Search for Pair Production of Scalar Top Quarks in R-Parity Violating Decay Modes in pp Collisions at $\sqrt{s}=1.8$ TeV

Darin Acosta
University of Florida, acosta@phys.ufl.edu

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

Collider Detector at Fermilab Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the [Physics Commons](http://digitalcommons.unl.edu/physicsbloom)

Acosta, Darin; Bloom, Kenneth A.; and Fermilab Collaboration, Collider Detector at, "Search for Pair Production of Scalar Top Quarks in R-Parity Violating Decay Modes in pp Collisions at $\sqrt{s}=1.8$ TeV” (2004). *Kenneth Bloom Publications*. 49.

http://digitalcommons.unl.edu/physicsbloom/49
Search for Pair Production of Scalar Top Quarks in R-Parity Violating Decay Modes in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

PHYSICAL REVIEW LETTERS week ending 6 FEBRUARY 2004

VOLUME 92, NUMBER 5

051803-1 0031-9007 = 22.50 © 2004 The American Physical Society 051803-1
G. Punzi,
J. Rademacker,
A. Rakitine,
F. Ratnikov,
H. Ray,
D. Reher,
A. Reichold,
P. Renton,
M. Rescigno,
A. Ronzoni,
L. Ristori,
M. Rivelino,
W. J. Robertson,
T. Rodrigo,
S. Rolli,
B. Roser,
R. Rossin,
C. Rott,
A. Roy,
A. Ruiz,
D. Ryan,
A. Safonov,
R. St. Denis,
W. K. Sakumoto,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
T. Shibayama,
M. Shimojima,
M. Shochet,
A. Sidoti,
J. Siegrist,
A. Sill,
P. Sinervo,
P. Singh,
A. J. Slaughter,
K. Sliwa,
D. Saltzberg,
C. Sanchez,
A. Sansoni,
L. Santi,
S. Sarkar,
H. Sato,
P. Savard,
M. Schmitt,
L. Scodellaro,
A. Scott,
A. Schlabach,
E. E. Schmidt,
M. P. Schmidt,
M. Semenov,
F. Semeria,
T. Shah,
M. D. Shapiro,
P. F. Shepard,
Many supersymmetry (SUSY) models [1] predict that the first two generations of SUSY partners of the quarks and the leptons (squarks and sleptons) are approximately mass degenerate and heavy. However, the mass of the lightest top squark (\(\tilde{t}_1\) or “stop”) can be relatively light due to a large mixing between the interaction eigenstates, \(\tilde{t}_L\) and \(\tilde{t}_R\). This mixing depends on the top Yukawa coupling. Because of the heavy top (t) quark mass, \(M_t\), it is possible that \(M_{\tilde{t}_1} < M_t\) [2].

\(R\) parity \((R_p)\) is a multiplicative quantum number defined as \(R_p = (-1)^{3B+L+2S}\), where \(B, L, S\) are the baryon, lepton, and spin numbers of a particle [3]. \(R_p\) distinguishes standard model (SM) particles \((R_p = +1)\) from SUSY particles \((R_p = -1)\). Conservation of \(R_p\) requires SUSY particles to be produced in pairs and to decay ultimately to SM particles plus the stable lightest SUSY particle. \(R_p\) conservation is not required by SUSY. It is motivated phenomenologically by limits on the proton lifetime, the absence of flavor-changing neutral currents, etc. Viable \(R_p\) violating \((\tilde{R}_p)\) models can be built by adding explicit \(\tilde{R}_p\) terms with trilinear couplings \((\lambda_{ijk}, \lambda'_{ijk}, \lambda''_{ijk})\) and spontaneous \(\tilde{R}_p\) terms with bilinear couplings \((\epsilon_i)\) to the SUSY Lagrangian \([4,5]\), where \(i, j, k\) are generation indices. These couplings allow \(B\) or \(L\) violating interactions and, if \(\lambda'_{33k}\) or \(\epsilon_3\) is nonzero, a \(\tilde{t}_i\) may decay directly to SM final states which are experimentally observable.

In \(p\bar{p}\) collisions, stop pairs can be produced via \(R_p\)-conserving processes. In \(\tilde{R}_p\) scenarios each stop could decay into a tau (\(\tau\)) lepton and a bottom (\(b\)) quark with a branching ratio \(Br\), which depends on the coupling constants of the particular model. A good final state topology identifies either an electron or a muon (\(e, \mu\)) from the \(\tau\) decay into a tau (\(\tau_b\)) lepton, and two or more jets.

We present the results of a search for pair production of scalar top quarks \((\tilde{t}_1)\) in an \(R\)-parity violating supersymmetry scenario in 106 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV collected by the Collider Detector at Fermilab. In this mode each \(\tilde{t}_1\) decays into a tau lepton and a \(b\) quark. We search for events with two \(\tau\)'s, one decaying leptonically \((e, \mu)\) and one decaying hadronically, and two jets. No candidate events pass our final selection criteria. We set a 95% confidence level lower limit on the \(\tilde{t}_1\) mass at 122 GeV/c\(^2\) for \(Br(\tilde{t}_1 \rightarrow \tau b) = 1.\)
embedded in the central EM calorimeter near shower maximum, aids in electron identification and \(\pi^0 \rightarrow \gamma \gamma \) identification from \(\tau_h \) decays. A muon subsystem is located outside the HAD calorimeter and has trigger coverage for the region \(|\eta| < 0.6 \).

Events must pass a three-level trigger system [6] which requires a single lepton (\(e \) or \(\mu \)) with \(p_T > 8 \text{ GeV/c} \) (\(|\eta| < 1.0 \) for electrons and \(|\eta| < 0.6 \) for muons) [9]. Offline, the lepton must have \(p_T > 10 \text{ GeV/c} \), originate from the event vertex, and pass more restrictive identification and isolation requirements [7,10]. An event is removed as a Z boson candidate if it contains a second, loosely identified same-flavor opposite-sign lepton with \(76 < M_{\ell\ell} < 106 \text{ GeV/c}^2 \). All events are required to have \(|z_{\tau_h}| \leq 60 \text{ cm} \).

An inclusive \(\ell \tau_h \) subsample is made by requiring each event to further contain a high \(p_T \), isolated, hadronically decaying \(\tau \) lepton candidate with \(p_T^T > 15 \text{ GeV/c} \) [11] and \(|\eta| < 1.0 \). A \(\tau_h \) candidate is identified as a calorimeter cluster satisfying the following requirements [12]: (i) not identified as an \(e \) or a \(\mu \); (ii) one or three tracks with \(p_T > 1 \text{ GeV/c} \) in a \(10^\circ \) cone around the calorimeter cluster center; (iii) the scalar sum of the \(p_T \) of all tracks in \(\Delta R = 0.4 \) around the cluster center, excluding those in the \(10^\circ \) cone, less than \(1 \text{ GeV/c} \); (iv) fewer than three \(\pi^0 \) to \(\gamma \gamma \) candidates identified in the CES; (v) more than \(4 \text{ GeV} \) of \(E_T \) measured in the calorimeter; (vi) \(0.5 < E_T/p_T^T < 2.0 \) (1.5) for one track (three tracks); (vii) the width of the calorimeter cluster in \(\eta-\phi \) space less than \(0.11 \) (0.13)–0.025(0.034) \(\times E_T \) [GeV]/100 for one track (three tracks); and (viii) the invariant mass reconstructed from tracks and \(\pi^0 \)'s less than \(1.8 \text{ GeV/c}^2 \). The charge of the \(\tau_h \) is defined as the sum of the track charges, and is required to have unit magnitude and have the opposite-sign (OS) of the \(\ell \). A total of 642 events pass the above requirements; 16 of these have two or more jets (reconstructed by a fixed cone algorithm with \(\Delta R = 0.4 \) [13]) with \(E_T > 15 \text{ GeV} \) and \(|\eta| < 2.4 \). The four \(\ell \tau_h + \text{jets} \) candidates found in the search for \(\tilde{\ell} \rightarrow (W^+ b)(W^- b) \) [12] pass the kinematic requirements for this search.

The dominant backgrounds come from \(Z/\gamma^*(\rightarrow \tau^+ \tau^-) + \) jets, \(\tilde{\tau} \), diboson \((W^+ W^-) \), \(W^\pm Z \), and \(ZZ \) production, and fake \(\ell \tau_h \) combinations from \(W + \) jets and QCD events. Monte Carlo (MC) programs with CTEQ4L parton distribution functions (PDFs) [14] and a detector simulation are used to estimate the background rates from \(Z/\gamma^* \), \(W \), \(\tilde{\tau} \), and diboson events. All SM processes except \(W/Z + \) jets events are generated using ISAJET [15]; VECBOS [16] is used for vector boson plus jets production and decay, followed by HERWIG [17] for the fragmentation and hadronization of the quarks and gluons. The cross sections for \(Z/\gamma^* \), \(\tilde{\ell} \), and \(WW \) production are normalized to CDF measurements [18–21] and next-to-leading order (NLO) calculations for WZ and ZZ production are used [22]. The number of QCD fake events is estimated from the data assuming that the number of OS events, after subtracting off the nonfake contribution, is identical to the number of like-sign (LS) events observed in the data as expected from QCD sources, i.e., \(N_{QCD}^{\ell}\ell \approx N_{data}^{\ell}\ell - N_{MC}^{\ell}\ell \).

The final data selection is optimized to maximize the sensitivity for \(\tilde{t}\tilde{t} \) production over simulated SM backgrounds and LS data. To reduce the \(W + \) jets events we require \(M_T(\ell, E_T) < 35 \text{ GeV/c}^2 \) where \(M_T(\ell, E_T) \) is the transverse mass of the \(\ell \) and \(E_T \), defined as \(M_T(\ell, E_T) = \sqrt{2p_T^\ell E_T(1 - \cos \phi_\ell E_T)} \), and \(\phi_\ell E_T \) is the azimuthal angle difference between the \(\ell \) and \(E_T \). To reduce the QCD backgrounds we require \(\sum p_T(\ell, \tau_h, E_T) \geq p_T^\ell + p_T^\tau + E_T > 75 \text{ GeV/c} \). The \(M_T(\ell, E_T) \) cut precedes the \(\sum p_T(\ell, \tau_h, E_T) \) cut because of possible charge correlations between the lepton from \(W \) decay and a fake \(\tau_h \) from a jet. Figure 1 shows the \(M_T(\ell, E_T) \) and \(\sum p_T(\ell, \tau_h, E_T) \) distributions for the OS \(\ell \tau_h + 2 \) jet sample. A control sample of \(\ell \tau_h + 0 \) jet events with similar kinematic requirements \([M_T(\ell, E_T) < 25 \text{ GeV/c}^2, |p_T^\ell + E_T| > 25 \text{ GeV/c}] \) is selected to show that the backgrounds are well modeled, dominated by real \(Z \rightarrow \tau^+ \tau^- \) production, and for later use in the acceptance calculations. Figure 2

FIG. 1 (color online). The final data selection criteria for the OS \(\ell \tau_h + 2 \) jet sample. The arrows show the final event selection requirements.
shows the charged track multiplicity of the \(\tau_b \)’s (removing the 1 and 3-prong requirements) for this sample.

A breakdown of the backgrounds and data is given in Table I. The backgrounds appear well modeled. A total of 3.2\(^{+1.4}_{-0.3} \) events are predicted from all SM sources, dominated by \(Z(\to \tau^+\tau^-) + \text{jets} \) production. No candidate events pass the final \(\tau_1\tau_1 \) selection criteria, which is expected in \(-3\%\) of experiments when taking into account the statistical and systematic uncertainties.

In order to set limits on \(\tau_1\tau_1 \) production and decay, the acceptances and efficiencies are normalized to the rate of \(Z(\to \tau^+\tau^-) + 0 \text{ jets} \) decays using the following relation:

\[
\sigma(\tau_1\tau_1 \to \tau^+\tau^- b\bar{b}) = \left(\frac{N_{\text{obs}}^{\tau_1\tau_1} - N_{\text{BG}}^{\tau_1\tau_1}}{N_{\text{obs}}^{Z} - N_{Z}^{BG}} \right) \cdot R_{\text{acc}} \cdot R_{\text{trig}} \cdot \sigma_{Z} \cdot \text{Br}(Z \to \tau^+\tau^-),
\]

where \(N_{\text{obs}}^{\tau_1\tau_1} \) and \(N_{Z}^{BG} \) (\(N_{\text{obs}}^{Z} \) and \(N_{Z}^{BG} \)) are the number of candidates observed in the data and expected backgrounds in the \(\ge 2 \text{ jet/} \tau_1\tau_1 \) (0 jet/\(Z \)) selections, \(R_{\text{acc}} \) is the ratio of the \(Z \) to \(\tau_1\tau_1 \) acceptances and \(R_{\text{trig}} \) is the ratio of the trigger efficiencies. The primary advantage of this approach is that potential systematic uncertainties in the estimate of identification and isolation efficiencies are reduced in the ratio of \(\tau_1\tau_1 \) to \(Z \) production.

The 95\% confidence level (C.L.) limits on \(\sigma(\tau_1\tau_1 \to \tau^+\tau^- b\bar{b}) \) in the \(e, \mu \), and combined channels are found using Eq. (1) and come from a Bayesian integration of the likelihood as a function of the cross section, integrating over the correlated and uncorrelated systematic uncertainties on the expected signal with a flat prior. The \(R_{\text{acc}} \) is a function of the \(M_{t_1} \) and varies in the range 0.34 < \(R_{\text{acc}} < 2.15 \) (0.35 < \(R_{\text{acc}} < 1.87 \)) for the \(e \) (\(\mu \)) channel over the range 70 < \(M_{t_1} < 130 \text{ GeV/c}^2 \). The \(R_{\text{trig}} \) varies between 0.95 < \(R_{\text{trig}} < 0.97 \) (0.99 < \(R_{\text{trig}}^\mu < 1.00 \)) for the \(e \) (\(\mu \)) channel with an uncertainty of \(\sim 1\% \). [The acceptance and trigger efficiencies for the \(Z \) control sample are 1.19\% (0.69\%) and 74.5\% (83.0\%) for the \(e \) (\(\mu \)) channel.]

Assuming lepton universality gives \(\sigma_{Z} \cdot \text{Br}(Z \to \tau^+\tau^-) = \sigma_{e} \cdot \text{Br}(Z \to \ell^+\ell^-) = 231 \pm 12 \text{ (stat + sys) pb} \) [23]. The dominant uncertainty is due to the statistical uncertainty in \(N_{\text{obs}}^{Z} \) and \(N_{Z}^{BG} \) and is 17.0\% (24.9\%) [24]. Additional uncertainty comes from our estimation of \(R_{\text{acc}} \) which is dominated by the variation in the \(\tau_1\tau_1 \) acceptance from choices of the QCD renormalization scale \(\bar{Q} \), PDFs, amount of gluon radiation, the jet energy scale, and the statistical uncertainty in the MC samples [25]. The total correlated uncertainties vary between 17.1 and 17.7\% (25.1 and 25.4\%), and the total correlated uncertainties vary between 9.3 and 14.1\%.

Figure 3 shows the final 95\% C.L. upper limits on the cross section times Br for the \(e, \mu \), and combined channels, along with the NLO prediction of the production cross section [26]. The lower limits on \(M_{t_1} \) are 110 and 75 GeV/c\(^2\) for the \(e \) and \(\mu \) channels, where we have assumed Br = 1. Combining the two results yields a limit of 122 GeV/c\(^2\). Since our analysis does not distinguish the quark flavors in jet reconstruction, these results are equally valid for any \(\lambda'_{2k} \) coupling. These results substantially improve on the currently most stringent mass limit [27] which excludes \(M_{t_1} \) below 93 GeV/c\(^2\).

In conclusion, we searched for \(\tau_1\tau_1 \) production using 106 pb\(^{-1}\) data in pp collisions at \(\sqrt{s} = 1.8 \text{ TeV} \). We examined the \(\ell\tau_{b,\tau_1} \ge 2 \text{ jet} \) final state within an \(\mathcal{R}_p \) SUSY scenario in which each \(\ell \) decays to a \(\tau \) lepton

Table I. Summary of the number of OS events in the data and expectations for the background sources as each selection requirement is applied.

| Sample | \(t\bar{t} \) | Diboson | \(W + \text{jets} \) | \(Z/\gamma^* \to \tau^+\tau^- \) | QCD | Tot | \(N_{\text{obs}} \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (\ell\tau_{b})</td>
<td>1.2 (\pm 0.3)</td>
<td>2.3 (\pm 0.8)</td>
<td>101 (\pm 6)</td>
<td>225 (\pm 9)</td>
<td>301 (\pm 18)</td>
<td>631 (\pm 21)</td>
<td>642</td>
</tr>
<tr>
<td>(\ell\tau_{b,\tau_1} \ge 2 \text{ jets})</td>
<td>1.0 (\pm 0.2)</td>
<td>0.4 (\pm 0.1)</td>
<td>3.4 (\pm 0.4)</td>
<td>7.7 (\pm 0.5)</td>
<td>8 (\pm 3)</td>
<td>21 (\pm 3)</td>
<td>16</td>
</tr>
<tr>
<td>(M_{T}(\ell, \mathcal{E}_{T}) < 35 \text{ GeV/c}^2)</td>
<td>0.15 (\pm 0.07)</td>
<td>0.14 (\pm 0.06)</td>
<td>0.5 (\pm 0.2)</td>
<td>6.0 (\pm 0.4)</td>
<td>8 (\pm 3)</td>
<td>15 (\pm 3)</td>
<td>10</td>
</tr>
<tr>
<td>(\sum</td>
<td>p_T(\ell, \tau_b, \mathcal{E}_{T}) > 75 \text{ GeV/c})</td>
<td>0.15 (\pm 0.07)</td>
<td>0.08 (\pm 0.03)</td>
<td>0.2 (\pm 0.1)</td>
<td>2.8 (\pm 0.3)</td>
<td>0 (\pm 0.1)</td>
<td>3.2 (\pm 0.1)</td>
</tr>
</tbody>
</table>
and a b quark via nonzero λ_{333}^\prime or ϵ_3 couplings. No events pass our selection criteria and we set a 95% C.L. lower limit on the $t\bar{t}$ mass at 122 GeV/c2 for $Br = 1$.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science, Sports and Culture of Japan; the National Science and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korea Science and Engineering Foundation (KoSEF), the Korea Research Foundation; and the Comision Interministerial de Ciencia y Tecnologia, Spain.

[8] We use a coordinate system where θ and ϕ are the polar and azimuthal angles with respect to the proton beam direction (z axis). The pseudorapidity η is defined as $-\ln(\tan(\theta/2))$. The transverse momentum of a particle is denoted as $p_T = p \sin \theta$. The analogous quantity using energies, defined as $E_T = E \sin \theta$, is called transverse energy. The missing transverse energy, E_T, is a magnitude of $\sum \vec{E}_T \hat{n}_i$, where \hat{n}_i is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter cell i.
[10] Each lepton is required to have less than 4 GeV of E_T (as measured in the calorimeter) in a cone of $\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} = 0.4$ around the lepton, excluding the lepton energy. Similarly, the isolation in CTC is also required to be less than 4 GeV/c. Also, see CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 87, 251803 (2001).
[11] p_T^ℓ is defined as the sum of the p_T of any tracks in a 10° cone around the center of the candidate, plus the E_T of any identified π^0's, as measured in the EM calorimeter.
[24] For the electron channel we have $N_{\ell\ell}^{BG} - N_{\ell\ell}^{NC} = 54 - (8.1 \pm 2.5)$ events which gives 46 ± 8 events when statistical uncertainties are taken into account. Similarly, for the muon channel we have $23 - (2.9 \pm 1.5)$ which gives 20 ± 5 events.
[25] The estimated systematic uncertainties in $R_{\mu\mu}$ due to $t\bar{t}$ production and decay for the stop mass range...
from 130 to 70 GeV/c^2 are between 4.5 and 8.2% due to choice of the Q^2 scale (taken to be correlated, and equal for the e and μ cases), 2.0 and 4.6% due to the choice in PDFs (again taken to be correlated and equal for e and μ), 2.3 and 6.4% due to uncertainty in the initial and final state gluon radiation (correlated, and averaged between e and μ), 1.1 and 3.7% due to jet energy scale (correlated and averaged), and 1.7 and 4.7% for e's and 2.3 and 4.8% for μ's due to MC statistics (uncorrelated).
