
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

2002

Automated Ontology Learning for a Semantic Web Automated Ontology Learning for a Semantic Web

Christopher N. Hammack
University of Nebraska-Lincoln, chammack@cse.unl.edu

QingFeng Lin
J. D. Edwards & Company

Hai Huang
University of Nebraska-Lincoln

Stephen Scott
University of Nebraska-Lincoln, sscott2@unl.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Hammack, Christopher N.; Lin, QingFeng; Huang, Hai; Scott, Stephen; and Seth, Sharad C., "Automated
Ontology Learning for a Semantic Web" (2002). CSE Technical reports. 46.
https://digitalcommons.unl.edu/csetechreports/46

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/46?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages

Automated Ontology Learning for a Semantic Web

Christopher N. Hammack†, QingFeng Lin‡, Hai Huang†,
Stephen D. Scott†, and Sharad C. Seth†

†Dept. of Comp. Sci. & Eng.
University of Nebraska

Lincoln, NE 68588-0115
{chammack,sscott,seth}@cse.unl.edu

‡J. D. Edwards & Company
One Technology Way
Denver, CO 80237

qingfenglin@jdedwards.com

February 8, 2002

Abstract

By expressing web page content in a format that machines can understand, thesemantic
webprovides huge possibilities for the Internet and for machine reasoning. Unfortunately,
there is a considerable distance between the present-day World Wide Web and the semantic
web of the future. The process of annotating the Web to make it semantic web-ready is quite
long and not without resistance. In this paper one mechanism for semanticizing the Web
is presented. This system is known as AutoSHOE, and it is capable of categorizing pages
according to one of the present HTML semantic representations (Simple HTML Ontology
Extensions) by Heflin et al. We are also extending this system to other semantic web rep-
resentations, such as the Resource Description Framework (RDF). The AutoSHOE system
includes mechanisms to train classifiers to identify web pages that belong in an ontology, as
well as methods to classify pages within an ontology and to learn relations between pages
with respect to an ontology. The modular design of AutoSHOE allows for the addition of new
ontologies as well as algorithms for feature extraction, classifier learning, and rule learning.
This system has the promise to help transparently bridge traditional web technology to the
semantic web using contemporary machine learning techniques rather than tedious manual
annotation.

University of Nebraska-Lincoln, Computer Science and Engineering
Technical Report # TR-UNL-CSE-2002-0005

1 Introduction

Established web-search methods employ expression matching to identify candidate pages, and
prune or reorder these by further analysis based on the traditional information retrieval techniques
or the web topology [4, 3]. It would be considerably more useful if the knowledge contained
on the web could actually be expressed in some way that machines could understand, and that
this information could be interpreted. This is the promise of thesemantic web[7, 6]: that all
information that is available to humans on the web could be expressed in a way that machines
can interpret.

One way to express this semantic information is SHOE [11] (Minipage, Section B). SHOE (as
well as other semantic web models) uses a set of HTML tags to describe semantic information.
Unfortunately, SHOE does not address the problems of efficiently adding these tags to a page
and of making novice web-site designers aware of SHOE ontologies. Manually coding these tags
into a page is very tedious and time-consuming and the toolset knowledge required is significantly
more than many web site developers possess. Further, many developers do not see any benefit to
placing the ontologies on their pages.

It would be extremely useful to be able to automatically generate these semantic tags using ma-
chine learning techniques (Minipage, Section C). This is the purpose of AutoSHOE. Given a
web page that belongs to a certain category of pages (ontology), it can classify pages according
to subclasses and infer the relationships between certain types of pages. Using similar technolo-
gies, AutoSHOE can also detect whether or not pages belong to a particular ontology prior to
further classification. This allows for rapid collection of data known to be relevant to a particular
ontology.

Machine learning techniques have been successfully applied to information extraction, text docu-
ment classification, relation rule learning and many other information processing areas (e.g. [17]).
However, machine learning systems for ontologies can be difficult to build due to lack of back-
ground in machine learning, the tedious work of gathering and processing labeled training data,
and the need to try several feature selection methods to find one that works best for a specific
ontology. (On the other hand, once training is done, annotating new pages is relatively easy and
cheap.) A major design goal of AutoSHOE was to mitigate these difficulties in several ways.

• It obtains trained learners through the Internet to annotate unlabeled web pages.

• It simplifies the training process and the sharing of training data and trained learners.

• It integrates machine learning systems to learn SHOE ontologies in a seamless way.

With this framework, the users can collect online SHOE-annotated pages as training data, exper-
iment with different feature selection methods and learning algorithms to find the best approach
for learning a particular ontology, and automatically annotate new web pages with SHOE’s an-
notations. As a framework, AutoSHOE is highly extensible, sharable and customizable, and it is
extendible to other semantic web representations, such as the Resource Description Framework

2

(RDF). AutoSHOE can be accessed1 at http://autoshoe.unl.edu and a more detailed description
of its architecture is available from Lin [14] and Lin et al. [15].

The rest of this paper is organized as follows. In the next section we take the reader through a step-
by-step demonstration of AutoSHOE. We then describe AutoSHOE’s architecture in more detail
in Section 3 and conclude in Section 4. In addition, minipages give background on ontologies,
SHOE, and machine learning.

2 AutoSHOE Walk-Through

We will illustrate the functionality of AutoSHOE by means of the cs-dept-ontology [9]. First,
labeled data is collected for training a classifier to determine if a new (arbitrary) web page is an
instance of an ontology (i.e. if it belongs in any of its classes). Then this data is further used to
train other classifiers to classify data within an ontology (i.e. this classifier will, when trained,
predict a category for a new page known to be in its ontology) and to identify relationships
between pages within this ontology. Then these classifiers can be used to annotate new web
pages. When a new web page is encountered for annotation, AutoSHOE first decides if the
page is relevant to the ontology. If it is, further analysis of the page’s contents determines the
annotation tags and the discovered relationship of the page to other web data.

The user of AutoSHOE accomplishes these tasks by a step-by-step process that we now describe
by means of screen shots of the actual system.

2.1 Obtaining Training Data

Figure 1 shows the AutoSHOE form that the user fills out to collect a set of web pages as training
data. The user provides a set of starting URLs and the recursive depth to which the WebGrabber
should descend for collection of web pages. Further constraints on the retrieved training set can
be specified by the user: an upper bound on the number of pages retrieved from any starting URL;
the maximum file size (to prevent grabbing documents that may not be useful for classification);
and the hostnames to visit. The last option is useful, for example, to limit the search to a single
university’s web site.

The modular framework of AutoSHOE allows a sophisticated user to choose a learning algorithm
for classification while providing a default option for those not well-versed in machine learning.

After the form is filled out, the data collection process begins. As each page is visited, the
features (see Minipage on Machine Learning) of the page are harvested and stored for training
the classifier.

1While a complete prototype of AutoSHOE has been built, the final port to its server is still in progress.

3

Figure 1: AutoSHOE form for specifying training data.

2.2 Learning if a Page Belongs to an Ontology

At the end of the data collection process, the user is presented with a list of the pages found
(Figure 2). Since learning requires labeled data, the user must provide the labels. This is done
by placing a check mark next to each page that is a positive example (i.e. each page that is
relevant to the ontology). The unchecked pages are used as negative examples (pages irrelevant
to the ontology). After the user finishes labeling the examples, the learning algorithm determines
the features that best characterize classification in the ontology. The default learning algorithm
package is Rainbow: a naı̈ve Bayes algorithm (see machine learning Minipage).

4

2.3 Learning Classification Rules for SHOE Ontologies

For a page that belongs in an ontology, it is also necessary to learn the predefined categories in
the ontology. For example, inside the cs-dept-ontology, a page might belong to the csFaculty
class.

The training process for this phase is essentially identical to learning if a page belongs in the
ontology—web sites are collected and extracted, the user labels the pages with their classes in
the ontology, (e.g. cs.Student), and the learning algorithm builds a classifier. As in Section 2.2,
the default learning algorithm package is Rainbow.

After learning the classification rules, AutoSHOE can be trained to recognize binary relationships
between pages. For example, one relationship in the cs-dept-ontology is ‘cs.member’, which
establishes a relationship between pages belonging to a CS Department and one of its members.
AutoSHOE asks the user to identify pairs of web pages and the binary relationship that exists
between these pairs. Then the algorithm FOIL is applied to learn the relations. As relational
learning often takes a long time, an option is provided to enter an e-mail address and be notified
when the process has been completed.

2.4 Testing Auto-Annotation

After the training is done, we can use the learned classifiers and rule sets to annotate new web
pages. This interface is nearly identical to the training interface (Figure 1) aside from the addition
of a feature to select which learned classifier to use. Although the annotation process is similar to
training, this is the most likely feature for users to utilize, so we give a detailed example. First we
collect a set of new HTML documents that we wish to label with respect to the ontology that we
trained our classifier for. In this example, we are collecting a set of web pages from Dr. Stephen
Scott. (In order to provide some negative examples to make this example more interesting, no
URL constraint is used. If only pages from the University of Nebraska were desired, a constraint
such as ’unl.edu’ could be used.) A recursive search of depth 2 is used, meaning that two levels
of links will be visited from the starting URL.

The ontology classifier then attempts to determine if the pages collected belong to the ontology,
so that only pages which belong to the ontology are further classified. The system will return the
list of collected URLs, with its classification presented through the check box next to each URL.
The user should now verify that the pages returned correctly belong to the ontology. If the page is
incorrectly classified as being in the ontology, the user should deselect the check box, and vice-
versa. In this example (Figure 2), 47 pages were returned, 28 of which were selected as belonging
to the ontology. In the screen shot below, pages such as http://www.musicalheritage.com/ were
identified by AutoSHOE as not belonging to the ontology, while several course related pages did
belong.

Next the system will extract features from each page (this is similar to the procedure used in train-
ing the classifiers) to represent the HTML document as a feature vector. This feature vector will

5

Figure 2: Specifying membership in SHOE ontologies.

be used as an unlabeled instance. The unlabeled instances are then inserted into the database. In
order to annotate the web pages with SHOE’s classification rules, AutoSHOE sends the unlabeled
instances from the database to the classifier. The classifier then labels these instances. In order
to annotate the web pages with SHOE’s relation rules, we extract the rule sets from the database
and send them to a deduction program such as Prolog. The deduction program will discover the
target relation according to the rule sets.

AutoSHOE presents the results (Figure 3) in two parts: the web pages classified with confidence
intervals and the SHOE mark-up. In this example, Dr. Scott’s research page is classified as
belonging to the cs.Faculty class with a 99% confidence value. A suggestion box on one of his
course pages is identified as a cs.Course page with 45% confidence. A list of courses on one
of his course pages is incorrectly identified as a cs.Student page with 89% confidence. This is
not unusual since this sort of page is similar to what many students may have on their web site
explaining what courses they are currently taking. The second part of the results page, the SHOE
mark-up, lists all of the classifications in SHOE syntax. This information could be stored in a
new database indexed by URL to be used for various semantic web applications.

6

Figure 3: SHOE’s classification results.

7

3 AutoSHOE Architecture

AutoSHOE is not a simple software package but rather a machine learningframeworksince it
has the following features:

• It is middleware: There are several general-purpose machine learning systems in existence.
However, these usually require users to have machine learning background knowledge. In
addition, these learning systems require different input formats and run on different plat-
forms. Therefore, even knowledgeable users require time and effort to become familiar
with them. On the other hand, SHOE’s design is independent of any machine learning
techniques. General-purpose learning algorithms cannot take the SHOE-annotated doc-
uments as training data without proper data preprocessing, feature selection, and format
translation. As a middleware component between the end users and the learning systems,
AutoSHOE hides the complex details of the learning systems. It provides a uniform and
friendly user interface so that the AutoSHOE users can use the system without knowing the
sophisticated machine learning techniques. In addition, AutoSHOE hides the background
knowledge of SHOE from the learning systems. It provides a standard learner control pro-
tocol to communicate with different learning systems so that the learners can run without
knowing SHOE’s ontology and annotation.

• It is highly extendible: AutoSHOE doesn’t have a pre-defined system boundary. The train-
ing data, learners, and feature selectors can be located anywhere so long as they are acces-
sible via the web. New learners and feature selectors can be plugged into the framework
by simply filling out an online registration form.

• It is highly sharable. Even though the details of learning are hidden from the user, training
a learner to learn an ontology can be time-consuming. It requires AutoSHOE to grab a
large amount of labeled training data, select the features from raw data, translate them into
the format that learners can understand, and train the learners. It also requires a human
to try many different feature selection methods and learning algorithms to find the best
approach to learn the ontology. However, once training is finished, annotating new pages
is relatively easy and cheap. In order to share the information among the AutoSHOE
users, the training data, feature selectors, learners, intermediate processing results, trained
classifiers and learned rule sets are stored in the database and can be accessed through the
Internet.

• It is highly customizable: AutoSHOE is a database-driven system. The interfaces to the ex-
ternal entities, such as AutoSHOE users and machine learning systems, can be customized
according to different requirements. AutoSHOE makes it easy to customize the user inter-
face, the data output format, and even the communication protocol with different learners.

• It is online and interactive. Getting labeled training data can be expensive since human
intervention is required. The accuracy of annotation will be poor when the training data
are not sufficient to get a good classifier. In order to accumulate more labeled training
data, AutoSHOE can run in an online interactive model, i.e. the users first submit a small

8

amount of training data and AutoSHOE learns from this primary set and annotates more
pages. Then a human verifies the annotations. These newly-annotated pages can then be
added as new training data for further use.

AutoSHOE is a three-tiered architecture (Figure 4). The first layer is the presentation layer,
which is a set of HTML and Java Server Pages. The end users use the presentation layer to
collect data, train classifiers, and annotate new web pages. The middle layer is the tools layer,
which is a set of Java Objects. These tools are responsible for searching, collecting, filtering,
storing and maintaining data. On the back end are the third party machine learning algorithms,
which are used for feature selection and learning SHOE’s classification and relation rules. These
systems can be written in any language and can run on any server. They plug into the AutoSHOE
framework by using system adapters. These adapters talk to the broker in AutoSHOE and map
the training data to its format.

Figure 4: System architecture of AutoSHOE.

9

AutoSHOE builds SHOE ontologies by learning the characteristics of certain types of web pages.
Web pages are harvested from the Internet using a module known as WebGrabber, and thefea-
turesare extracted from the web page using a set of rules. These features provide key information
to the learning algorithm for classification. This process is known asfeature extraction. After the
features have been extracted, the system uses various learning algorithms to classify the pages.
AutoSHOE is designed in such a way that any type of learning algorithm should be usable using
a pluggable interface, though the user is also provided built-in classifiers: a naı̈ve Bayes classifier
for web page classification [13, 16, 2] and an implementation of the FOIL algorithm [19, 21, 1]
to induce relationships between pages.

After the training is done, we can use the learned classifiers and rule sets to annotate new web
pages. The annotation process is similar to training. First we collect a set of new HTML docu-
ments that we wish to label with respect to the ontology that we trained our classifier for. Then we
follow the same feature selection procedure to represent the HTML document as a feature vector.
This feature vector will be used as an unlabeled instance. We can also parse the hyperlinks in
the web pages, which will be used as the background relations to deduce the target relation. The
unlabeled instances and the hyperlinks will be inserted into the database. In order to annotate the
web pages with SHOE’s classification rules, we send the unlabeled instances from the database
to the classifier. The classifier then labels these instances. In order to annotate the web pages with
SHOE’s relation rules, we extract the rule sets and the background relations from the database
and send them to a deduction program such as Prolog. The deduction program will discover the
target relation according to the rule sets and the background relations.

4 Conclusions and Future Work

We have presented an online machine learning system that can automatically grab SHOE-annotated
pages as training data and use machine learning techniques to learn classifiers and rule sets for
a SHOE-defined ontology. As the middleware between the complex machine learning systems
and the end users, AutoSHOE provides a uniform and easy-to-use environment so that even in-
experienced users can use this framework to learn an ontology (i.e. learn classifiers to identify
membership in and labels within an ontology) and annotate new pages. These labeled pages can
then be manually verified and used to train new classifiers. As a framework, AutoSHOE is highly
extensible: it allows new learning algorithms and feature selection algorithms to be dynamically
added into the system. AutoSHOE is highly sharable: it allows the training data, feature selec-
tors, learners to be allocated anywhere on the web, and the training results can be accessed from
anywhere through web. AutoSHOE is also highly customizable: it allows users to tailor the in-
terface. Finally, our AutoSHOE prototype successfully proved the concept of an online machine
learning center.

Web classification is not a simple task, but even better results are not far down the road. Im-
proved results are likely with better parsing, feature selection (e.g. hidden Markov model-based
tools [8]), and training sets, all of which can be plugged into AutoSHOE. Another possible im-
provement would be to use multiple classifiers, using multiple sets of features.

10

The system is currently undergoing a period of rapid development and redeployment. In the
next several months, we will improve the overall reliability and usability of AutoSHOE, while
finishing the port of the original prototype. The system currently has some limitations in its
HTML parser as well as difficulties parsing many kinds of dynamic web pages. These issues are
currently being addressed. Additionally, we hope to publish formal specifications so that anyone
may build an AutoSHOE module with little assistance from the AutoSHOE team, and use it for
classification in the system.

In addition to extensions to the architecture, another possible improvement would be the inclusion
of additional semantic representation parsers, particularly RDF [5]. RDF will become the W3C
standard for semantic web representation. We plan to allow the user to choose between annotation
in SHOE and RDF in the near future.

Acknowledgments

This work was supported in part by NSF grants CCR-9877080 (with matching funds from UNL-
CCIS and a Layman Foundation grant) and CCR-0092761. QingFeng Lin performed this work
at the University of Nebraska.

References

[1] FOIL6, 2001.ftp.cs.su.oz.au/pub/foil6.sh .

[2] MLC++ home page, 2001.http://www.sgi.com/tech/mlc/ .

[3] Excite home page, 2002.http://www.excite.com/ .

[4] Google home page, 2002.http://www.google.com/ .

[5] Resource description framework (RDF), 2002.http://www.w3.org/RDF .

[6] Semantic web, 2002.http://www.w3.org/2001/sw/ .

[7] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.Scientific American,
284(5):34–43, May 2001.

[8] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to extract symbolic knowledge from the World Wide Web. InProceedings of the
15th National Conference on Artificial Intelligence (AAAI-98), 1998.

[9] J. Heflin. The computer science department ontology, 2002.
http://www.cs.umd.edu/projects/plus/SHOE/onts/cs1.1.html .

[10] J. Heflin. The SHOE knowledge annotator, 2002.
http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html .

11

[11] J. Heflin, J. Hendler, and S. Luke. Reading between the lines: Using SHOE to discover
implicit knowledge from the web. InProceedings of the AAAI-98 Workshop on AI and
Information Integration, 1998.

[12] J. Heflin, J. Hendler, and S. Luke. Applying ontology to the web: A case study. InPro-
ceedings of the International Work-Conference on Artificial and Natural Neural Networks
(IWANN ’99), 1999.

[13] Ken Lang. NewsWeeder: learning to filter netnews. InProc. 12th International Conference
on Machine Learning, pages 331–339. Morgan Kaufmann, 1995.

[14] Q. F. Lin. A machine learning framework for automatically annotating web pages with
simple HTML ontology extension (SHOE). Master’s thesis, Dept. of Computer Science
and Engineering, University of Nebraska, May 2000.

[15] Q. F. Lin, S. Scott, and S. C. Seth. A machine learning framework for automatically an-
notating web pages with simple HTML ontology extension (SHOE). InProceedings of the
International Conference on Intelligent Agents, Web Technology and Internet Commerce,
2001.

[16] A. K. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classifi-
cation and clustering, 1996.http://www.cs.cmu.edu/˜mccallum/bow .

[17] T. Mitchell. Machine Learning. McGraw-Hill Publishing Company, 1997.

[18] D. Mladenic. Text-learning and related intelligent agents: A survey.IEEE Intelligent Sys-
tems, 14(4):44–54, July-August 1999.

[19] J. R. Quinlan. Learning logical definitions from relations.Machine Learning, 5:239–266,
1990.

[20] J. R. Quinlan.C4.5: Programs for machine learning. Morgan Kaufmann, 1993.

[21] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report, 3-20. InProceedings of
the European Conference on Machine Learning, 1993.

A Minipage: Web Ontologies

In order to let a computer “understand” the semantic meaning of web pages, we need a struc-
tured way to represent knowledge in the web pages. A common approach to representing the
knowledge is using aweb page ontology[8]. An ontology specifies thecategories(or classes)
andrelationsof interest. The ontology defines a hierarchy of categories and relations involving
the categories. A relation may be defined between two categories or between a category and
a constant datum (this kind of relation is also called anattribute or a featureof the category).
A web page is aninstanceof a particular ontology if it belongs to one of the categories in this
ontology.

12

Figure 5 is a simple university ontology. The boxes in the top part of the diagram represent
categories, identified by their name in bold face. They are shown arranged in a hierarchy defined
by the “is-a” relation. The relations involving each category appear underneath its name. Some
relations describe the relationship between this category and other constant data. For example the
Departmentcategory has the relationNameOfwhich associates a department with its name. Other
relations involve two categories; for example, theFaculty category has the relationTeacherOf,
which describes the relationship between aFaculty category and aCourseontology. At the
bottom of the diagram are some web-page instances of this ontology. A web page that belongs
to a particular category inherits all the relations of this category. The relations between two
categories are shown by arrows in the diagram. For example, theFacultyweb page is shown to
have the relationTeacher.Ofwith the course web page, and so on. A category can also inherit
the relations from its super category, thus the categoryFacultywill also have the relationDeptOf,
inherited fromPerson.

Finding and labeling training data for building new classifiers brings up a somewhat controversial
and subjective point. It is important to quantify exactly what qualifies as a match to the ontology.
An important (and open) question is exactly what are the criteria for ontology membership—is a
page membership classification merely based on the content of the page or is it a member through
association?

For example, obviously the page of a CS professor describing her research should belong to the
University ontology. However, is a page on the CS professor’s website describing her children
actually an instance of this ontology? Semantically, there is little information on that page that
has to do with the description of the Computer Science Department. However, it can also be
argued that by association, this information is related. Similarly, is a student’s page that contains
essentially no information really an instance of the University ontology? It can be argued that the
addition of the page symbolizes the existence of the person in the ontology. On the other hand,
since the page contains no semantic information, does it even matter if the page is not included?
These are all important questions to consider when examining the “results” of AutoSHOE’s clas-
sifications, when there is some ambiguity as to what exactly is a match.

B Minipage: SHOE

In order to help an intelligent agent “understand” the knowledge on web pages, Heflin et al.
[11] proposed a language called Simple HTML Ontology Extension (SHOE). SHOE is a small
extension of HTML that allows web page authors to annotate their web documents with respect
to one or more predefined ontologies (see the Minipage on Ontologies). SHOE makes intelligent
agent software on the web possible by annotating HTML using XML-style notation.

Using such annotations, a web page can subscribe to one or more ontologies and make asser-
tions about categories under the relations defined in the ontologies. Further, SHOE annotations
can be used to define categorization rules and relation rules for a new ontology. Figure 6 illus-
trates the use of SHOE’s tags to construct the ontology shown in Figure 5. In this example, the
name of the new ontology is declared at the beginning, followed by an indication that SHOE’s

13

Figure 5: The university ontology.

14

“base-ontology” Version 1.0 is being borrowed. Next, the category hierarchy is defined by using
SHOE’s “is-a” relation. Finally, the various relations are defined.

15

<!--Here we indicate that this document is conformant with SHOE 1.0 -->

<META HTTP-EQUIV="SHOE" CONTENT="VERSION=1.0">
<TITLE> Example SHOE annotations to define a new ontology </TITLE>
</HEAD>
<BODY>

<!-- Here we declare the ontology’s name and version -->

<ONTOLOGY ID="An Extended Ontology" VERSION="0.0">

<!-- Here we declare that we’re borrowing from another ontology -->
<USE-ONTOLOGY ID="base-ontology" VERSION="1.0" PREFIX="base"

URL="http://www.cs.umd.edu/projects/plus/SHOE/base.html">

<!-- Here we lay out our category hierarchy -->

<DEF-CATEGORY NAME="UniversityEntity" ISA="base.SHOECategory">
<DEF-CATEGORY NAME="Person" ISA="base.SHOECategory">
<DEF-CATEGORY NAME="Department" ISA="UniversityEntity">
<DEF-CATEGORY NAME="Activity" ISA="UniversityEntity">

...
<!-- And now we lay out our relationships between categories -->

<DEF-RELATION NAME="MemberOf">
<DEF-ARG POS="1" TYPE="Department">
<DEF-ARG POS="2" TYPE="Person">

</DEF-RELATION>
<DEF-RELATION NAME="AdvisorOf">

<DEF-ARG POS="1" TYPE="Faculty">
<DEF-ARG POS="2" TYPE="Student">

</DEF-RELATION>
...
<!-- Finally, we lay out our other relationships -->

<DEF-RELATION NAME="Name">
<DEF-ARG POS="1" TYPE="Department">
<DEF-ARG POS="2" TYPE=".STRING">

</DEF-RELATION>
</ONTOLOGY>

Figure 6: Defining categorization and relation rules using SHOE’s construction tags.

16

As a first step for creating a machine-understandable Internet, SHOE is useful in many ways
[12]. However, SHOE requires manual web-page annotations which can be a tedious and labor-
intensive process. SHOE also has other weaknesses:

• SHOE depends on web page authors to annotate their pages and provides an interactive
tool (knowledge annotator [10]) for this purpose. However, it is impractical to expect all
web page authors to annotate their pages.

• The information provided by the SHOE annotation depends on the ontology that the web
page author used. In many cases the ontology used to describe a given web page does not
contain the information another user wants to extract. For example, a student may declare
that he is a football fan on his web page. However, if only the university ontology is used
for annotation, no useful information could be extracted from this declaration.

• The information on the web is dynamic and HTML documents are updated frequently.
If the web page author updates the HTML document and forgets to update the SHOE
annotation, then the annotation will be inconsistent.

These drawbacks (which also apply to other ontology-based systems on the web) are directly
addressed by AutoSHOE.

C Minipage: Machine Learning

Machine learning2 is a subarea of artificial intelligence in which programs automatically improve
their performance with experience. Machine learning techniques have proven to be of great
practical value in a variety of application domains. They are especially useful in data mining and
in poorly understood domains where humans might not have the knowledge needed to develop
effective algorithms.

A well-defined learning problem requires a well-specified task, performance metric, and source
of training experiments. Designing a machine learning approach involves several design choices,
including the type of training experiments, the function to be learned (called thetarget function
or target concept), a representation of this function (e.g. a decision tree), and an algorithm for
learning the target function from training examples.

The following terms are used frequently in machine learning.

• Learning Algorithmor Learner: The algorithm that does the learning. Example learning
algorithms are C4.5 [20] (which represents its function as a decision tree), naı̈ve Bayes
[13] (which represents its function as a probabilistic model), and FOIL [19, 21] (which
represents its function as a set of first-order rules). The latter is very useful in learning
relations between web pages with respect to an ontology, while learning algorithms like

2For an excellent overview of machine learning, see Mitchell [17].

17

näıve Bayes are useful in learning to classify web pages within an ontology and in learning
to predict if a page is relevant to an ontology.

• Learning System:The software package that implements a learning algorithm, e.g., Rain-
bow [16], MLC++ [2] and FOIL6 [1].

• Attributeor Feature: A variable that takes a value from a pre-defined domain. Examples
of attributes are gender (male or female), color (red, green or blue), and temperature (real
number). The presence of certain keywords in an HTML document can also serve as at-
tributes, as well as various HTML tags used to emphasize words, e.g.... and
<i>...</i> .

• Instanceor Example: A list of attribute values. An instance is associated with an attribute
schema, which defines the names and domains of the attributes. Alabeled instanceis an
instance augmented with a special attribute, called alabel or category. A label could be
binary (e.g. “positive” versus “negative”), which is useful when learning to predict if a
web page belongs to (is relevant to) an ontology. A label can also be multi-valued (e.g.
“Student” versus “Faculty” versus “Course”), which is useful when learning to classify a
page within an ontology.

• Dataset: A set of labeled instances, all associated with the same attribute schema. A
training setis a dataset on which a learning algorithm is trained. Atest setis a dataset on
which a learning algorithm is tested.

• Classifieror Categorizer:A function that maps an unlabeled instance to a label. A learning
algorithm induces a classifier from a training set.

Mladenic’s 1999 survey on text classification [18] provides a good introduction to the field and
some of the strategies that have been employed in existing classification packages. A number
of packages that perform web classification are discussed. Mladenic also briefly discusses two
areas that are particularly important to AutoSHOE: Learning algorithms and feature extraction.
For learning algorithms, no particular learning algorithm is singled out as being identifiably the
best algorithm for this task. Naı̈ve Bayes andk-nearest neighbor are proposed to be two well-
suited algorithms for the task. Interestingly, Mladenic draws the conclusion that feature extraction
is likely more important to good performance than the choice of learning algorithm.

18

	Automated Ontology Learning for a Semantic Web
	

	tmp.1250259392.pdf.OJ16Z

