University of Nebraska - Lincoln Digital Commons@University of Nebraska - Lincoln

Christian Binek Publications

Research Papers in Physics and Astronomy

8-14-2000

Crossover from transient spin structures of the field-induced Griffiths phase of FeBr2

Christian Binek University of Nebraska-Lincoln, cbinek2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbinek

Part of the Physics Commons

Binek, Christian, "Crossover from transient spin structures of the field-induced Griffiths phase of FeBr2" (2000). Christian Binek Publications. Paper 48.

http://digitalcommons.unl.edu/physicsbinek/48

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at Digital Commons@University of Nebraska -Lincoln. It has been accepted for inclusion in Christian Binek Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Crossover from transient spin structures to the field-induced Griffiths phase of FeBr₂

Ch. Binek a,*, M.M.P. de Azevedo a, W. Kleemann a, D. Bertrand b

^a Angewandte Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany ^b Laboratoire de Physique des Solides ¹, INSA, F-31077 Toulouse Cedex, France

Abstract

In the presence of an applied axial magnetic field H_a the uniaxial antiferromagnets FeCl_2 and FeBr_2 show fluctuating domain-like antiferromagnetic correlations above the phase boundary $T_c(H_a)$. They are detected by SQUID measurements of the low frequency out-of-phase susceptibility χ'' and indicate a field-induced Griffiths phase at temperatures $T_c(H_a) < T < T_N$. In contrast to FeCl_2 , important additional frustration-induced intraplanar non-critical contributions to χ'' vs. T are found in FeBr_2 . For external fields above the $T_c(H_a)$ line, $H_a > 2.6$ MA/m, they are shown to superimpose linearly on the Griffiths contributions. These dominate at $H_a = 2.67$ MA/m and are unequivocally modeled within the Landau theory of fluctuations near phase transitions by introducing a Lorentzian T_c distribution.

The Griffiths phase conjecture was theoretically introduced for diluted Ising-ferromagnets [1]. It is based on the idea of 'local phase transitions' in a diluted system due to the finite probability of arbitrarily large pure and differently diluted clusters. However, despite a possible dynamical signature of the Griffiths phase in inelastic neutron scattering data of KMn_{0.3}Ni_{0.7}F₃ [2] and recent Monte Carlo simulations [3], its clear experimental verification is still lacking. A more favorable situation is encountered in an analogous experimental realisation of a Griffiths phaselike phenomenon. It was recently detected on the uniaxial antiferromagnet FeCl2 in an applied axial magnetic field [4]. Domain-like antiferromagnetic correlations are created by fluctuating demagnetizing fields and, hence, transition temperatures due to the unambiguous relationship $T_c =$ $T_{\rm c}(H_{\rm a})$. Within the temperature regime $T_{\rm c}(H_{\rm a}) < T <$ $T_{\rm c}(H_{\rm a}=0)\equiv T_{\rm N}$ the quasicritical order parameter fluctuations give rise to anomalous contributions to the magnetic loss function χ'' at low frequencies 0.1 < f < 10 Hz. Regions with local antiferromagnetic correlations are analogous to the non-diluted clusters, which are responsible for the Griffiths phase in diluted ferromagnets. As shown in Ref. [4], these antiferromagnetic fluctuations are suitably described within the framework of the Landau theory of fluctuations near second-order phase transitions [5]. In addition, the concept of local transition temperatures, which

is accounted for by a Lorentzian T_c distribution function, allows one to model the temperature dependence of the

out-of phase susceptibility χ'' within and above the Grif-

fiths regime $T_c(H_a) < T < T_N$. An approximate analytic

expression is given by [6]

 $\chi'' \propto \frac{\epsilon}{\pi V D q^2 (\epsilon^2 + t_c^2)}$

with $t_{\rm c}=T-T_{\rm c},\ t_{\rm N}=T-T_{\rm N},\ A_0$ and D the Landau expansion coefficients of the quadratic and gradient term of the Gibbs free energy density, $\epsilon=b/T$ the temperature-dependent width of the $T_{\rm c}$ distribution, V the sample volume and q the wave-vector of the order parameter fluctuations. While the field-induced Griffiths phase is driven by inhomogeneous demagnetizing fields, FeBr₂ shows an important additional intrinsic loss mechanism. As outlined in Ref. [7], non-critical fluctuations are attributed to intraplanar frustration. It gives rise to transient non-uniform spin structures, which carry excess magnetisation. Their location in the $H_{\rm a}-T$ phase diagram is shown in Fig. 1. Below the $T_{\rm c}(H_{\rm a})$ line they appear only on the

 $[\]times \begin{cases} T_{\rm N} - T_{\rm c} + \frac{t_{\rm c} \left(t_{\rm c}^2 - t_{\rm N}^2\right)}{\epsilon^2 + t_{\rm c}^2} \\ \\ - \frac{A_0}{Dq^2 T} \left(\frac{1}{2} t_{\rm c}^2 + t_{\rm N}^2\right) & \text{if } T \leq T_{\rm N}, \end{cases}$ $T_{\rm N} - T_{\rm c} + \left(\frac{t_{\rm c}}{\epsilon^2 + t_{\rm c}^2} - \frac{A_0}{2Dq^2 T}\right) \\ \times \left(t_{\rm c}^2 - t_{\rm N}^2\right) & \text{if } T > T_{\rm N}, \end{cases}$

^{*} Corresponding author. Fax: +49-203-379 3163; email: binek@kleemann.uni-dujsburg.de.

¹ Laboratoire associé au CNRS (URA 74).

Fig. 1. H_a-T phase diagram (data points with eye-guiding lines) and regimes of strong non-critical fluctuations (data points with bars indicating full widths at 0.6 maximum) obtained from M vs. $T(\bigcirc)$ and $H_a(\bigcirc)$, χ' vs. $T(\triangle)$, χ'' vs. $T(\nabla)$ and $H_a(\bigcirc)$ [7].

sublattice with magnetisation antiparallel to H_a , whereas above $T_c(H_a)$ they are assumed to spread over all Fe²⁺ layers by symmetry.

Fig. 2a (circles) shows χ'' vs. T measured by SQUID magnetometry at $H_a = 3.02$ MA/m and constant frequency f = 5 Hz obtained for a [0001] oriented Bridgmangrown single crystal with ~ 0.2 mm thickness. The noncritical fluctuations above the phase transition are responsible for the maximum of χ'' vs. T at T = 7.1 K (solid symbol in Fig. 1). With increasing temperature, χ'' decreases due to the thermal decay of spin clusters. However, contributions from the field-induced Griffiths phase cause a delay of the thermal decay in the vicinity of the 'Griffiths-temperature' $T_N = 14.1$ K. With decreasing external

Fig. 2. (a) χ'' vs. T measured at f=5 Hz and $H_a=2.67$ (\square) and $H_a=3.02$ MA/m (\bigcirc). The solid line is a least-squares fit to the theory (see text). The insets show χ'' vs. T for $H_a=3.02$ (b) and $H_a=2.86$ MA/m (c) before (\bigcirc) and after (\diamondsuit) subtracting the Griffiths-type contribution, see text. The hatched areas indicate the excess in χ'' due to the Griffiths contributions.

field, the frustration-induced fluctuations shift to lower temperatures and thus gradually separate from the Griffiths-like contributions appearing at higher T. At $H_{\rm a}=2.67$ MA/m this is indicated by a clear minimum close to zero at T=8.5 K (Fig. 2a, squares).

The solid line in Fig. 2a shows the least-squares fit of the above function to these data. T_N , T_c , A_0/Dq^2 , b and an additional proportionality constant are involved as fit parameters. The result from the fitting procedure, $T_N =$ 13.97 K, comes close to the experimental value, $T_N = 14.1$ K, which was obtained by the temperature dependence of the low-field magnetization. This demonstrates that the concept of the field-induced Griffiths phase can be extended from the prototype FeCl₂ [4] to the frustrated Ising system FeBr2. Under the assumption that the field-dependent change of χ'' vs. T is mainly caused by the frustration-induced fluctuations, we are able to separate these and the virtually constant Griffiths contributions from each other. As a result, Figs. 2b and c show χ'' vs. T for $H_a = 3.02$ and 2.86 MA/m, respectively, before and after subtracting the Griffiths-type contribution. This is taken from the fit of the data at $H_a = 2.67$ MA/m (Fig. 2a) and represented by the hatched areas in Figs. 2b and c. As expected, the frustration-induced fluctuations increase with increasing field from $H_a = 2.86$ to 3.02 MA/m. This is consistent with the phase diagram as discussed in Ref. [7]. It shows that in contrast to the Griffiths contributions, the frustration-induced fluctuations develop their main intensity far from the phase transition line. This is observed above and also below [7] the $T_c(H_a)$ line. This remarkable property and the interplay of the frustration-induced and three-dimensional critical fluctuations are still under investigation.

Acknowledgement: Work supported by DFG through SFB 166.

References

- [1] R.B. Griffiths, Phys. Rev. Lett. 23 (1969) 17.
- [2] R.G. Lloyd and P.W. Mitchell, J. Phys. C 1 (1989) 5013.
- [3] V.B. Andreichenko, W. Selke and A.L. Talapov, J. Phys. A 25 (1992) L283.
- [4] Ch. Binek and W. Kleemann, Phys. Rev. Lett. 72 (1994) 1287.
- [5] A.Z. Patashinskii and V.L. Pokrovskii, Fluctuation Theory of Phase Transition (Pergamon, Oxford, 1979).
- [6] Ch. Binek and W. Kleemann, Proc. 19th Meeting Middle Europ. Coop. Statis. Physics, Smolenice, 1994, Acta Phys. Slovaca 44 (1994) 435.
- [7] M.M.P. de Azevedo, Ch. Binek, J. Kushauer, W. Kleemann and D. Bertrand, J. Magn. Magn. Mater. 140-144 (1995) 1557 (these Proceedings).