University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

1-1-2004

Variable Rate Execution

Steve Goddard
University of Nebraska — Lincoln, goddard@cse.unl.edu

Xin Liu
University of Nebraska, Ixin@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports

b Part of the Computer Sciences Commons

Goddard, Steve and Liu, Xin, "Variable Rate Execution” (2004). CSE Technical reports. Paper 47.
http://digitalcommons.unl.edu/csetechreports/47

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at Digital Commons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of Digital Commons@University of

Nebraska - Lincoln.

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/47?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages

University of Nebraska-Lincoln, Computer Science and Engineering
Technical Report # TR-UNL-CSE-2004-0008

Variable Rate Execution

Steve GoddardndXin Liu
Computer Science & Engineering
University of Nebraska—Lincoln

Lincoln, NE 68588-0115
{goddard,Ixint @cse.unl.edu

Technical Report TR-UNL-CSE-2004-8
April 2004

Abstract

We present a task model for adaptive real-time tasks in which a task’s execution rate requirements
are allowed to change at any time. The model, variable rate execution (VRE), is an extension of the
rate-based execution (RBE) model. We relax the constant execution rate assumption of canonical real-
time task models by allowing both the worst case execution time (WCET) and the period to be variable.
The VRE model also supports tasks joining and leaving the system at any time. Another advantage
of the new task model is that the exact execution rate need not be known for soft real-time or non-
realtime applications; instead, an approximate execution rate can be assigned to an application and then
dynamically adjusted during runtime. A schedulability condition for the VRE task model is presented
that can be used as an on-line admission control test for the acceptance of new tasks or rate changes.
Finally, a VRE scheduler was implemented in Linux as a loadable module, and several experiments
demonstrate its correctness and analyze the overhead.

1 Introduction

Quality of ServicdQoS) can be viewed as a spectrum of execution rate guarantees: hard real-time tasks
are assigned an execution rate to meet all deadlines; soft real-time tasks are assigned a rate that meets most
deadlines; non-real-time tasks, without any deadline, are assigned a best-effort rate that will not affect the
hard and soft real-time tasks. Most conventional real-time operating systems provide both time-sharing and
static priority scheduling algorithms. The time-sharing algorithmsbast-effort making no guarantee of
execution rate; the fixed priority schedulers attempt to make fixed execution rate guaranteesallitiv-an
nothingapproach, resulting in either success or failure.

In practice, many applications need to change their QoS requirements during runtime. In a multiple-
target, multiple-sensor radar tracking system, the tasks tracking fast-moving targets have tighter time con-
straints than tasks tracking slow-moving targets. In a multi-agent system, the agents might dynamically
negotiate with each other and decide the execution rate for each agent. Multimedia applications are com-
mon applications with dynamic soft QoS requirements. For example, a video decoder decodes 30 frames
per second and it changes its QoS requirements when it degrades its service quality by either reducing the

resolution or skipping frames. Even with constant service quality, the encoding and decoding time of a
MPEG frame can vary, depending on many factors such as the frame type or frame length [3].

In support of such dynamic QoS requirements, we first introducedatiable rate executiolfVRE)
model in [22], which is essentially an extension of the rate-based execution (RBE) task model [15]. While
[22] and [23] focus on the implementation of variable rate tasks in Linux, this work formally presents the
theoretical model. The VRE task model extends the RBE model to address dynamic QoS requirements
by allowing tasks to execute with variable execution rates and supporting a dynamic task set. It forms a
foundation for feedback control or adaptive applications where task execution rates change during runtime.

In the VRE model, a variable rate task is denoted by a four-tuple), v:(t), d;(t), c;(t)) where each
parameter is represented as a function of tim8imilar to the RBE modely; () is the interval (or period)
in which z;(t) jobs are expected to be releaség) is the relative deadline, which is typically equal to
the periody;(t); andc;(t) is the worst-case execution time (WCET). By relaxing either or bottWWGET
andperiod a task can change the size of its jobs and/or change the release frequency of the jobs. Similar
execution patterns are also supported byr#tte-based earliest deadlif®BED) scheduler [6], which was
independently and simultaneously developed. The RBED scheduler, however, might delay the acceptance
of new tasks, while the VRE model can immediately accept new tasks by changing pending deadlines (as
described in Section 3.1). Moreover, the VRE model is a more general model than that assumed in [6].

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 presents the
VRE model. Section 4 presents the theoretical correctness and a schedulability condition. Section 5 presents
our evaluation results of a VRE scheduler implemented in Linux as a loadable module. We conclude with a
summary in Section 6.

2 Related Work

A variable execution rate is not a new idea. It comes with the concept of multi-programming. In conventional
time-sharing systems, tasks actually execute at variable rates, which depend on the total number of tasks in
the system. In Linux, a process receives a time slice in a variable length period, which is the sum of the time
slices of all running processes.

In proportional-share systems, a task essentially runs at a variable execution rate as well, depending on
the sum of all weights. This is why most proportional-share systems have the coneigptadtime. In real
time, a task might be running at a variable rate; in virtual time, the task is treated as executing at a constant
rate.

Weighted Fair Queueing (WFQ) [9] (also known as packet-by-packet generalized processor sharing
(GPYS)) is a well-known proportional-share scheduling algorithm from the networking literature. The WFQ
scheduler associates a weight to each connection session; all the connection sessions share the router’s
bandwidth in proportion to their weights. The transmission rate of each session depends on the combination

of its weight and the summation of all weights. The virtual tinge) is defined as follows:

t 1
Vi) = /0 st 1)

wherew; is the weight of task and A(7) is the set of active tasks at time Thus, virtual time progresses
at a rate inversely proportional to the summation of all weights. That is, the more sessions in the system, the
slower transmission rate each session gets.

Two recent multimedia schedulers are built on WFQ, SMART [33] and BERT [4]. The SMART sched-
uler [33] prioritizes a task by two parametepsiority andbiased virtual finishing time (BVFTThe sched-
uler always chooses the task with the highest priority. When multiple tasks are at the same priority level, the
scheduler tries to satisfy as many BVFTs as possible. BERT [4] is essentially an implementatidr? of
plus a cycle stealing mechanism. Worst-case Fair Weighted Fair Quéliag Q) [5] is an extension of
WEFQ that prevents a task from getting executed faster than expected in a perfect fair share scheduler. While
W F2@ provides proportional sharing, the cycle stealing mechanism provides a flexible way for urgent tasks
to meet their deadlines when their demands exceed their shares.

The Earliest Eligible Virtual Deadline First (EEVDF) [41] algorithm is another proportional-share al-
gorithm that employsirtual time The EEVDF algorithm puts all aperiodic jobs into the same queue and
assigns a deadline for each job. According to task weightelease time} and execution time*, the
virtual eligible timeve and virtual deadlined of a task are computed using equations presented in [41] and
summarized as follows:

(k)
! = vebtl = k),

(2

vel =V (th); vd® = vek +

The virtual time in EEVDF is identical to the definition in WFQ, shown in Equation (1).

Although time-sharing and proportional-share systems actually execute tasks at variable rates, they do
not explicitly state the variable execution rate in real time units. Instead, tasks are viewed as running at
a constant virtual rate on a virtual processor whose speed varies. Obviously, without explicit admission
control algorithms neither time-sharing nor proportional-share systems can make any QoS guarantees—if
the number of tasks in the system grew very large, the resulting execution rate for each task would be very
low.

In the context of real-time systems, two canonical task models angetti@dic mode[21], where jobs
are released every period, and gporadic mode]28], where jobs are released with a minimum separation
time. Although the two models guarantee temporal correctness, both are too strict for many applications.
Thus, many variations of these models have been developed over the years.

A common technique to extending these models to provide QoS guarantees to non-real-time and soft
real-time applications is to add a server task (e.g., [19, 39, 12, 10, 11, 2]). The server methods, on the one
hand, guarantee a constant execution rate for the server, which partially satisfies the QoS requirements of
non-real-time (aperiodic) requests. On the other hand, these models do not support explicit and dynamic
rate changes. Although some algorithms, such as GRUB (Greedy Reclamation of Unused Bandwidth) [20],

allow bandwidth reclamation, this is more like stealing spare time than adjusting the bandwidth (execution
rate).

There have been many task models introduced over the years that relax the strict assumptions of the
periodic and sporadic task models without adding a “server” task. For examplatéibased execution
(RBE) model [15] is a generalization of the sporadic model that was developed to support the real-time
execution of event-driven tasks in which agriori characterization of thactualarrival rates of events is
known; only theexpectedarrival rates of events are known. A RBE task is parameterized by a four-tuple
(z,y,d,c). The task is expected to procesgvents every time units, where each event takes no longer
thanc time units and event processing must be completed withime units of its arrival. Rate is achieved
by deadline assignment. Thth job of a RBE task’;, J;;, is assigned a deadline as follows:

2
max(tij + dl,Dl(‘] — QTZ) + yz) if j > x; ()

Di(j):{tij—l—di if1<j<ay
wheret;; is the release time of job;;. The RBE model schedules tasks at average rates. It does not,
however, allow any of the task parameters or the set of tasks to vary at runtime.

TheenhancedRBE model [13] was designed to integrate non-real-time tasks into the RBE model with-
out using a “server” task. In that model, RBE tasks reserve a constant computing bandwidth while all
aperiodic tasks share the remaining computing capacity in proportion to their weight. Since the number of
aperiodic requests is dynamic, changing at runtime, each aperiodic request actually runs at a variable rate.

Several researchers have developed techniques for supporting variable computation times and/or release
patterns (e.g., [26, 27, 42, 43]). However, each of these provides relatively strict bounds on how much
these parameters are allowed to vary, as compared to the VRE model presented here. Researchers have
also proposed methods for reducing task execution rates or computation times in overload conditions (e.g.,
[1, 17,18, 29, 30, 31, 38)).

The first work to provide explicit increasing and decreasing hard QoS guarantees on a task-by-task basis
appears to be thelastictask model created by Buttazzo, Lipari, and Abeni [8]. In the elastic task model, a
task is parameterized by a five-tugle, 7o, Trnin, Tmaz, €) WhereC' is the tasks’s WCET] is the nominal
period for the task(;,;, andT,,., denote minimum and maximum periods for the task, arglan elastic
coefficient. The elastic coefficient“specifies the flexibility of the task to vary its utilization” [8]. In this
case, the utilization is varied by changing the length of the period, which is allowed to “shrifik};toor
“stretch” toT;,.., depending on the system load. The VRE model presented here also allows the period of
a task to shrink or stretch. In the VRE model, however, no bounds on the length of the period are defined a
priori. Moreover, the VRE model also supports increasing and decreasing the WCET, which is not supported
by the elastic task model.

Other researchers have taken a system-level approach to support adaptive real-time computing (e.g.,
[7, 24, 25, 34, 36, 40, 32, 35, 16, 37]). Most of these systems focus on over-load conditions and use various
combinations of value-based scheduling, mode changes, and/or feedback mechanisms to shed or reduce

load in an attempt to meet the most critical deadlines. While the VRE model is designed to support adaptive
real-time computing systems, the VRE model differs from these systems in that the VRE model does not
rely on any of these techniques to handle over-load.

The work most similar to the VRE model is thege-based earliest deadlif®@BED) scheduler presented
by Brandt et al. in [6]. In that work, the authors try to “flatten the scheduling hierarchy” by supporting hard
real-time, soft real-time, and non-real-time tasks with a single scheduler. Their algorithm allows periodic
tasks to dynamically change utilizations and periods. While the RBED scheduler delays the acceptance of
new tasks until some tasks terminate and there is enough bandwidth available, a VRE scheduler releases the
required bandwidth by adjusting existing deadlines. The details are discussed in Section 3.1. The underlying
task model assumed by Brandt et al. in [6] is a generalization of the Liu and Layland periodic task model
[21]. The VRE model is a generalization of the RBE task model, which is a generalization of Mok’s sporadic
task model [28]. The VRE task model reduces to the task model in [6] wheh = 1, Vi, ¢, and jobs are
released with a strictly (variable) periodic pattern rather than a (variable) sporadic pattern.

3 VRE Task Model

In conventional real-time terms, a task is a sequential program that executes repeatedly in response to the
occurrence of events. Each instance of the task is called a job or a task instance. Each job of a task is
assumed to execute no longer than a constant bound called the worst-case execution time (WCET). Classic
real-time task models include tiperiodictask model [21], in which jobs are generated evgtime units

for some constarp, and thesporadictask model [28], in which jobs are generated no sooner than every

p time units for some constapt Therate-based executiofRBE) task model [15] is a generalization of
sporadic tasks that allows early release patterns. It makes no assumptions about the relationships between
the points at which jobs are released for a task; it assumes jobs are generated at a precise average rate but
that the actual arrivals of jobs in time is arbitrary. Naiable-rate executioVRE) task model provides

two primary extensions to these models: (i) variable WCET and periods, which may change at ahy time

and (ii) a dynamic task set in which tasks are allowed to enter and leave the system at arbitrary times.

3.1 Variable Rate Execution

In contrast to a RBE task, a VRE task reserves an initial execution rate and then may dynamically adjust its
execution rate by changing either its WECT or its period. If the execution rate of a task does not change,
VRE task execution is identical to RBE task exectuion. Moreover, if a VRE task never generates more than
one job simultaneously and never changes it execution rate, it reduces to a sporadic task.

Following the notation of the RBE model, a VRE task is described by four parantetérs v (t), d:(t), ci(t)).
Similar to the RBE modely; (¢) is the interval in which; (¢) jobs are expected to be releasédt) is the rel-
ative deadline, which is typically equal to the perigdt); andc;(t) is the WCET. (We assumg(t) = y;(t)
in this work.) Rather than the constant rate of the RBE model, each parameter is a variable, which may
change during runtime. To effect a rate change, a VRE task can change either its executiof{#jmar,

‘0 2 4 6 ‘8 ‘10 ‘12 ‘14 ‘16 ‘18
Figure 1: The initial execution rate {8, 4,4, 2). At time 4, the execution rate changes(tb 4,4, 1), and
the execution rate changes bacK1to4, 4, 2) at time12.

‘0 2 4 6 ‘8 ‘10 ‘12 14 16 18
Figure 2: The initial execution rate {g,4,4,1). At time 8, the execution rate changes(th 3, 3,1), and
the execution rate changes bacK1o4, 4, 1) at time14.

its job release ratgx;(t), y;(t)). To reflect the ability of a task to change its execution rate, the deadline
assignment function of Equation (2) is extended to Equation (3) as follows.

. tij + di(t) if 1 <j<uz(t)
D= {maxmj Fdi(t), DilG — i) + (1) 15> it ©

wheret;; is the release time of jolg;;.

Figures 1 and 2 are two simple examples that illustrate how the variable rate execution model works.
For simplicity, the rate changes in these examples are made at task deadlines, but this is not required. In
Figure 1, the initial execution rate {8, 4, 4, 2), and thec;(¢) parameter is adjusted during runtime. At time
t = 4, the WCET is changed from 2 to 1. Thus, execution rate changgéks 404, 1), and the next two
execution intervals each require at most 1 time unit. At time12, the task’s:;(¢) parameter is changed to
2, and the execution rate changes back to its initial specification; 4, 2). This example might represent a
scenario in which a video player changes its resolution and needs more or less execution time in an interval
of y;(t) time units.

A scenario in which a video player skips frames is shown in Figure 2. In this casg(th@arameter
is adjusted during runtime. The initial execution rate specificatiof1,ig,4,1), and at timet = 8 the
execution rate changes to, 3, 3, 1). The execution rate changes bacK1o4,4, 1) at timet = 14.

Adjusting Pending Deadlines. Equation (3) defines the deadline assignment rule for newly released jobs.

However, a task may have pending jobs when its rate changes since “early releases” are allowed. The
simplest approach to handling pending jobs is to keep the rate unchanged until all of a task’s pending jobs
are completed. Thus, the deadlines of the real-time jobs are not modified once they are released. The

RBED scheduler [6] uses this method. Since the utilization is aM@gpercent in a mixed system if there
exists any best-effort task, the RBED scheduler actually has to delay the acceptance of new tasks until some
running tasks terminate and enough bandwidth is released.

In some cases, however, the new tasks might have tighter time constraints than some running tasks, and
we want to immediately change the execution rates of the low-priority running tasks. In these cases, the
deadlines of a low-priority task’s pending jobs are modified such that demand is bounded and the bandwidth
is released immediately.

As previously stated, we assume in this work thgtt) = v;(¢), which allows an efficient on-line
admission and rate-change control function. Observe that the fraction of the CPU allocated to any one job
of a VRE taskV; at timet is f;(t) = <) deally, if eitherc;(t) or y;(t) change at some timg, then each

i (t)
of the pending deadlines of task can be re-computed by dividing the expected remaining service time

required to complete the pending job by its new fractfft,) and adding this to time,. Let D;(j) be a
pending deadline and be the expected remaining service time, which is the amount of service time that

would remain in a perfectly fair system. The new deadline is computed using Equation (4).
r

D; J)=te+ 4
W=t e @
In a perfectly fair system, the remaining service time computed as
B D;(5)
=St D) = [RO = (D) =) filte 1) ©)

whereS;(t1,t2) denotes the service time the job of tagkwould receive in a perfectly fair system during
the intervalft,, t2] and f;(t, — 1) is the fraction of the processor that would have been allocated to the job

of V; in the interval.
By combining Equations (4) and (5), the pending deadline can be rewritten using Equation (6).

() =t S DG) | (P) =te) - filte =1)
Dig) =tat ==y =ta t filt) (6)
= to+ (Di(j) — ta) - %

Equation (6) actually assumes that the lag of the job is zero. The lag is defined as the difference between
the ideal and actual service times. Thatligy;(tz) = S;(0,t;) — s:(0,t3), wheres;(0,t,) is the actual
service time received in the interval. The lag may be zero, strictly negative, or strictly positive. If the
lag is strictly negative, the job is executing ahead of its ideal execution rate. This case never creates a
problem because the rate change function of Equation (6) moves the deadline based on an ideal execution
rate, and simply not executing the job for a period of time equé%gé? would eliminate the lag, which

was assumed to be zero.

If the lag is strictly positive, the task is proceeding behind its ideal service time. If a rate change at time
t, results inf;(t, — 1) > fi(t.), then the deadline will be postponed, which gives time for the lag to return
to zero as the job’s actual execution rate “catches up” to its ideal rate. The only possible problem arises
when f;(t, — 1) < fi(t.). In this case, the new deadline is moved to an earlier time, but it must be large
enough to allow the actual service time to “catch up” with the ideal execution rate. Thus;; Withequal
to the actual service time at tinig, we rewrite Equation (6) as follows:

filte = 1)

Di(j) =t + maz((Di(j) — tz) - EEATAEE Ci(te — 1) = si(tz)) Y]

There are three parameters that can be used to adjust the rate of a VRE (t3sky (¢), andz;(t).
In the following, we respectively describe the three cases when only one parameter changes at a time.
Simultaneous changes to more than one parameter can be achieved by combining the corresponding rules.
In the special case of simultaneous changes(t9, andy;(¢), the combination of Rules 1 and 2 reduce to
Equation (7).

e Rule 1: ¢;(t) changes at time,. The pending deadlines of jobs of taBkare changed to accom-
modate the change in WCET, as long as the ngwy,) parameter is greater than the amount of time
already consumed. Since, in this case,

o Ci(ta; — 1)
- Ci(tm) ’

filte =1) 70
fz(t:c) CI(

substltutlngfl(tg_)l) with Ci(t(’_)l) in Equation (7), we get the following equation:

Ci(tz — 1)

DI(j) = ta + maz(Di(5) —) - 7 e

ci(te = 1) = si(ta)).

If the newc;(t,) parameter is less than or equal to the actual amount of execution time already con-
sumed by the jobg;(t,) < s;(t.), the rate change takes place at the end of the current execution
period—or at the next earliest point at which the job’s lag reduces to zero, and the new deadline is
assigned using Equation (3).

e Rule 2: y;(t) changes at time,. Pending deadlines of the task are adjusted by substitﬁﬁﬁg)&

with y(’(t”)) in Equation (7).

Di() =t + (Ds() — ta) - 282D it — 1) — si(ta).

e Rule 3: z;(t) changes at time,. This case is different from the other two since the change in the
x;(t) parameter affects the total fraction of the CPU allocated to the task, but not the fraction of the
CPU allocated to any one job of the task. & (j), D;(j + 1), D;(j + 2),...,D;(j + k — 1),

D;(j + k)) be the set of pending deadlines ordered by time. We treat all pending jobs to be released
at timet,.. Thus, the pending deadlines are modified as follows:

Di(j +m) = to +yi(ts) - (| |+1),0<m<k

xX; (tz)

We show in Section 4 that these deadline adjustments will not affect temporal correctness of the task set.

3.2 Supporting a Dynamic Task Set

As stated previously, the VRE model supports a dynamic task set, allowing tasks either to enter or to leave
the system at any time. When a new VRE t&5k,, arrives at time, the task is tentatively added to the set of

tasksV/(¢) and the schedulability condition’, /) fi(t) < 1, which is presented in Section 4, is evaluated.
An affirmative result means that the task is accepted and deadlines are assigned using Equation (3).

Theoretically, a task leaves the system when its lag reaches zero. At this point in time, the fraction of
the processor allocated to that task can be allocated to another task, and the task is removed from the task
set. Usually when a job finishes before its deadline, however, it has negative lag. Thus, if the last job of task
V; executed for; (¢) time units, the fraction of the processor allocated to #gstannot be re-allocated until
the deadline of that job is reached.

In an implementation of the task model, there are two simple options for tracking the system utilization
when jobs enter and leave. The first method is to set a timer to expire at the deadline of the last job of a
terminating task/;. When the timer expires at timg, the lag has reached zero and the task is removed
from the task set. In practice this simply means subtractjity) - fi(t¢) from the total allocated processor
utilization.

Alternatively, when a task finishes with non-zero lag, the deadline of the last job can be inserted in
a queue sorted by non-decreasing finish times. Using this method, the task is not removed from the task
set until its processor utilization is needed by another task. This only happens when the schedulability
condition yields a negative result. At this point, all entries in the queue with finish times less than or equal
the current time are dequeued. For each of these dequeuediasKs;)- f;(ts) is subtracted from the total
allocated processor utilization. If the schedulability condition still yields a negative result, subsequent jobs
in the queue with the next earliest finish times are tentatively removed from the queue and their processor
utilizations subtracted from the total allocated processor utilization. If there is still insufficient processor
bandwidth, the new task is not allowed to join the system. On the other hand, if this results in sufficient
processor bandwidth being made available, the new task is allowed to join the system, but lag of the jobs
with future finish times must be transferred to the new task.@gtlenote this set of jobs. The simplest
way to transfer the lag of the jobs), to the new task/,.., is to set the deadline of the first job Bf.,, at
timet is as follows:

lagi(

ico, fz
Of course, there are many other ways of transferring the negative lag of jobs in th¢. SEie advantages
of this approach is its simplicity and the fact that the processor utilization is updated only when necessary to
accept a new task (or an increase in the execution rate of a current task), which reduces overhead that might
occur in a very dynamic task set.

4 Feasibility

This section presents a schedulability condition wigh) = y;(t). We first define the processor demand
bound for variable rate tasks. Then, we give a sufficient schedulability condition for the variable rate task set.
We leave open the question of necessary and sufficient conditions since they cannot be computed without
a priori knowledge rate changes, which precludes their use as on-line admission and rate-change controller

functions.

Given a variable rate task = (z;(t), vi(t), vi(t)ci(t),) and a specific time intervat,, t,x], assume
that the rate changes attimg, t,o, ...tak—1, tzo < tz1 < tz2 < ... < ty. FOr the case in which we change
the rate after all pending deadlines are finished, the executithaain be viewed as a sequence of intervals
such that each interval is a RBE task exectuion. According to [15], the least upper bound on the processor
demand in the intervat,;, t,;1] is {%J - 2(tzj) - ci(tz;). Thus, the least upper bound on demand
is a sum of the demand in each of these intervals

k—1

SIS (1) - ei(tay)

=0 Yi(tas)

which depends on the actual values gf, t,o, ...t 1.

If the rate change takes effect immediately (as opposed to the end of an execution interval for the task),
the least upper bound on demand is an even more complicated step function that can only be computed in
advance if exact future times of rate changes are known. The following demand bound, however, is easy to
compute and is tight at the deadline of each job.

Lemma 4.1. Let V; be a variable rate taskz;(t), yi(t),v:(t), ci(t)). If no job of V; released before time
to > 0 requires processor time in the interviap, /] to meet a deadline in the intervib, /], then

s to, @Ftoll) = [fit)e ©
to

is an upper bound on the processor demand in the interyal] created byl; where f;(t) is the fraction

function ofV; computed by;(¢) = %(tc)(t)

Proof: The proof of this lemma is built upon the RBE task demand bound in [15], and separated into
two parts. First, we show that Equation (9) is an upper bound on the processor demand created’;by task
when its sharg;(¢) never changes in the intervig}, /]. Second, we show the lemma also holds wlign)
changes at any time, € [to,], which is done by mapping segments of the interval to the first case.

Case 1: Execution rate never changes through the intdtyal]. This is a straightforward reduction
from Lemma 4.1 in [15], which states that the tight upper bound on processor demand created by a RBE
taskisdbf;(L) = LWJ@“M- Since we assumé = y;, let (z;, y;, ¢;, y;) be the constant execution rate
in the interval and. = [— ¢y. Based on Lemma 4.1 in [15] and the fraction definitigy{4) = M)

yi(t)
the demand created By is

demand;(L) = LL_ZH—yZJmch = LyLJ i+ fi
<L-fi=(—t)fi

l —
=/ fit)dt = dbf;([to,1]).

Thus, Equation (9) is an upper bound on the processor demand in the iritgrijatreated byV; and the
lemma holds for this case.

Case 2: Execution rate changes at timec [to,!]. Without loss of generality, assung is the first
time f;(¢) changes in the intervédd, []. The remaining portion of this proof will assume thfaft) remains
constant in the intervai,, {]. If f;(¢) changes in the interv@,, [], then this proof can be applied recursively
to that interval. There are two sub-cases to consider: when there is no pending deadlines gtdimde
when there exist some pending deadlines.

Case 2a: there is no pending deadlines at time

In this case, the execution & in the intervalfty, /] can be treated as two separate portidtist,| and
[tz,[]. From the result of Case 1, the demand createt; by the subintervalt, ¢..] is bounded from above
by Eb\fi([to,tz]) since the rate does not change in the subinterval. Similarly, the demand credtgthby
the subintervalt,, (] is bounded from above bzybf ([tz,1]). Thus, the processor demand created’bin
the intervalfto, {] is less than or equal to

— ta l
dbfi([to, ta]) + dbf ([t 1)) = [filt)dt + 5 fi(t)dt

to

l
t fit)dt = dbf([to, 1))

and the lemma holds for this case.

Case 2b: There exist pending deadlined/pét timet,..

Let D, = {D;(j),Di(j + 1), Di(j + 2), ..., Di(j + k)} be the set of all pending deadlines ordered by
time, D, are modified with the three rules in Section 3 when the execution rate changes We know the
demand bound function (9) holds before the change. TWilse D,,, Demand([ty, D]) < ftz fi(t)dt +
filta =1) - (D — ta).

Suppose a deadlin@ € D, is changed td)’, we show thay"t fl t)dt is still a demand bound for the
change by each rule.

For Rules 1 and 2the order of the modified deadlines is preserved. Thus, the demand created in the
interval [to, t,] after the rate change is the same as the demand in the intgr¥glbefore the rate change.
Before the change, the demahd less than or equal tﬁ;”” fi®)dt + fi(ty — 1) - (D — ty).

Based orRule 1andRule 2 (D' — t,) - fi(tz) = (D —ty) - fi(to — 1). Thus,

D/

Fa= | fia+ D —to) fitts) = [£i@)d+ filte — 1) - (D —t,)

to to to
still holds as a demand bound.

Rule 3is even simpler. LeD.(j + m) be a modified pending deadling,(< D}(j + m)). We have
Demand([to, tz]) < [, fi(t)d: and Demand([ts, Di(j + m)]) < ftf (+m) fi(t)d; by Rule 3 Thus,
ftloj (7+m) f:(t)d; still holds as a demand bound.

This completes the proof. O

Theorem 4.2. Let the task se¥ = (J;2, V (¢) be a set of variable rate tasks with(t) = y;(t),1 < i < n.
Preemptive EDF will succeed in schedulinigf

VL >0,L > dbf;(L) (10)
jEV

Proof: To show the sufficiency of Equation (10), it is shown that the preemptive EDF scheduling algorithm
can schedule all releases of taskd/iwithout any job missing a deadline if the tasks satisfy Equation (10).
This is shown by contradiction.

Assume thaV satisfies Equation (10) and yet there exists a release of a tasthist misses a deadline
at some point in time wheW is scheduled by the EDF algorithm. Lgtbe the earliest point in time at
which a deadline is missed and lgtbe the later of:

¢ the end of the last interval prior tg in which the processor has been idle (or O if the processor has
never been idle), or

¢ the latest time prior to; at which a task instance with deadline aftgstops executing prior tty (or
time 0 if such an instance does not execute priay}o

By the choice ofy, (i) only releases with deadlines less than tigpexecute in the intervaty, ¢4], (i) any
task instances released beféyavill have completed executing liy or have deadlines aftey, and(iii) the
processor is fully utilized ifto, ¢4].

By Lemma 4.1, at mos?b\fi([to, tq]) units of processing time are needed to process requests of variable
rate taskV; in the interval under a deadline driven scheduling algorithm, such as EDF. Thus,

Z @j([tmtd])
i€V ([to,tal)
is an upper bound on the processor demand in the int@gva);]. Since the processor is fully used in the
interval[to, t4] and since a deadline is missed at titpgit follows that

S dbf(ta,to) > ta— to.
jev
However, this contradicts our assumption thiatatisfies Equation (10).
Hence ifV satisfies Equation (10), then no release of a tagkimisses a deadline whéhis scheduled
by a deadline driven algorithm such as EDF. It follows that satisfying Equation (10) is a sufficient condition
for schedulability under preemptive EDF. O

Corollary 4.3. Let the task se¥ = | J;°, V (¢) be a set of variable rate tasks with(t) = y;(t),1 < i < n.
Preemptive EDF will succeed in schedulivigf Equation(11) holds wheref;(¢) = %(j)(t) is the portion
of the CPU capacity allocated to variable rate taigkat timet.

v, > filt) <1 (11)

i€V (L)

Proof:

iev(t) o iev ()
t
t—to> > [fi(t))dt
iev(t) o
t—to> Y dbfi([to.t]) bylLemmad4.l
iev(t)

O]

Equation (11) looks like the necessary and sufficient condition of EDF in [21], but it is actually different.
The VRE model supports a dynamic task set in which tasks are allowed to release jobs early. This means we
can have intervals of time in which the utilization function is greater thadjacent to intervals of time in
which the utilization function less thain and the task set may still be schedulable. Thus, Equation (11) is
only sufficient, and not necessary. To develop a tighter condition, which is both sufficient and necessary, the
actual times of rate changes must be known a priori. Since we do not make this assumption, it is infeasible
to evaluate such a condition.

Corollary 4.3 can be used as the condition for admission and rate-change control. When a new variable
rate task arrives or an existing variable rate task requests to change its rate, the system will recompute the
sum of the fractions. If the sum is less than or equdl,taccept the request; otherwise, reject the request.
(See Section 3.2 for more details on the use of such a condition for admission and rate-change control.)

5 Evaluation

This section introduces our experimental results and overhead measurements. We first present an experiment
which focused on adjusting the execution rate and correctness. Following that, we discuss the overhead.

The scheduler was implemented as a loadable Linux module on Redhat 8.0 (kernel version 2.4.18). Only
a small modification was made to the Linux kernel. Thus, users can load or unload our scheduler without
reboot. The experiments were done on an IBM Thinkpad T30 with a 2.0G Hz P4 processor and 256M DDR
memory. We set théme tickto be 1ms and recompiled the Linux kernel. When we refer to an execution
rate, we use aick as the time unit. For example, rate, 20, 20,2) means 2 ticks (2ms) every 20 ticks
(20ms).

The first experiment was on adjusting the execution rates. We simulated a multi-agent system, where
three agents negotiate with each other to decide their execution rates during runtime. The three agents did
nothing but execute a null loop and change execution rates at specific times, shown in Table 1. Figure 3 is
the actual execution time of the three agents. It is clear that the actual execution rate changes are consistent
with the assigned rates in Table 1.

We also sampled the deadlines of 180 jobs of the multi-agent task system and their corresponding finish
times, which is shown in Figure 4. All the jobs finished before their deadlines. We can see a gap between

Time 0 19

37

Agent1 | (1,20,20,2) | (1,20,20,2)

(1,20,20,6)

Agent2 | (1,20,20,10)| (1,20,20,2)

(1,20,20,6)

Agent 3 | (1,20,20,4) | (1,20,20,12)

(1,20,20,4)

Table 1: Rate adjustment of the three agents.

execution time

" Agent -
Agent 2 -
Agent3 x

1 1 1 1 1
0 5 10 15 20 25 30
real time

L L
35 40 45

Figure 3: The actual execution time of the three agents.

the deadlines and the finish times. Actually, the gap enlarged as time went by. Since the three agents did not
occupy all the processor capacity, 20% of the processor time is reserved for non-real-time tasks, such as the
shell. When we compute the execution rate of the non-real-time tasks, we rountlaait eariable to an

integer variable. Thus, the non-real-time tasks run slower than expected, and the VRE tasks run faster than

their assigned rate.

966.0 -

965.5 -

965.0 -

964.5 -

964.0 -

963.5 -

time since bootup (second)

963.0 -

962.5 -

“finish time -~ |

L L L L L L
0 20 40 60 80 100 120
number of deadline

L L
140 160 180

Figure 4: Deadlines and finish times.

In the Linux kernel, all running processes are put in a list calledjueue The Linux scheduler scans
the entire list and selects the process with the highest priority. Our implementation also follows this pattern
though another implementation might be more efficient. Thus, the overhead shall be a linear function of
the number of running processes. We measured the overhead of our scheduler, and compared it with the

overhead of the original Linux scheduler. The overhead was measured in CPU cycles, which was retrieved
by the ‘rdtsc’ instruction (ead timestamp counter Figure 5 shows that this implementation results in

an at most 2.25% overhead for scheduling and context switching. More importantly, the VRE scheduler

provides assured and dynamic QoS to processes, which the native Linux scheduler cannot provide, with
only a slight increase in overhead. These results are consistent with Brandt et al. in [6] where a slightly

simpler variable rate task model was implemented in Linux, with the change made to the kernel rather that
as a loadable module. See [23] for a more detailed analysis of the implementation and performance of the
VRE scheduler.

50000

50000

T T T T T T T T T
Overhead on original Linux scheduler + Overhead on the VRE scheduler +

45000 - g 45000 - e
R

20000 | 4 40000 [MR
+ 4

35000 - 4 :% éﬂ%

30000 PR

35000 - e
30000 - KR
25000 - Lt P 25000 |- +F
+ b
N
20000 20000 e+ +
+ + R
kS

15000 15000 o T

Overhead of choosing next process
Overhead of choosing next process

L COE 4 L

10000 + b T + 10000
4 o T F
: oy s
5000 | - E oL tp e] 5000 L i

I R . T et
‘4 - e A e

o skt sl bl e v | ¢ ‘ ‘ ‘ ‘ o Loafbritemesticbe ik ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100 [10 20 30 40 50 60 70 80 90 100
Number of processes Number of processes

Figure 5: The overhead is a linear function of the number of processes under bother the original Linux
scheduler and our scheduler. The overhead of our scheduler is a little bit higher than the original Linux
scheduler.

6 Conclusion

model for real-time tasks in which execution rate requirements might change during runtime. We called
the new task modalariable rate executiofVRE). In the VRE model, we relax the assumptions made by
canonical real-time task models by allowing both the worst case execution time (WCET) and the period to be
variable. For soft or non-real-time tasks, an advantage of the new task model is that the exact execution rates
need not be known when the task begins to execute; instead, we can assign an approximate execution rate
to an application and dynamically adjust the rate during runtime. An efficient schedulability condition was
also presented that can be used as an admission and rate-change control function. A scheduler supporting
the VRE task model was implemented in Linux as a loadable module, and several experiments demonstrated
its correctness and analyzed the overhead.

References

[1] Abdelzaher, T.F., Atkins, E.M., and Shin, K.G. “QoS Negotiation in Real-Time Systems and Its
Applica-tions to Automated Flight ControlProceedings of the IEEE Real-Time Technology and Ap-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

plications SymposiunMontreal, Canada, June 1997.

Abeni, L., Buttazzo, G., “Integrating Multimedia Appplications in Hard Real-Time SysteRrsg.
IEEE Real-Time Systems Syniyadrid, Spain, Dec. 1998.

Bavier, A., Montz, A., and Peterson, L., “Predicting MPEG execution timesjt. of the Joint In-
ternational Conf. on Measurement and Modelling of Computer Systdadison, WI, Jun. 1998, pp.
131-140.

Bavier, A., Peterson, L. and Mosberger D., “BERT: A scheduler for best effort and real-time tasks,
Technical Report TR-602-99, Department of Computer Science, Princeton University, Mar, 1999.

Bennett, J., Zhang, H., “WF2Q: Worst-case Fair Weighted Fair Queueing,” IEEE INFOCOM '96, San
Francisco, CA, Mar. 1996, pp. 120-128.

Brandt, S. A., Banachowski, S., Lin, C., and Bisson, T., “Dynamic Integrated Scheduling of Hard
Real-Time, Soft Real-Time and Non-Real-Time Procesdesteedings of IEEE Real-Time System
SymposiumDecember 2003, pp. 396-407.

Burns, A., D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramamritham, J. Stankovic, and L.
Stringini, “The Meaning and Role of Value in Scheduling Flexible Real-Time Systeloashal of
Systems Architectur@000.

Buttazzo, G. C., Lipari, G., and Abeni, L., “Elastic Task Model for Adaptive Rate ContfPohteed-
ings of IEEE Real-Time System SymposiDecember 1998, pp. 286-295.

Demers, A., Keshay, S., and Shenker, S., “Analysis and simulation of a fair queuing algoRtiom,”
ceedings of the SIGCOMM ’'89 SymposjBep. 1989, pp. 112.

Deng, Z., Liu, JW.S., Sun, J., “A Scheme For Scheduling Hard Real-Time Applications in Open
System Environment,Proceedings of the Ninth Euromicro Workshop on Real-Time Sy3Jtedo,
Spain, June 1997, pp. 191-199.

Deng, Z., Liu, J.W.S., “Scheduling Real-Time Applications in an Open Environmi@agl-Time Sys-
tems Journalvol. 16, no. 2/3, pp.155-186, May 1999.

Ghazalie, T. M., Baker, T. P., “Aperiodic Servers in Deadline Scheduling Environmietil-Time
Systems Journatol. 9, no. 1, pp. 31-68, 1995.

Goddard, S., Liu, X., “Scheduling Aperiodic Requests under Rate-Based Execution rRoateded-
ings of IEEE Real-Time System SymposiDetcember 2002, pp. 15-25.

Goddard, S., Liu, X., “Variable Rate ExecutioMgchnical ReportUniversity of Nebraska-Lincoln,
Department of Computer Science and Engineering, TR-UNL-CSE-2004-8, April 2004.

[15] Jeffay, K., Goddard, S., “A Theory of Rate-Based Executi®njceedings of the 20th IEEE Real-Time
Systems SymposiuPhoenix, Arizona, December 1999, pp. 304-314.

[16] Jehuda, J. and A. Israeli, “Automated Meta-Control for Adaptable Real-Time Softweal-Time
Systems Journal4(2), pp. 107-134, Mar. 1998.

[17] Kuo, T.-W., and Mok, A. K, “Load Adjustment in Adaptive Real-Time Systenfs@ceedings of the
12th IEEE Real-Time Systems SymposiDetember 1991.

[18] Lee, C., Rajkumar, R., and Mercer, C., “Experiences with Processor Reservation and Dynamic QOSin
Real-Time Mach, Proceedings of Multimedia Japan 98pril 1996.

[19] Lehoczky, J.P., Sha, L., and Strosnider, J.K., “Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments,Proceedings of IEEE Real-Time Systems Sympogsipn261-270, Dec. 1987.

[20] Lipari, G., Baruah, S., “Greedy reclamation of unused bandwidth in constant-bandwidth servers”,
Proceedings of the EuroMicro Conferences on Real-Time Sysppm$93-200, Stockholm, Sweden.
June 2000.

[21] Liu, C., Layland, J., “Scheduling Algorithms for multiprogramming in a Hard-Real-Time Environ-
ment,” Journal of the ACMVol 30., Jan. 1973, pp. 46-61.

[22] Liu, X., Goddard, S., “A Loadable Variable Rate Execution ScheduRrgteedings of the Real-Time
Linux WorkshopValencia, Spain, Nov. 2003, pp. 187-196.

[23] Liu, X., Goddard, S., “Supporting Dynamic QoS in Linuiy’Proceedings of the 10th IEEE Real-Time
and Embedded Technology and Applications Sympg&iaronto, Canada, May 2004.

[24] Lu, C., J. Stankovic, T. Abdelzaher, G. Tao, S. Son, and M. Marley, “Performance Specifications and
Metrics for Adaptive Real-Time systems$Ptoceedings of IEEE Real-Time Systems Sympogipm
13-22, Nov. 2000.

[25] McElhone, C., and A. Burns, “Scheduling Optional Computations for Adaptive Real-Time Systems,”
Journal of Systems Architecture00.

[26] Mercer, C. W., Savage, S., and Tokuda, H., “Processor Capacity Reserves for Multimedia Operating
Systems,Proceedings of the IEEE International Conference on Multimedia Computing and Systems
May 1994.

[27] Mok, A. K., and Chen, D., “A multiframe model for real-time taskBfbceedings of IEEE Real-Time
System Symposiywashington, December 1996.

[28] Mok, A.K.-L., Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environ-
men{’ Ph.D. Thesis, MIT, Department of EE and CS, MIT/LCS/TR-297, May 1983.

[29] Nakajima, T., “Dynamic QOS Control and Resource Reservatl&hCE, RTP’98 1998.

[30] Nakajima, T., “Resource Reservation for Adaptive QOS Mapping in Real-Time M&otili Interna-
tional Workshop on Parallel and Distributed Real-Time Systekpsil 1998.

[31] Nakajima, T., and Tezuka, H., “A Continuous Media Ap-plication supporting Dynamic QOS Control
on Real-Time Mach,Proceedings of the ACM Multimedia '94994.

[32] Nett, E., M. Gergeleit, and M. Mock, “An Adaptive Approach to Object-Oriented Real-Time Comput-
ing,” Proceedings of ISOR@pril 1998.

[33] Nieh, J., Lam, M., “The Design, Implementation and Evaluation of SMART: A Scheduler for Multi-
media Applications,Proc. of the 16th ACM Symposium on Operating Systems Principé@st-Mab,
France, Oct. 1997, pp. 184-197.

[34] Prasad, D., and A. Burns, “A Value-Based Scheduling Approach for Real-Time Autonomous Vehicle
Control,” Robotica 2000.

[35] Rajkumar, R., K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels: A Resource-Centric Approach
to Real-Time Systems,Proceedings of the SPIE/ACM Conference on Multimedia Computing and
Networking Jan. 1998.

[36] Rosu, D.,Dynamic Resource Allocation for Adaptive Real-Time Applicafié thesis, Dept. of
Computer Science, Georgia Institute of Technology, 1999.

[37] Rosu, D., K. Schwan, S. Yalamanchili, and R. Jha, “On Adaptive Resource Allocation for Complex
Real-Time Applications,Proceedings of the 18th IEEE Real-Time Systems Sympqgsiurd20-329,
Dec. 1997.

[38] Seto, D., Lehoczky, J.P., Sha, L., and Shin, K.G., “On Task Schedulability in Real-Time Control
Systems, Proceedings of the IEEE Real-Time Systems SymppBiecember 1997.

[39] Spuri, M., Buttazzo, G., “Efficient Aperiodic Service Under the Earliest Deadline Schedufnay;’
of the IEEE Symposium on Real-Time Sysjémsember 1994.

[40] Steere, D., A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole, “A Feedback-driven Proportion
Allocator for Real-Rate Scheduling?roceedings of the Symposium of Operating Systems Design and
Implementation1999.

[41] Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S. K., Gehrke, J. E., Plaxton, C. G., “A Proportional
Share Resource Allocation Algorithm for Real-Time, Time-Shared Systdtns;. of the IEEE Sym-
posium on Real-Time SysterBec. 1996, pp. 288-299.

[42] Sun, J., and Liu, J.W.S., “Bounding Completion Times of Jobs with Arbitrary Release Times and
Variable Execution TimesProceedings of IEEE Real-Time System Sympqdd@aoember 1996.

[43] Tia, T.-S., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L.-C., and Liu, J.W.-S., “Probabilistic
Performance Guarantee for Real-Time Tasks with Varying Computation TiResgedings of IEEE
Real-Time Technology and Applications SymposiDhicago, lllinois, January 1995.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2004

	Variable Rate Execution
	Steve Goddard
	Xin Liu

