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son processes (respectively) can be used to generate exactly negative binomial one-

dimensional distributions.

4.2 Simulations

In the first set of simulations, clusters are distributed by a Poisson process with in-

tensity � = �r ln (1� p). The number of resources in each cluster is drawn from a

logarithmic distribution with parameter p. The resulting one-dimensional distribu-

tions of the spatial process for resources follows a negative binomial distribution with

parameters r and p. The expected value for the number of resources in region with

unit area is r p
1�p

. In all of the following simulations, r p
1�p

= 1. Note that this spatial

point process is stationary and ergodic, but not orderly. Figure 4.1 shows three dif-

ferent representative landscapes for different parameter combinations. The height of

the points represents the number of resources located at that point.

In these simulations, a forager executes a random walks, and travels with unit

speed. When it comes within 0.1 units of a cluster, it moves to the cluster and

consumes all of the resources there. The landscape is (�10, 10) ⇥ (�10, 10), but

periodic boundary conditions make it a torus. If the forager exits on one side it

emerges on the other. Foraging is destructive (i.e., resources are not replenished after

being consumed). A forager’s initial position is selected randomly.

In its random walk, the forager selects a “segment length” and a direction. The

segment length and direction specify a target for the forager to move towards. If

the forager encounters a cluster while traversing a segment length, it truncates the

segment, and selects a new segment length and direction. For our purposes, the

direction is always chosen from a uniform distribution, so the resulting random walk

is non-oriented. The probability distribution for the segment lengths determine the
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Figure 4.1: Realizations of negative binomial point processes for different parameter
combinations. Vertical axis indicates the number of resources per location.

type of random walk. A Lévy walk results from using a power law distribution.

Making all of the segment lengths very tiny results in (approximately) Brownian

motion. Note that we are modeling the forager’s trajectory as a continuous path, so

each straight-line segment is simulated by many tiny steps.

In each simulation, a landscape is generated and a forager spends 1000 time units

searching it. At the end of that time, its searching efficiency is calculated as resources

consumed divided by time. This was repeated 300 times per parameter combination.

Figure 4.2 shows the distribution of searching efficiencies across a range of aggregation

levels, from dispersed (low p) to highly aggregated (high p), and for two types of

random walks (Lévy and Brownian).
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Figure 4.2: Simulated foraging efficiencies on (non-orderly) negative-binomial land-
scapes.

The point processes used to produce the landscapes above were not orderly, be-

cause multiple resources could occupy a single location. This situation is often not

biologically realistic. An alternative approach is to use a stationary, ergodic, and

orderly point process, such as a Neyman-Scott process. This type of process is gener-

ated by a set of Poisson distributed parent points, each of which produces a Poisson

distributed cluster of daughter points. The one-dimensional distributions are not neg-

ative binomial, but they approximate negative binomial in the case of tight clusters.

The important parameters are the intensity of the parent process, , and the intensity

of the daughter process, ↵. The product of these intensities determines the expected
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value of the total number of points; in the simulations below, we keep this product

constant. Figure 4.3 shows three representative landscapes:
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Figure 4.3: Realizations of Neyman-Scott point processes for different parameter
combinations.

Figure 4.4 shows the distributions of searching efficiencies for different values of

. Low values of  correspond to highly aggregated landscapes; high values of 

correspond to dispersed landscapes. Only 100 runs were done for each parameter

combination of these models.
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Figure 4.4: Simulated foraging efficiencies on Neyman-Scott landscapes.

Two general observations:

1) Lévy walks tend to be more efficient than Brownian motion, because there is a

lower probability of revisiting the same terrain.

2) More clumped landscapes result in a higher variance in searching success.
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