are not yet sitting 

independently.  
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 This hypothesis was supported. Preliminary analysis showed that order of 

conditions did not affect look times; therefore, look times were compared between the 

two conditions (supported and unsupported) using a repeated measures ANOVA.  

 No significant differences were found between the conditions of supported sitting 

and sitting without assistance for the early sitter (F(2, 5)=0.001, P=0.975). Infants looked 

at novel objects for equal duration whether or not they had support regardless of which 

condition (supported or unsupported) occurred first. The effect size of the difference 

between the two conditions was very small (0.02) based on the data from 5 infants. 

Therefore, the originally planned10 infants would not have shown a significant difference 

between conditions, and data collection was stopped at 5 participants.  
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CHAPTER 4: DISCUSSION 

 The present study findings are summarized in the context of the literature in infant 

looking and cognition. Discussion of the findings from the present study is offered from 

three perspectives: contributions to the embodied mind theoretical model; implications 

for future studies needed to elucidate the structure and developing nature of cognition; 

and implications for intervention for children with developmental disorders. Limitations 

of the present study will also be discussed. 

Summary of Results of the Present Study 

 The findings of the present study echo and support the body of research 

examining infant looking during early development, while also extending the 

understanding of infant looking to children with motor delays. This increased 

understanding allows translation of the findings to the clinic and early intervention realm, 

and may help to improve intervention for children with motor delays or disabilities.  

 Typical infants showed decreasing look time from Stage 1 to 2 to 3 of sitting, just 

as previous studies. However, the present study adds to the understanding of the infant 

looking phenomenon by explaining how postural control interacts with looking behavior. 

Sitting stability and regularity variables in the anterior posterior direction changed from 

early sitting to late sitting, reflecting an increase in stability. Infants who were already 

sitting at Stage 3 of sitting at 6 months of age had shorter look times than infants who 

were not yet sitting at 6 months of age. And at any stage of sitting, infants who had 

greater stability in the anterior posterior direction as measured by the nonlinear variables 

had shorter look times. Overall, look time was significantly correlated to stage of sitting, 

age, and sitting stability variables. The changes in look time that occurred over time 
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could not be reproduced by simply mechanically supporting an infant who was learning 

to sit. Infants who had poor sitting balance displayed the same look times whether they 

were attempting to sit by themselves or sitting well supported in an infant seat. All of this 

evidence from the present study points toward postural control as being a control 

parameter for changes in look time during typical development. And, if look time can be 

taken as a proxy for information processing efficiency, the importance of addressing 

early postural control in infants who exhibit motor delays looms large for early 

interventionists. 

 In addition, the present study strengthens the evidence that infants with motor 

delays mirror the developmental changes in look time seen during typical development, 

but with complications arising from the interaction of the postural control system with the 

visual attention mechanism. Infants with motor delays reflected the same changes in the 

sitting stability and look time variables during sitting development as found in the 

typically developing infants. For infants with motor delays, look times were shorter at 

Stage 3 of sitting than at Stage 1 or 2. The progression of decreasing look time was 

slightly different from the typical infants, in that look time increased from Stage 1 to 

Stage 2, then decreased to the same level at Stage 3 as the typical infants. Nonlinear 

variables also changed as sitting progressed to reflect greater stability in the anterior 

posterior direction, just as in the typical infants.  

The Embodied Mind 

 As presented in the introduction, there is strong evidence across cultures, types of 

stimuli, and environmental context that infant look times decrease markedly during the 

first year of life. The most consistent and pervasive decline in look time is within the time 
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period of the 4th through the 8th month. Important milestones occur prior to this window, 

such as head control and rolling by the 4th month. Likewise, important milestones occur 

after this window, such as crawling by 8 months, pulling to stand at 9 months, and 

walking at 12 months. But the important milestone occurring around 6 months is sitting 

independence.  

 Simply put, the results of the present study indicate that as sitting emerges, look 

time decreases. This phenomenon is not due to maturation alone, because, as shown in 

the present study, children who are greatly delayed in motor skills experience the same 

decrease in look time as they learn to sit at an older age. Even when only typically 

developing children are considered, some children sit earlier than others. These “early 

sitting” children have shorter look times at 6 months than children who are not yet 

independent in sitting. Thus, sitting independence appears to be a control parameter that 

pushes visual attention to a new mode of operation. This is important because shorter 

look times indicate less time needed for information processing, and more opportunities 

to gather information from the environment. This ability to gather information quickly is 

described as “visual foraging” (Robertson et al, 2007).  

 Why does this relationship between sitting development and look time exist? 

Typically developing infants are offered many opportunities to experience verticality in 

the first few months of life as they are carried leaning on their parents shoulders, carried 

in infant seats, and positioned in equipment to occupy them for play. However, the timing 

of looks to objects and people begins to decrease from four months of age to eight 

months of age, a time of rapid motor development. During the first four months of life, 

the infant exhibits movements that have previously been considered random. In the 
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embodiment hypothesis, Smith and Gasser (2005) suggest that these movements are not 

useless as the description random connotes, but rather are useful in the opportunities for 

infinite exploration of opportunities and strategies to seek information. As infants find 

workable and rewarding strategies within their random exploration of movement, they 

learn to control this movement to visually engage important aspects of their environment. 

 All infants in the present study started out in early sitting with values of the 

nonlinear variables closer to random organization, as opposed to periodic. One possibility 

is that increasing stability, as indicated by the nonlinear variables in the present study, 

allows the freeing of some degrees of freedom of the head and eyes to move quickly. 

Typical infants who showed greater stability in any stage of sitting were likely to have 

shorter look times. Less stable sitting may require a portion of the child’s attention, so 

that processing visual information takes more time. As stability is attained, resources can 

be re-allocated to allow for faster visual information processing. Conversely, stability of 

sitting posture may allow disengagement of overt visual attention. 

 Robertson et al (2001) describes the coupling of overt visual attention to the 

change in rate of overall motor activity. They suggest that the intrinsic noise of sustained 

motor activity fluctuates in a just-right irregular way to facilitate shifts of gaze. They call 

upon the concept of chaos to describe this organization within movements that appear 

disorganized. From this perspective, the control parameter may not be postural 

control/stability per se, but rather learning to de-couple vision and movement quickly and 

with less effort so that information can be gathered efficiently. The principle of stochastic 

noise as a driver of central nervous system activity is key to this perspective. Data from 

studies examining looking and cyclical movement of infants in the first 3 months of life 
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show that naturally occurring cycles of increased body movement tend to inhibit the 

looks of young infants (Robertson & Johnson, 2009). Movement and attention are thus 

coupled functionally so that general increases in movement cause vision to be more 

“interruptible”. This concept has implications for learning, memory, and overall cognitive 

processing. The ability to predict events in the world and the continuity of objects is 

dependent on the ability to visually attend to significant events and aspects of the 

environment (Bertenthal, Longo & Kenny, 2007). As infants learn optimal strategies to 

stabilize sitting posture, they also gain knowledge about how to interrupt visual attention 

and shift gaze between objects to learn the properties of objects and how objects and 

people interact. They also become more adept at acting on objects as sitting becomes 

controllable, and begin to initiate movement out of sitting to act on the world themselves. 

 The nonlinear variables used to examine sitting postural stability in the present 

study may give insight to the processes driving changes in look time and sitting control. 

Irregularity has been shown to be characteristic of immature organisms (Robertson et al, 

2001). Using the Lyapunov exponent to examine generalized infant movement during the 

first few months of life, Robertson et al speculated that the early tendency toward 

randomness in infant movement might give rise to attentional shifts which might increase 

the efficiency of visual skill with which infants explore the world. Because irregular 

movement in infancy is pervasive in many species (Bacher et al, 2000), it is possible that 

understanding how changes occur over time in this shift from irregularity to regularity 

may help to understand the acquisition of skill during development. Perhaps the shift 

from irregular to regular in the present study is a driving force behind multiple systems 

including both postural control, and visual attention.  
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 The problems encountered by infants with motor delay are varied. The question of 

why infants with delays would have longer look times, even though they follow the same 

overall trend of decreasing look time as sitting develops is difficult to answer with the 

current study. However, the present findings support previous research reporting longer 

look times or decreased ability to habituate to visual stimuli in infants at high risk for 

cognitive delays (Cohen, 1981). One underlying reason could be that the random, 

irregular movement seen early in life is absent in children with a motor delay. Without 

this irregular movement to interrupt vision, looks become less “interruptible” in children 

with poverty of movement or low movement variability. Brian et al (2003) also found 

longer look times for high-risk infants when using a looking habituation paradigm. They 

reported differences between children, with some responding in a linearly decreasing 

pattern and using shorter looks, and others with a nonlinear (increase then decrease) 

pattern and longer looks overall. The difference in look times in the present study may 

reflect the fact that some of the infants with delays have conditions, such as cerebral 

palsy or mental retardation, which have as inherent limitations a problem with 

information processing. 

Implications for Intervention 

 There is a possibility that the reason infants with developmental delays showed 

similar changes in looking times across the development of sitting as typically developing 

infants is that the neurological maturation of these infants was delayed overall. However, 

there is no evidence in the literature that infants with prematurity or developmental delay 

have a delay in myelination (Candy et al, 1993), even though parts of the brain may have 

damage or malformation. Some of the infants in the delayed group were up to 2 months 
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premature. Even considering this, the delayed group overall was delayed 200 days in 

sitting skill maturation, far more than 60 days. It seems unreasonable to assign the 

changes in looking time to just prematurity. It would also be unlikely that specific pre-

programmed neuromaturation changes related to visual attention would coincide at the 

exact time of improvement in sitting postural control. Thus, it appears that the changes 

found in sitting stability in the present study may be responsible for changes in look time. 

 Early interventionists may take some implications for therapy from the findings in 

the present study. The fact that there was no difference in look times for typical infants 

whether or not they received support is important for occupational and physical therapists 

who treat children with motor delays. One of the most common interventions is to 

provide mechanical support in the sitting position to improve the attention and function 

of children who cannot sit. Many courses and written guidelines are available to instruct 

therapists in the proper way to “position” children in the seated posture for optimal 

function. The findings of the present study imply that static positioning in supported 

sitting is not an immediate solution for improving attention and information processing of 

a child. Although many children with disabilities may require additional seating support, 

therapists should not expect immediate results in function. A child will need time to 

incrementally learn to interact with the environment in order to fully utilize looking in a 

new position. Additionally, the active learning and movement adjustments required to 

control sitting may be key to acquiring skillful visual attending and information pick-up 

by adjusting looks appropriately. 

 Despite large investments in medical science directed toward the etiology and 

prevention of developmental disorders, the incidence of developmental disorders such as 
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cerebral palsy and Down syndrome have not diminished over the past 30 years (Centers 

for Disease Control, 2008). Mandatory intervention for such disorders (IDEA) has shown 

some temporary effects on early childhood cognitive testing, but these effects disappear 

by school age (Orton et al, 2009). It is therefore of great importance that intervention be 

examined for the impact of each type of therapy on stimulating the best possible 

developmental outcome.  

 How can the present findings contribute to the above task? Certain times in 

development are likely critical for transitions in behavior or information processing. 

During these times, such as the appropriate time for learning to sit, intensive intervention 

may bring greater rewards than simply the acquisition of a motor skill. Skills such as 

sitting to encourage information gathering and visual foraging, and mobility for learning 

spatial skills, may pay larger dividends in the long run in terms of cognitive 

advancement. 

Implications of the Findings to Future Research.  

 Further examination of the interaction of movement, postural control, looking 

behavior and information processing is necessary to truly apply the findings from 

typically developing infants to early intervention. Although there are continually new 

publications examining the skills of typical infants, the paradigms used to explore infant 

cognition are rarely employed to examine infants with special needs. Simple look time 

studies may provide more information about the information processing capabilities and 

changes in infants with delays after a period of intervention than standardized tests such 

as the Bayley Scale. Many standardized cognition scales for infants have not been found 
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to be predictive or sensitive enough to show small increments of change to elucidate 

effects of short bouts of intervention. 

 Another strength of the present study was the longitudinal design. In order to 

understand changes over time for infants both typically developing and with special 

needs, it is necessary to have multiple measurement times for the same individuals. This 

allows an examination of the trajectory of developmental change, rather than just one-

time differences. For example, the present study noted differences in the look times of 

infants with typical or atypical development, but also noted that changes over time were 

very similar. This allows translation to interventionists, who may assume that initial 

differences imply a static, unchanging trait of the individual, rather than a behavior that 

can be changed over time. Also, the initial rise of look time for the infants with motor 

delay might be interpreted as a sign that delay is increasing; but following in time beyond 

that increase shows eventual “catching up”. Examinations of infant behavior using 

longitudinal designs should be the focus of developmental questions because of the very 

nature of adaptation and change in information processing as the infant builds upon 

experience and follows a not necessarily linear course. By following the advancement of 

infants over time, improvements in understanding of the ontogeny of disability can be 

made. It is not enough to point out the differences between typically developing children 

and those with delays. Rather, taking the perspective of embodiment, investigations 

should determine how the skill is built incrementally, and how the building of a skill can 

stall or become inefficient when specific elements are not optimal. 

 The trajectory of look times over time for infants with motor delays differed from 

the trajectory for the typically developing infants in the present study. If this reflects 



   68 

problems in information processing when attention is split between a difficult motor act 

and cognitive effort, there are implications for the evaluation of infants in early 

intervention programs. If every new posture (sitting, standing) or motor milestone 

decreases ability to process information overall, intervention may need to take a different 

focus to keep a child from falling behind. Bouts of intensive intervention in motor skill 

may have greater payoffs in cognitive processing in the long run. 

Limitations of the Study.  

 The use of archival data was a major limitation because the camera angle did not 

allow a consistent vantage point for time look duration. The camera viewed the infant 

from the side and the back, making any looks to the far side or out of the field of view of 

the side camera impossible to time. Because the original study had no aims related to 

looking, there was no attempt made to standardize the presentation of the viewed objects 

or to keep the field of view clear of distractions. Therefore, the number of looks per 

evaluation session was greatly reduced, and some infants could not be utilized at all. 

Another limitation of the study was the fact that look duration timing was stopped when 

the child lost balance and had to be caught by the examiner. Many times the infant 

continued to look at the selected object, but we terminated the timing because the child 

was being supported. Look time also could not be initiated when the therapist was 

touching the child, and the infant was often looking at the object prior to support being 

released. 

 Although the data was collected longitudinally, there was a rather long period of 

time between data collections, approximately one month. Thus, the linear representation 

of changes over time is unlikely to be a true reflection of the nonlinear changes typical of 
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the growth of an individual. It may be that look time and stability variables fluctuate 

more than is represented in the present study, and therefore would be difficult to use as a 

reliable measure for developmental status on a one-time basis. However, because the 

values examined were taken longitudinally, rather than cross-sectionally, it is possibly a 

relatively good reflection of general developmental trends. 
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CHAPTER 5: CONCLUSIONS 

 The findings of the present study provide support for the theoretical framework of 

the embodied mind and expand the understanding of the use of looking as a measure of 

information processing in infancy. As a child becomes more stable when sitting postural 

control is developing, the ability to freely orient the head and eyes is enhanced. By virtue 

of the skill of orienting in a vertical posture, infants can look at objects in the 

environment and quickly scan for important information. Although the phenomenon of 

decreasing looking time as infants age during the first year of life has long been known, 

the interaction of look time and developing postural control has not been explored 

previously. The present study revealed that a decrease in look time, which indicates faster 

information processing, appears to be at least partially dependent on improvements in 

postural control. In particular, infants with motor delays have a disadvantage in 

developing the ability to select visual information quickly and switch visual attention 

from object to object to gather the most information possible from the environment. The 

mechanism for postural stability in infancy can thus be considered a control parameter for 

cognitive change during early development. Knowing the importance of interacting 

postural control and visual attention suggests early intervention to ameliorate sitting 

postural problems and encourage sitting independence, which may contribute to 

accelerations in learning about the world for infants with motor delays. 
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