4-2016

Patterned Alginate Hydrogels to Induce Chondrocyte Alignment

Jordan Catherine Verplank
University of Nebraska-Lincoln, jordan.verplank@gmail.com

Taylor D. Laughlin
University of Nebraska-Lincoln, s-tlaughl4@unl.edu

Angela K. Pannier
University of Nebraska-Lincoln, apannier2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch

Part of the [Biomaterials Commons](http://digitalcommons.unl.edu/ucareresearch), and the [Molecular, Cellular, and Tissue Engineering Commons](http://digitalcommons.unl.edu/ucareresearch)

http://digitalcommons.unl.edu/ucareresearch/48

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
The growth plate has an intricate architecture, and this architecture is necessary for directional growth of bones. Specifically, the cells align in longitudinal columns. As the growth plate expands with this pattern, the bone elongates with the same alignment pattern.

The purpose of this research is to mimic this single celled, columnar alignment in vitro. In developing this alignment in vitro, this research will contribute to the overall study of growing growth for the development of improved therapeutic treatments and engineered tissues for transplants.

Methods

Method 1: Photolithography
A PDMS mold was created using a mask formed via photolithography. 1.5% (w/v) alginate crosslinked on top of this mold (Figure 1). The disk was cut away from the mold and the pattern was exposed for cell seeding.

Method 2: Polystyrene Mesh
Mesh with a 200 µm thread diameter was coated with calcium chloride through solution evaporation. Alginate was added on top of the coated mesh piece and allowed to crosslink for 24h (Figure 2). The mesh was removed from the disk, exposing the pattern for cell seeding.

Results

- Patterns were often damaged or ruined during removal from PDMS mold developed in Method 1 (Figures 3B, 4A,B)
- Cell alignment was unsuccessful when seeded on alginate disks from Method 1 (Figure 4C)
- Cell alignment was successful when seeded on alginate disks from Method 2 (Figure 4D,E,F)
- A seeding density of 90,000 cells/well optimized cell-to-cell interaction while reducing overcrowding, which are the factors necessary for alignment and proliferation
- Cells organized best when allowed to fall into a “trough”. This was observed using the dimensions from Method 2

Conclusions/Future Work

- Alginic patterning using photolithography is not successful on micro-scale
- Crosslinking from the bottom-up forms a smoother, more durable alginate disk
- Seeding Density of 90,000 cells/well optimizes proliferation while reducing overcrowding
- A thread diameter of 0.2 mm is too large for single cell alignment

Future Work

- Determine thread dimensions necessary for single cell alignment
- Engineer a template that promotes alignment and proliferation in longitudinal columns

Acknowledgements

Thank you to Angela K. Pannier, Sarah Plautz, Taylor Laughlin, and the rest of the Pannier Lab for their guidance and support as well as Dr. Stephen A. Morin and Jay Taylor for their assistance with photolithography. Funding provided by UCARE.