
light source, and the flattening caused by the coherent
backscattering or any other physical mechanism. We
believe this is why the data from [78] are only well fit
by this deconvolution model (Fig. 3).

4. Implications for the opposition effect in the entire
Solar System

4.1. Convolution and deconvolution of a planetary dataset

Solar System objects are a good opportunity to test the
influence of the non-zero angular size of a light source.
Previous works on the field, [94,56], were done without
quantifying the effect of the solar angular size on the
morphology of observed phase curves. In Fig. 6 are repre-
sented the convolved and deconvolved angular widths of the
opposition surge as a function of the distance from the Sun
(in Astronomical Units) for various Solar System objects
(for details, see [14]).

The convolved HWHMs follow a power-law function
with the heliocentric distance while the deconvolved
HWHMs are independent of the distance from the Sun

(see Fig. 6). With the deconvolved HWHMs, Solar System
objects seem to be grouped by their albedo. This could be
a consequence of the opposition effect mechanisms, since
both shadow hiding and coherent backscattering are
albedo-dependent [95,39].

4.2. Convolution of a synthetic dataset

While the work of [94,14,56] demonstrated that the
amplitude and the angular width of the opposition effect
are correlated to the size of the Sun, there is still any work
that quantifies the impact of the variation of the apparent
size of the Sun across the entire Solar System. This is
justified by the comparisons made by [96,11] between the
Moon and Mercury or the Moon, the Galilean satellites
and Enceladus without taking into account the apparent
size of the Sun seen by these surfaces.

In order to test the effect to the Solar angular radius in
the Solar System, we compute the different apparent sizes
a� with Eq. (1) and the values of the distances in Table 2.
As noted by [94], there is a factor 100 between the

Table 2
Geometric parameters for the observation of the opposition effect for each planet of our Solar System (minimum, maximum and averaged distances from

the Sun refer to perihelion, aphelion and semi-major axis, and are in Astronomical Units from [66]. The apparent radius of the solar disk is in degrees and

is calculated with Eq. (1) and the respective distances. Note that the Solar radius is R� ¼ 0:004649 AU and 1 AU¼ 149:598� 109 m. Values for the main

belt and Kuiper belt are added for completeness regarding the asteroids and their respective distances to the Sun correspond to their rough boundaries.

Primary Distance to Sun (AU) Angular solar radius (1)

min. max. mean a�min a�max a�

Mercury ( ) 0.307 0.467 0.387 0.5703 0.8676 0.7087

Venus ( ) 0.718 0.728 0.723 0.3658 0.3709 0.3684

Earth ( ) 0.983 1.017 1.000 0.2619 0.2709 0.2664

Mars ( ) 1.382 1.666 1.524 0.1598 0.1927 0.1758

Jupiter ( ) 4.951 5.455 5.203 0.0488 0.0538 0.0512

Saturn ( ) 9.014 10.044 9.529 0.0265 0.0295 0.0280

Uranus ( ) 18.31 20.07 19.19 0.0132 0.0145 0.0139

Neptune ( ) 29.76 30.36 30.06 0.0087 0.0089 0.0088

Main belt (MB) �2.00 �4.00 �3.00 0.0665 0.1331 0.0961

Kuiper belt (KB) �30.0 �55.0 �42.0 0.0048 0.0088 0.0066

Fig. 6. Angular width of the opposition surge using the convolution method (left panel) and the deconvolution method (right panel) for the phase curve

data of various rings and satellites of the Solar System from the study of [14].
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angular radius of apparent solar disk seen by Mercury and
that seen by Kuiper belt asteroids.

Then, we derive synthetic phase functions by creating
the flattening at the apparent solar radii (a� from Table 2)
seen from Mercury to Neptune. These functions assume
a logarithmic increase over the full range of phase
angle, which is acceptable at first order (see Fig. 8 of the
Supplementary material).

We modeled the convolved synthetic phase functions
with a morphological model and a convolved morphological
model. The convolution model provides the expected beha-
vior by flattening at the apparent solar radii. By contrast, the
morphological model is unable to fit the synthetic data at
high phase angle and the flattening at low phase angles. As
shown in Fig. 7, a reasonable fit to the flattening part of the
phase curves is only possible for phase angles less than 11.
This demonstrates that the convolution method has a major
role when fitting a phase curve with a full coverage in
phase angle.

5. Discussion

While the deconvolution method offers a solution for
considering point-like sources, it is limited by its basic
logarithmic shape. At the first order, it is acceptable to
describe a phase curve by a logarithmic behavior (see also
[97, Chap. 11B, p. 287]), but a closer look shows that
observed data at phase angles greater than 11 curls
around the logarithmic function (see Fig. 8 of the Supple-
mentary material). This curling behavior is also noted for
the data at phase angles less than 11 (see Fig. 3).

Moreover, as pointed out by [90], the Maxwell equations
require that the derivative of the unconvolved brightness at
a¼ 01 must be zero. This naturally is a rather strong
challenge to the whole deconvolution problem. One possible
way to solve the problem lies in the work by [98] with their
RT-C model which shows an exceedingly sharp opposition
peak but a zero derivative at a¼ 01. Their work points out
that there exist physical models which show the required
properties to explain the behavior of the opposition effect.
Another way to look at the problem is to try some combina-
tion of analytical functions that have a zero derivative at
a¼ 01 and a sharp opposition peak, but with a non-constant
behavior at high phase angles. This could be done with
the diffraction model of [56] combined with a linear
function, as similarly done with the linear-exponential func-
tion of [71]. Alternative functions will be tested in a forth-
coming paper.

6. Conclusion

To better understand the behavior of the brightness
near the solar angular radius:

(1) We convolved the morphological model of [71] with
solar limb darkening functions of [59,60]. We find a
good agreement between the two convolution mod-
els. The flattening of the phase curves is progressive
and effective at approximately 0:4a�. This value is
found either by looking at the phase curves, or with

Fig. 7. Top panel: Synthetic phase curves that flatten at the apparent

solar radius of the planets of the Solar System (a� from Table 2). The

deconvolved data is marked in red and is the model of [14]. Second

panel: Result of the best fit with the linear-exponential function at phase

angle less than 11. Bottom panel: Result of the best fit with the linear-

exponential function at phase angles from 10�3 degree to 1801. (For

interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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the derivative of the convolved linear-exponential
function fit to the data.

(2) We deconvolved the data by using the logarithmic
function of [93]. The deconvolution model exhibits
the same trend than laboratory measurements of [78].

We conclude that most of the laboratory phase curves
do not exhibit similar flattening than planetary phase
curves due to the difficulty of reaching phase angles as
small as the angular radius of the light source (for
example a, ¼ 0:00741 for the laser beam used by [86]
whereas their smallest measured phase angle was 0.0251).

To quantify the impact of the solar angular radius on
the phase curves of objects located in the Solar System:

(3) We created synthetic phase functions by creating
the flattening at the apparent solar radii seen from
Mercury to Neptune.

(4) We modeled the convolved synthetic phase functions
with a morphological model and a convolved mor-
phological model. While the morphological model can
mimic the flattening at low phase angles (ao11), it is
unable to fit the synthetic data at high phase angle in
the same time.
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[43] Muinonen K, Zubko E, Tyynelä J, Shkuratov YG, Videen G. Light
scattering by Gaussian random particles with discrete-dipole
approximation. J Quant Spectrosc Radiat Transfer 2007;106:360–77.
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