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Rates of Return to Public Agricultural Research in 48 U.S. States. 

 

Abstract 

 The internal rate of return (IRR) to public investment in agricultural R&D 

is estimated for each of the continental U.S. states. Theoretically, our contribution 

provides a way of obtaining the returns to a local public good using Rothbart’s concept of 

virtual prices. Empirically, we use the spatial dependency among states generated by 

knowledge spillovers to define the ‘appropriate’ jurisdiction. We estimate an average 

own-state rate of 17% and a social rate of 29%. These figures should inform the policy 

debate on the allocation of federal funds to research in the actual food crisis environment. 

 

1. Introduction 

President Bush's proposed budget for fiscal year 2009 intends to boost federal 

investments in physical sciences through increased funding for research and development 

(R&D) at the Department of Energy's Office of Science, the National Science 

Foundation, and the National Institute of Standards and Technology's intramural 

program. However, the increased support for R&D in physical sciences comes at the 

expense of reduced funding for other agencies, namely the Environmental Protection 

Agency, the Department of Veteran Affairs, the Department of Interior’s US Geological 

Survey agency, and the U.S. Department of Agriculture (USDA). Accounting for 

congressional earmarks in 2008, the USDA would see its R&D funding fall by 16% to 
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$2.0 billion.3 In particular, funding for research and education activities under the 

Cooperative State, Research, Education, and Extension Service (CSREES) would decline 

by 20%; and the federal science and technology budgets for the Agricultural Research 

Service and the Forest Research Service would decline, respectively, by 7.5% and 8% 

(American Association for the Advancement of Science 2008). 

This reduced support to agricultural research will have an impact on the 

productivity of the agricultural sector. The magnitude of the impact and its timing is 

debatable. The importance of this issue is highlighted by the international food crisis 

generated by high agricultural commodities prices due in big part to their use in biofuel 

generation.  It is as a result of this crisis that a re-examination of international 

investments in public agricultural R&D during the last forty years has revealed a decrease 

in support even when returns of Green Revolution technology had been high, playing an 

important part in today’s food crisis. 

The present study intends to contribute to the debate by providing an assessment 

of the benefits from public investment in agricultural R&D for each continental U.S. 

state, acknowledging in theory and empirics their local public goods nature. This is the 

first study to endogenously recover the impact of public investments in agricultural R&D 

for each of the 48 continental U.S. states while accounting for structural and stochastic 

dependency among the states due to knowledge spillovers.4 The assessment is conducted 

                                                 
3 The President’s proposed cut is due to the elimination of earmarked funds that are likely to be reinstated 
by Congress.  The House and Senate versions of the federal budget (as of June 20, 2008) would result, 
respectively, in an estimated 8% and 9% decrease in agricultural R&D with respect to fiscal year 2008 
(excluding earmarked funds). 
4 Khanna, Huffman and Sandler (1994) analyzed the optimal allocation of public monies to agricultural 
R&D in the same 48 U.S. states considered in the present study with a joint production model of public and 
state-specific benefits. Spillovers were defined as contemporary expenditures in R&D in neighboring 
states, and state expenditures in R&D were endogenous to their problem. Given that the focus of the 
present study is on the impact of the stock of knowledge generated by public R&D on the cost structure of 
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in terms of the Internal Rate of Return5 (IRR): the greater is the IRR, ceteris paribus, the 

more socially desirable it is to invest in public agricultural R&D. Any responsible policy 

discussion about the disposition of public funds should be based on knowledge of the 

private and social returns to such investment. We provide the estimates of the IRR to 

public investments in agricultural R&D for each U.S. state hoping in this way to 

contribute to the policy debate 

In addition to the policy contribution, we contribute to the literature by providing 

a general theory and a way of measuring the returns to a local public good using the 

concept of virtual prices.6 In assessing the benefits of public agricultural R&D, it is 

crucial to recognize its local public goods nature. Since there is no market for trading 

public goods, no market assessment of the value of public goods is readily available, and 

their value must be recovered endogenously. In addition, a local public good needs a 

definition of its ‘appropriate’ jurisdiction. While some research results are fully usable 

only by the jurisdiction that incurred the costs of R&D some are also usable by other 

jurisdictions, giving rise to knowledge spillovers. Therefore, the major challenges for the 

researcher are: to estimate the returns to this public good and to do so by attributing the 

benefits from an investment in R&D to the ‘appropriate’ jurisdiction. Latimer and 

Paarlberg (1965) and Evenson (1967) have early indicated the potential distortion in the 

estimates of the contribution of public R&D to the agricultural sector due to the presence 

                                                                                                                                                 
the agricultural sector, and the fact that the stock of public R&D is constructed as a weighted average of 
past expenditures in R&D, public expenditures are exogenous to our model and spillovers are defined in 
terms of stocks of knowledge generated in neighboring states. 
5 The IRR is the rate of return that equals the discounted stream of benefits from an investment with its 
initial cost. 
6 A virtual price, introduced originally in demand theory by Rothbart (1941), is the price at which the 
consumer/producer, acting as a price taker, will choose to consume a specified bundle. 
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of spillovers.7 It is in this sense that the researcher must define the jurisdiction under 

analysis. In this study, the benefits from an investment in R&D are estimated from the 

impacts of such investments on the production structure for two different levels of 

aggregation: the state where the investment was undertaken (the own state benefits), and 

the state and its geographical neighbors (the social benefits).8  

The researcher then must address the problems in estimation of the benefits of 

R&D, not only for the own state, but for all other states affected by the existence of 

spillover effects across them. Most of the studies on the effects of R&D are ad-hoc.  They 

include primal and dual approaches in which a variable representing the stock of own 

state R&D variable is included in a production function, cost function or on a two step 

regression of a productivity index to capture the own state benefits.  Some studies add an 

ad-hoc spill-in variable to capture the social benefits and to avoid the structural 

dependence problem among states due to the local public goods nature of the investment. 

But it is possible that knowledge generated in one state might benefit other states beyond 

the geographical limits imposed ad-hoc by researchers when defining the spill-in stocks. 

If this is the case, the residuals of the estimating model will contain relevant information 

and will be correlated among geographical units, generating cross-sectional stochastic 

dependence. One potential effect of ignoring such information, mentioned in Alston and 

Pardey (2001), is that “improper attribution of locational spillovers generates high and 

                                                 
7 White and Havlicek (1979) showed that failure to take into account geographical spillovers from U.S. 
regional agricultural research inflated the estimated rate of return to R&D in the Southern region by more 
than 25 percent. For a review of the economic impacts of agricultural R&D at sectoral and aggregate levels 
both for the U.S. and other countries, see Evenson (2001), Alston et al (2000), and Alston (2002). 
8 Huffman, Gopinath and Somwaru (2002) estimated the own state IRR to public expenditures in 
agricultural R&D for the “representative” Midwestern state to be 11% per annum, and a social rate of 
return of 43% per annum. Yee et al (2002) estimated the social rate of return to public agricultural research 
to be about 3.5 to 6.7 times the own state rate of return for the “representative” state in each of the seven 
regions defined in their study. 
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very variable estimates of the rate of return to agricultural research.” In this study we will 

also explore this hypothesis by estimating these returns endogenously with information 

on spillover effects incorporated structural and stochastically. 

Theoretically, aggregate technology is represented by a variable cost function. 

The own-state stock of public R&D enters the variable cost as a fixed input of 

production. A spill-in variable is explicitly incorporated into the model to account for 

structural dependency among neighboring states. The virtual prices for the own-state of 

public R&D and the spill-in variables are endogenous to this problem and are recovered 

from the cost function following Fulginiti and Perrin (1993) and Onofri and Fulginiti 

(2008). Measurement of these concepts is done econometrically by constructing and 

explicitly incorporating variables representing own state and spill-in stocks of R&D in 

the structure of the model.  Parameters of such a model are then used in the calculation of 

IRR’s.  These IRR’s then will include own state plus spill-in impacts of the R&D 

investment. The existence of stochastic spatial dependency and the extent of its 

propagation across states are tested with the Keleijian and Robinson (1992) test. The 

model with spatial autocorrelation (SAR) in the error structure is estimated with U.S. 

state-level annual data for the period 1949-1991 (Craig, Pardey and Acquaye, 2002) 

using generalized spatial three stage least squares (Keleijian and Prucha 2004). The 

resulting estimates from the spatial model are compared to the estimates from a non-

spatial model to assess the impact of stochastic spatial dependency on estimated IRRs. 

We expect that failing to correct for stochastic spatial dependency induced by knowledge 

spillovers would affect the definition of the appropriate jurisdiction and the magnitude of 

returns to R&D.  
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The estimates of the IRR to public agricultural R&D are positive and significant 

for all states. The average own state IRR for the nation is estimated, in the spatial model, 

at 17%, while the average social IRR is estimated at 29%. In the non-spatial model these 

estimates are 12% and 14% higher, respectively. Distributions of estimates in both 

models for all states are available.  The returns estimated are very impressive,9 even 

though correcting for stochastic spill-ins in public agricultural research has resulted in 

lower IRR’s estimates than the few others found in the literature.   

The paper is organized as follows. In the next section the economic model used to 

capture the virtual prices of a local public good is presented. It is shown then how these 

virtual prices are incorporated into the calculation of the own state and the social IRR’s 

and how the ‘appropriate jurisdictions’ are determined. The data used and the estimation 

procedure are described next, followed by a description of the results. A summary of the 

findings and their relevance is provided in the concluding section. 

 

2. The Model 

The unit of analysis, determined by the level of aggregation of the available data, 

is the state. We assume that each state produces an aggregate output, y, using variable 

inputs , fixed private inputs Nxxx ,,1 …= Mvvv ,,1 …= , and fixed public inputs 

. The vector of prices of the variable inputs is denoted by , 

with . Let 

QVVV ,,1 …= Nwww ,,1 …=

∑
=

=⋅
N

n
nn xwxw

1
( )Vvxfy ,,=  be the production function satisfying 

                                                 
9  During the same period, the average returns of the S&P500 was 9% and that of the NASDAQ composite 
index was 12%.  
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monotonicity and weak essentiality in x. Let ( ) ( ){ }yVvxfxVvyB ≥= ,,:,,  be the closed, 

non-empty and convex restricted input requirement set to produce output y. Then, a well-

defined non-negative short-run variable cost function ( )Vvywc ,,,  exists which is non-

decreasing, concave, continuous and positively linearly homogeneous in w, and non-

decreasing in y (Chambers 1988): 

(1) ( ) ( ){ }VvyBxxwVvywc
x

,,:min,,,
0

∈⋅=
≥

 

Furthermore, if is differentiable in w, it also satisfies Shephard’s lemma in w: ( Vvywc ,,, )

(2)  ( )Vvywcx w ,,,∇=

where x is the vector of cost-minimizing variable input demands, homogeneous of degree 

zero in w and with symmetric and negative semi-definite matrix ( )Vvywcx www ,,,∇=∇ . 

If is differentiable in v and V, Shephard’s lemma can be applied to fixed 

factors. For convenience, is assumed twice continuously differentiable in all 

its arguments. The monetary value placed by producers on marginal units of private fixed 

factors v, hereon referred to as the shadow value or virtual price Z

( Vvywc ,,, )

)( Vvywc ,,,

v, is represented by the 

amount of variable cost saved in the production of y due to the availability of an extra 

unit of v: 

(3)  ( )VvywcZ vv ,,,−∇=

In the short-run, Zv can be positive or negative, depending on the level of the private 

fixed factor with respect to its long-run optimum and on its disposability assumption. If 

the level of private fixed factor is below its long-run optimum, the variable cost function 

is expected to be decreasing in v (i.e., ) since the set of feasible combinations of 

(x, v, V) increases when an extra unit of v is available for production, so that new cost-

0>vZ
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minimizing opportunities (previously unavailable) are opened up (Chambers 1988, p. 

102).10 If the private fixed factor is above its long-run optimum and it is freely disposable 

(i.e., it does not cost anything in terms of output or other inputs to get rid of the extra 

units above the optimal level), then the variable cost function is expected to be 

independent of v (i.e., ). However, if the private fixed factor is above its long-run 

optimum but it is not freely disposable (i.e., it is costly to dispose off the extra units), its 

shadow value is expected to take a negative sign (i.e., 

0=vZ

0<vZ ), indicating that an extra 

unit of the private fixed factor might actually increase short-run variable costs. Since we 

make no a priori assumption about the free disposability of private fixed inputs or their 

level with respect to their long-run optimum, we do not expect any particular sign for . vZ

The monetary value placed by producers on marginal units of public factors V, 

hereon referred to as the shadow value or virtual price ZV, is represented by the amount of 

variable cost saved in the production of y due to the availability of an extra unit of V: 

(4)  ( )VvywcZ VV ,,,−∇=

Similar to the shadow values of private fixed factors, the shadow values of public factors 

can be positive or negative, depending on their free disposability. While some public 

inputs might be freely disposable, (e.g. public roads that producers might choose not to 

use), some others are not (e.g. pollution). Since we make no a priori assumption about the 

free disposability of public inputs, we do not expect any particular sign for . If VZ

                                                 
10 In primal space, implies that the marginal product of an extra unit of the private fixed factor v is 
positive when the marginal cost of producing an extra unit of output is positive; i.e.,  

0≥vZ

( )( ) ( ) 00** ≥∂∂⇔≥∂∂∂∂=∂∂−= vyvyyvZv AA ; where is the Lagrange function 

corresponding to equation (1) evaluated at the optimal x values,

*A
( )y∂∂ *A  is the reciprocal marginal cost of 

an extra unit of output, and ( vy ∂∂ ) is the marginal product of the private fixed factor v. 
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0≥VZ , an extra unit of the public factor generates short-run savings to agricultural 

producers; while if  it might actually increase short-run variable costs.0<VZ 11  

Local public goods are provided to satisfy the needs of a certain group of 

economic agents in a specific jurisdiction. In particular, local public knowledge on 

agricultural sciences generated for a specific state i, Gi, is developed to satisfy the needs 

of producers in that state. Therefore, it is completely usable by local producers and is 

incorporated as a public fixed input of production in the present model. However, that 

same knowledge might also be used by producers in other states after some adjustments 

to (different) local conditions. The stock of knowledge spill-outs from state i to state j 

(i j), S≠ ji, is the share of the stock of knowledge generated in state i, Gi, usable by 

producers in state j: 

(5)  ijiji GS α= ,  

where αji represents the degree of usability of knowledge from state i in state j, and 0≤ 

αji<1. Therefore, the aggregate stock of spill-ins from neighboring states (indexed by j) to 

state i is defined as: 

(6) , ∑∑
≠≠

==
ij

jij
ij

iji GSS α

and the vector of the stocks of public fixed inputs available to producers in state i is: 

(7) V’={Gi, Si}. 

The shadow value of the own state stock of public R&D in state i, ZGi, can now be 

expressed as: 

                                                 
11 Since the second order gradients of the variable cost with respect to private and public fixed inputs 
( , and )characterize the rate of change of their shadow values, and no assumption 
was made on the sign of their shadow values, no assumption is made on the rates of change. 

( )⋅∇ cvv ( )⋅∇ cvV ( )⋅∇ cVV
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(8) , ( )iiGiGi SGvywcZ ,,,,−∇=

and the shadow value of the stock of public R&D from a neighboring state j, ZSij, as: 

(9) ( ) ( )iiSiijiiGjSij SGvywcSGvywcZ ,,,,,,,, ∇−=−∇= α , 

where the second equality holds by construction of the stock of knowledge spill-outs 

from state j to state i (equation 5).  These two concepts, obtained from the theoretical 

model, are used below in the calculation of the own state and the social IRR’s of public 

investments. 

The internal rate of return to public outlays in agricultural R&D is the discount 

rate that makes the discounted stream of benefits during m periods stemming from an 

increase in public investments in R&D in a given state i at time t0, equal to its initial cost. 

The initial cost is the extra investment in time t0, conventionally represented in discrete 

terms in the corporate finance literature as a negative amount, . In the present 

analysis, the stream of benefits for the state that conducted the R&D activities, state i, are 

the reductions in the cost of agricultural production in successive periods ( ) 

derived from the increased stock of publicly available knowledge ( ) generated by 

the investment in R&D in t

0
0, <Δ tiR

tic ,Δ−

tiG ,Δ

0. Therefore, the own state internal rate of return is the rate r 

that solves the following program: 

(10) 
( )q

qti
m

q qti

qti
ti r

G
G
c

R
+

Δ

Δ

Δ
−Δ= +

= +

+∑ 1
0 0,

1 0,

0,
0,  

Note that 
titi Gc

,, ΔΔ− corresponds to the concept of ZGi, as defined in equation 

(8). Therefore, equation (10) can be re-expressed as: 

(11) 
( )q

qti
m

q
qtGiti r

G
ZR

+

Δ
+Δ= +

=
+∑ 1

0 0,

1
0,0,  
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and a necessary condition for r to exist is that the shadow value of Gi be positive for at 

least one period, i.e., >0 for some q >0. However, as long as the knowledge 

generated by one state i is free and usable by producers in other j states, the concept of 

total benefits from an increase in public investments in R&D in state i at time t

qtGiZ +0,

0 might be 

expanded to also include the spillovers of that investment, i.e. the reductions in the cost 

of agricultural production in the other j states. The social internal rate of return is the rate 

r1 that solves the following program: 

(12) 
( ) ( )∑∑∑

≠

+

+

+

= +

++

= +

+

+

Δ

Δ

Δ

Δ

Δ
−

+

Δ

Δ

Δ
−Δ=

ij
q
qti

qti

qtj
m

q qtj

qtj
q
qti

m

q qti

qti
ti r

G
G
S

S
c

r

G
G
c

R
1

0,

0,

0,

1 0,

0,

1

0,

1 0,

0,
0, 11

0  

Note that 
tj

tj

S
c

,

,

Δ

Δ
−

ti

tj

G
S

,

,

Δ

Δ
corresponds to the concept of the shadow value to state j of an 

increase in the stock of knowledge in state i, ZSji as defined in equation (9). Equation (12) 

can be re-expressed in terms of virtual prices as: 

(13) 
( ) ( )∑∑∑

≠

+

=
+

=

+
+

+

Δ
+

+

Δ
+Δ=

ij
q
qotk

m

q
qotSji

m

q
q
qoti

qotGiti r

G
Z

r

G
ZR

1

,

1
,

1 1

,
,0, 11

0  

The variable Gi is constructed as a weighted sum of previous expenditures in 

public agricultural R&D in state i ( ), with the weights following an inverted V-

pattern.

iR

12

(14)  ati

U

a
atti RG −

=
−∑= ,

1
, ϖ

Given that the αij’s are not observable, the variable Si is constructed as the direct 

sum of the stocks of Gj’s conducted in other states ( ij ≠ ):13

                                                 
12 A complete description on construction of Gi is given in the following section. 
13 A complete description of Si is given in the following section. 
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(15)  ∑
≠

=
ij

tjti GS ,,

and the imperfect usability nature of knowledge generated in other states is incorporated 

structurally into the analysis through interaction terms in the variable cost chosen. The 

following translog cost function is hypothesized to be stable over the period 1949-1991: 

(16) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++

++=

∑∑

∑ ∑∑ ∑

∑ ∑∑∑ ∑

==

= == =

= === =

KLMn
innS

GTyh
ihSi

GTyh GTyk
iihk

KLMn KLMm
iminnm

KLMn GTyh
iinnh

GTyh
ih

KLMn j
jinjni

whS

khww

hwhDUMwc

,,
,

,,

,, ,,,, ,,
,,

,, ,,
,

,,,,

48

1
,,

lnlnln

lnln
2
1lnln

2
1

lnlnlnlnln

ββ

ββ

βδδ

 

 where i indexes states (i =1, 2, …, 48 ). In this study, labor (L), purchased inputs (M), 

and capital (K) are treated as variable inputs, while land (T) is considered a private fixed 

input. Note that the stock of spill-ins is treated differently than the own-state stock of 

R&D: while G is fully usable by the state and is treated similarly to the private fixed 

factor T, S is only partially usable and enters the variable cost through interaction terms.  

In addition, since agricultural production is sensitive to the geoclimatic 

characteristics (soil type, humidity, etc.) of the area in which it is conducted, farms in 

different locations might use different technologies of production, this being another 

source of structural spatial heterogeneity across states (Anselin, 1988).  This translog 

function incorporates fixed state effects, represented by the dummy variables DUMj that 

capture, structurally, the unobservable characteristics of each state that influence local 

agricultural production. Note that these parameters are interacted with input prices in 

their levels to allow for fixed effects in the derived input demands.  In addition to the 

inclusion of terms in the specification of the cost function to capture structural 
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differences and interactions across states, this study allows stochastic spatial interaction 

with the purpose of using information that might not be captured structurally. 

For each state i, the three private input share equations (n=M, K, L), the virtual 

share of the private fixed input T, and the virtual shares of the public fixed inputs G and S 

implied by (16) are derived using Shephard’s lemma, respectively, as (i subscripts 

omitted for simplicity of exposition): 

(17) hwDUM
w
c

c
nw

SH
SGTyh

nh
KLMm

mnm
j

jjn
n

n
n lnln

ln
ln

,,,,,
, ∑∑∑

==

++=
∂
∂

== ββδ   

(18) ⎥
⎦

⎤
⎢
⎣

⎡
+++−==

∂
∂

−= ∑∑
==

Shw
c
TZ

T
c

TS
GTyh

hT
MKLn

nnTT
T

Tc lnlnln
ln
ln

,,,,
, βββδε  

(19) ⎥
⎦

⎤
⎢
⎣

⎡
+++−==

∂
∂

−= ∑∑
==

Shw
c
GZ

G
c

GS
GTyh

hG
MKLn

nnGG
G

Gc lnlnln
ln
ln

,,,,
, βββδε  

(20) ⎥
⎦

⎤
⎢
⎣

⎡
+−==

∂
∂

−= ∑∑
== GTyh

hS
MKLn

nnS
S

Sc hw
c

SZ
S
c

,,,,
, lnln

ln
ln ββε  

Equations (18), (19) and (20) are, respectively, the elasticity of cost with respect to land, 

the elasticity of cost with respect to the own state stock of public agricultural R&D, and 

the elasticity of cost with respect to the stock of spill-ins from public agricultural R&D 

conducted in neighboring states. These elasticities can be either positive or negative, 

depending on the free disposability of the fixed inputs and their levels with respect to 

their long-run optimum. 

In order to estimate the own state IRR to public expenditures in agricultural R&D, 

expression (11) can be conveniently expressed as the discounted sum of the shadow 

values of Gi over time weighted by the research expenditure weights used to construct the 

stocks of public agricultural R&D from equation (14)  
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(21) 
( ) ( ) ( )∑∑∑

=

+

=

+++

=
+

+
+=

+
+=

+Δ

Δ
+=

m

q
q

qti
m

q
q

qtGiqt
q

ti

qti
m

q
qtGi r

B

r

Z

rR
G

Z
1

0,

1

0,0

0,

0,

1
0, 1

1
1

1
1

110
ϖ

 

where tGitti ZB ,, ϖ=  is a direct measure of the own state monetary benefits at t from an 

extra dollar invested in public agricultural R&D at t0. We use equation (19) with 0
0
=tϖ  

to evaluate equation (21) and obtain the own state IRR to investment in public 

agricultural R&D in each of the 48 states.  

Similarly, using equations (13), (14) and (15), the social IRR r1 can be expressed 

as: 
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where  is the social shadow value of GtiF , i at time t; and  measures social 

monetary benefits at time t from an extra dollar invested in public agricultural R&D in 

state i at t

titti FB ,
*
, ϖ=

0. We use equations (19) and (20) to estimate r1.  

If ZSi  ≥ 0 then r1 ≥ r, indicating that the total benefits of R&D are at least as big as 

the benefits that accrue only to the state where the expenses were incurred. 

 

3. Data 

The agricultural production variables for all 48 states for the period 1949-1991 are 

from Craig, Pardey and Acquaye (2002)14. According to Acquaye, Alston and Pardey 

                                                 
14 This data set was available at http://www.apec.umn.edu/faculty/ppardey/data.html, but it is no longer on 
line. It is the data set used in Acquaye, Alston and Pardey (2003). This data set has been revised and 
extended over 1949-2002 (Pardey, Andersen and Craig, 2007), but is not publicly available. Comparing the 

 14

http://www.apec.umn.edu/faculty/ppardey/data.html


 

(2003) this data set “was developed with a view in particular to measuring the effects of 

public agricultural R&D on productivity” and it included Fisher Ideal quantity indexes 

for agricultural output, labor, purchased inputs, capital and land, expenditures in land, 

labor, purchased inputs and capital, and the value of total agricultural output for each 

state (see Appendix 1). The variable cost in this study is the sum of expenditures in labor, 

purchased inputs and capital for farm production in constant 1949 dollars.15 In order to 

reflect the differences in the relative sizes of the agricultural sector across states, we 

multiplied quantity indexes for land and output by their respective expenditures in 

1949.16

The own-state R&D stock G was constructed as a 31-year weighted average of 

gross public expenditures in agricultural R&D at state level in constant U.S. dollars, 

according to (14).17 As in McCunn and Huffman (2000), the reason for using political 

                                                                                                                                                 
descriptive statistics of the newer series from Table 1 in Andersen, Alston and Pardey (2007) to the older 
series, capital seems to have been revised downwards (the mean, the minimum and the maximum values 
are about 5% lower in the newer data set than in the older one, while the standard deviation is only 1.5% 
higher). The output series also seems to have suffered significant revision: the minimum value is 24% 
lower and the standard deviation is 19% higher in the newer data set, while the mean is only 1.6% higher. 
We did not use the1960-1993 data set from O'Donnel, Shumway and Ball (1999) because it was revised 
and modified after 1993. Alternatively we could have used the data developed by ERS (1998) to obtain 
indexes of productivity by state for 1960-1996 or the revised version used in Ball, Butault and Nehring 
(2001). But the state-level expenditures in agricultural inputs used in the construction of their quantity 
indexes and needed for our estimation were not available to us. 
15 We obtained the series of expenditures in purchased inputs, capital and labor in constant 1949 dollars by 
multiplying the Fisher Ideal input quantity indexes (1949=100) by the expenditures in each input in 1949. 
According to Acquaye, Alston and Pardey (2003), data for labor comprise 30 farm operator classes (five 
age and six education characteristics), family labor, and hired labor. Data for purchased inputs involve 
pesticides, fertilizers, fuel, seed, feed, repairs, machine hire, and miscellaneous expenses. Capital involves 
buildings and structures, automobiles (units not for personal use), trucks, pickers and balers, mowers and 
conditioners, tractors, combines, dairy cattle, breeder pigs, sheep and cows, and chickens (not broilers) 
16 Land comprises cropland, irrigated cropland and grassland, pasture, range and grazed forest. Agricultural 
output aggregates field crops, fruits and nuts, vegetables and livestock 
17 Evenson (1989), Huffman and Evenson (1989, 1992, 1993, 2001), and Khanna, Huffman and Sandler 
(1994) have constructed and used R&D stocks for U.S. states but these data sets have not been made 
public. We proceed to build our own for the purpose of this study. The mean of G in our study closely 
resembles the mean of Huffman and Evenson’s “public agricultural research capital for an originating 
state”:  $1.73 million in 1949 dollars or $10.1 million in 1986 dollars. The mean of S in our study is lower 
than the mean of Huffman and Evenson’s “public agricultural research capital spillin”: $7.65 million vs. 
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rather than geoclimatic borders is our focus on public funding, which is based on political 

borders. The weights tϖ are constructed by transforming Chavas and Cox’s (1992) 

estimated marginal effects of public research expenditures on U.S. agricultural 

productivity, , to add up to one: tCC

(23) 
∑
=

+

+
+ = 31

1
0

0
0

i
it

it
it

CC

CC
ϖ  

The weights follow an inverted-V distribution of the lags of the effects of R&D 

on productivity through time implying a gestation period of seven years, followed by an 

eight year period of increasing effects at a low rate, and another eight year period of 

increasing effects at a higher rate, reaching a maximum in year twenty three, and 

declining to zero from there onwards by year thirty one.18 These estimates are appealing 

because they were obtained using non-parametric methods, avoiding strong distributional 

assumptions required in parametric estimation.19 Gross public expenditures include all 

USDA appropriations, CSREES administered funds, state appropriations, and other 

federal and non-federal funds for State Agricultural Experiment Stations (SAES) and 

1890 Institutions.20 Data on total public agricultural R&D expenditures at the state level 

                                                                                                                                                 
$8.86 million in 1949 dollars, or $44.7 million vs. $51.8 million in 1986 dollars. We were unable to 
compare the distribution of our variables to theirs. This is true for variables G and S in our study.  
18 Different studies adopt different weight structures: inverted-V form (Evenson 1967), second order 
polynomial (Knutson and Tweeten) or trapezoidal (Huffman and Evenson 1989). 
19 We realize that the marginal effects of public agricultural research expenditure on agricultural 
productivity might be endogenous to each state and are likely to differ among states. But given that no 
publicly available study estimates the marginal effects for each state, we use a set of estimated marginal 
effects at the national aggregate to compute the R&D stocks. While some early studies used 10- or 20-year 
lags (Evenson 1967, Knutson and Tweeten, White and Havlicek), more recent studies suggest that in order 
to properly capture the benefits of investment in research on agricultural production, lags of at least 30 
years must be used in the construction of the stocks (Pardey and Craig (1989), Schimmelpfennig and 
Thirtle (1994), Alston, Craig and Pardey (1998), Alston and Pardey (2001)).  
20 USDA appropriations for the Forest Service, the Mc Intire-Stennis Act from the CSREES Administered 
Funds, and all funds for Forestry Schools are excluded. 
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in current U.S. dollars were obtained from the Current Research Information System 

Database (CRIS) for the period 1970-1991. Given the long lags assumed to construct the 

stock, data is needed for earlier periods and for the years 1919-1969, we have data only 

for agricultural R&D expenditures at SAES.  These were collected, in current dollars, 

from several USDA reports.  These series were used to construct a proxy for total 

agricultural R&D expenditures at the state level for the years 1919-1969 using the 

average ratio of total to SAES agricultural R&D expenditures in 1970-1980 and 

extrapolating to 1919.21  An agricultural R&D price index was constructed for the period 

1919-1999 from Huffman and Evenson (1993) and USDA data, which was used to 

express the expenditure series in constant 1949 dollars. 22

The spill-in variable S is constructed as the sum of the stocks of public 

agricultural R&D of the states that share common borders or vertices with the state under 

analysis, indexed by j and i, respectively, in equation (6). The geographical proximity 

criteria to construct spillover variables has previously been used by Khanna, Huffman 

and Sandler (1994), Huffman et al (2002), and Yee et al (2002) to reflect similarities in 

climatic conditions, production conditions, input-output mixes, etc., among the states 

under analysis.23 In the present study, S captures the effects of structural spill-ins from 

                                                 
21 A similar methodology has been applied by Khanna, Huffman and Sandler (1994) and Yee et.al. (2002). 
22 The concept of deflated total public agricultural R&D expenditures in this study resembles that of total 
public expenditures on agricultural research used by Khanna, Huffman and Sandler (1994). The main 
difference is that forestry funds are excluded from the present study. We have not been able to do a 
numerical comparison as their data is not publicly available. 
23 Alston (2002) reports that a paper in press by Alston, James, Pardey and Zhang uses a different measure 
of similarity, based on technological proximity across states according to their output mixes rather than 
geographical proximity, and that significant inter-state spillover effects are found. However, the paper in 
press by Alston et al is not publicly available yet. We experimented using the uncentered output-mix 
correlation coefficient among states to construct the state-state stock of structural spillovers based on the 
agricultural technological similarity across states in the spirit of Alston et al (in press), and the value of the 
resulting structural spillover stocks were very similar to the values of the structural spillovers obtained 
based on geographical proximity. We also tried to find a pattern of technological similarity across states by 
applying cluster analysis techniques to the states’ agricultural output-mix, and the results were highly 
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R&D conducted in neighboring states. For example, S for Nebraska consists of the sum 

of the stocks of R&D in Wyoming, South Dakota, Iowa, Missouri, Kansas and Colorado. 

See Appendix 1 for the descriptive statistics of the variables in the analysis. 

 

4. Estimation and Results 

This section is organized as follows. Two versions of the model consisting of the 

cost function and the capital and purchased inputs shares, equations (16) and (17), are 

estimated maintaining symmetry and linear homogeneity in prices. Model 1 assumes that 

the spill-in variable S captures all relevant knowledge spillovers across states, i.e. it 

models structural spatial dependency. To test for the existence of stochastic effects of 

knowledge spillovers beyond the structural effects captured by S, a modified version of 

the Keleijian and Robinson (1992) test is performed on the residuals of Model 1. This test 

provides an assessment of the extent of the propagation of spillovers not captured by the 

variable S, and of the impact of any event that affects adjacent states and is not captured 

in the structure of the model. It indicates the necessity to acknowledge and model 

stochastic spatial dependency. Model 2 is estimated using three-stage generalized spatial 

least squares (3SGSLS) to correct for the stochastic effects. Results from Model 2 are 

then compared to those from Model 1 to assess the effect of failing to account for 

stochastic dependency among states. The best model is selected on the basis of the 

                                                                                                                                                 
dependent on the method used (single linkage, average linkage or centroid) and the criteria used to define 
the optimal number of clusters (hierarchical tree diagram, pseudo F statistic or pseudo Hotteling’s T2 test 
statistic) 
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McElroy System R-square24 and the Akaike Information Criterion (AIC) for each 

equation.  

The variable cost and the purchased inputs and capital shares in Model 1 are 

estimated using iterative seemingly unrelated least squares (ITSUR in version SAS 9.1). 

The share of labor has been dropped from the estimation to avoid singularity of the 

estimation matrix and its parameters recovered using the set of restrictions imposed. One 

hundred and seventy four parameters are estimated with 6192 observations (three stacked 

equations and 43 years for each of the 48 states.)  The model fits the data reasonably 

well, with a system R2 of 0.896 and adjusted R2 for each estimating equation greater than 

0.8. These parameters conform to symmetry and homogeneity as these properties have 

been imposed in estimation.  The Hessian is negative semi-definite at the mean of the 

data for each state implying concavity of the cost in prices at the mean of the data.   The 

cost function is non-decreasing in output as the marginal cost evaluated at the mean of 

the data is positive for all states. Parameter estimates are reported in Appendix 2.  

Given that our main objective is the estimation of returns to local public inputs 

and the calculation of the implied IRR for public R&D investments we focus on these 

estimates. The effects of public inputs on the demand for private variable inputs is 

computed from equations (19) and (20).25 The effects of G and S on purchased inputs and 

labor are statistically significant for all states, but their effects on capital are not. An 

increase in G or in S generates an increase in the demand for purchased inputs and a 

decrease in the demand for labor, suggesting that technical change induced by public 

                                                 
24 The McElroy System R-square is a weighted average of the R-square for each equation in the system, 
and is bounded to the 0-1 interval (Greene 2003, p.345). 
25 Estimates indicate that, at the mean, land is a substitute for purchased inputs and capital, and a 
complement for labor in all states. 
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agricultural R&D has been biased towards the use of purchased inputs and against the use 

of labor in all states.26

The most important estimates for our purpose are the estimates of the shadow 

prices for public inputs G and S as they enter directly the calculation of the IRRs. The 

shadow price of the own state stock of public agricultural R&D as defined in equations 

(4) and (19) is evaluated at the sample mean of all variables and for each state and it is 

reported in the second column of Table 1. GZ measures the amount of cost savings in the 

production of output at constant 1949 dollars stemming from the public provision of an 

extra unit of G. Alternatively, GZ measures producers’ willingness to pay for an extra 

unit of stock of public local agricultural R&D. For example, the shadow value of G for 

Nebraska is, at the mean, $414.69, indicating that a $1 increase in the stock of public 

agricultural R&D in Nebraska in a given year generated annual cost savings to 

agricultural producers of, on average, $414.69. The estimates of GZ are statistically 

significant and positive for all states but California, Maine, and Maryland. As shown 

below, the fact that GZ  is not statistically different from zero for California, Maine, and 

Maryland is driven by the inability of Model 1 to incorporate the effects of stochastic 

spatial dependency, resulting in estimates with wide confidence intervals.27  

Note, however, that in the present study a $1 increase in the stock of public 

agricultural R&D in a given year requires a $1 investment in public agricultural R&D 
                                                 
26 Price elasticities evaluated at the mean of the data for each state indicate that own-price elasticities are 
negative, as expected. Cross-price elasticities for all inputs evaluated at the mean are positive, indicating 
that labor, purchased materials and capital are substitutes in production. Marginal cost elasticities evaluated 
at the mean of the data show 26 states with increasing returns to scale and 22 states with decreasing returns 
to scale. 
 
27 The coefficients of variation are 107%, 242% and 51% for California, Maine and Maryland respectively. 
Coefficient of variation= standard error /|mean| 
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activities during the previous 31 years. Therefore, the own state annual average monetary 

benefit from investing an extra dollar in public agricultural R&D in t0, is 

(24)  31
31

1
0∑

=
+=

i
itBB ,  

where B refers to own state benefits as defined in equation (21), and is a more intuitive 

measure of the benefits from R&D investments in agriculture (second column of Table 

1). The 31-year annual average benefits vary from $0.63 for New York to $23.28 for 

Missouri for every $1 invested (constant 1949 dollars), and the national simple average 

amounts to $7.63 with a standard deviation among states of $5.43. The national weighted 

average of the own state benefits, with the weights being each state’s average share in 

total output, amounts to $8.22 and is significant at the 1% level. It must be emphasized, 

however, that given the distribution assumed in constructing the research stock variable, 

the impacts are assumed to be higher in the distant future than in the years immediately 

following the investment. 
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Table 1. Own state and social shadow values (Z, F) and benefits (B, B*) from 
agricultural R&D, no stochastic spatial dependency (Model 1, constant 1949 dollars) 

STATE GZ  B  F  *B  
AL 226.42 (9.11) 7.30 (0.082) 759.57 (18.76) 24.5 (0.170) 
AR 608.53 (27.48) 19.63 (0.249) 1987.12 (49.99) 64.1 (0.452) 
AZ 126.93 (5.08) 4.09 (0.046) 1021.54 (33.09) 32.95 (0.299) 
CA -15.9 (16.95) n/a 367.04 (19.40) 11.84 (0.176) 
CO 214.5 (9.86) 6.92 (0.089) 1747.31 (58.14) 56.36 (0.526) 
CT 66.2 (4.77) 2.14 (0.043) 239.98 (11.49) 7.74 (0.104) 
DE 193.1 (15.39) 6.23 (0.139) 386.26 (19.19) 12.46 (0.174) 
FL 27.7 (6.81) 0.89 (0.062) 280.25 (13.14) 9.04 (0.119) 
GA 173.03 (10.51) 5.58 (0.095) 882.39 (28.29) 28.46 (0.256) 
IA 430.66 (28.19) 13.89 (0.255) 1903.17 (64.29) 61.39 (0.582) 
ID 275.95 (12.16) 8.90 (0.110) 1204.72 (34.82) 38.86 (0.315) 
IL 171.61 (13.23) 5.54 (0.120) 1815.68 (59.57) 58.57 (0.539) 
IN 275.7 (13.57) 8.89 (0.123) 1179.57 (30.00) 38.05 (0.271) 
KS 410.22 (23.86) 13.23 (0.216) 1434.58 (44.22) 46.28 (0.400) 
KY 311.79 (14.78) 10.06 (0.134) 1906.61 (53.69) 61.5 (0.486) 
LA 51.7 (5.42) 1.67 (0.049) 809.63 (24.97) 26.12 (0.226) 
MA 118.5 (7.4) 3.82 (0.067) 315.37 (19.41) 10.17 (0.176) 
MD -5.14 (2.64) n/a 374.39 (25.13) 12.08 (0.227) 
ME -9.82 (23.74) n/a -29.03 (25.41) n/a 
MI 298.21 (12.5) 9.62 (0.113) 1552.31 (42.67) 50.07 (0.386) 
MN 359.97 (23.12) 11.61 (0.209) 1525.61 (51.36) 49.21 (0.465) 
MO 675.1 (32.11) 21.78 (0.291) 2792.67 (83.15) 90.09 (0.752) 
MS 96.96 (7.5) 3.13 (0.068) 793.26 (24.36) 25.59 (0.220) 
MT 148.62 (9.38) 4.79 (0.085) 891.18 (35.1) 28.75 (0.318) 
NC 266.31 (16.07) 8.59 (0.145) 834.11 (27.11) 26.91 (0.245) 
ND 128.96 (8.36) 4.16 (0.076) 811.07 (35.2) 26.16 (0.318) 
NE 414.69 (22.71) 13.38 (0.205) 2112.61 (79.8) 68.15 (0.722) 
NH 105.79 (16.04) 3.41 (0.145) 255.01 (21.51) 8.23 (0.195) 
NJ 65.93 (4.68) 2.13 (0.042) 296.8 (15.91) 9.57 (0.144) 
NM 302.95 (14.2) 9.77 (0.128) 1447.21 (38.23) 46.68 (0.346) 
NV 172.85 (12.68) 5.58 (0.115) 1076.17 (32.54) 34.72 (0.294) 
NY 19.4 (6.97) 0.63 (0.063) 369.16 (26.59) 11.91 (0.241) 
OH 241.41 (11.88) 7.79 (0.107) 1196.53 (32.36) 38.60 (0.293) 
OK 249.73 (9.25) 8.06 (0.084) 1846.47 (66) 59.56 (0.597) 
OR 130.88 (12.61) 4.22 (0.114) 859.55 (25.62) 27.73 (0.232) 
PA 214.87 (11.47) 6.93 (0.104) 642.32 (25.75) 20.72 (0.233) 
RI 32.83 (4.48) 1.06 (0.041) 117.54 (7.34) 3.79 (0.066) 
SC 92.81 (7.99) 2.99 (0.072) 385.78 (15.08) 12.44 (0.136) 
SD 721.77 (36.73) 23.28 (0.332) 2275.57 (63.4) 73.41 (0.574) 
TN 510.12 (21.14) 16.46 (0.191) 1936.01 (48.88) 62.45 (0.442) 
TX 113.32 (20.09) 3.66 (0.182) 764.04 (28.48) 24.65 (0.258) 
UT 116.51 (12.18) 3.76 (0.110) 1021.92 (35.42) 32.97 (0.320) 
VA 343.09 (13.28) 11.07 (0.120) 938.1 (22.95) 30.26 (0.208) 
VT 421.46 (24.33) 13.60 (0.220) 564.29 (25.78) 18.20 (0.233) 
WA 44.95 (11.28) 1.45 (0.102) 408.34 (15.15) 13.17 (0.137) 
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WI 290.79 (13.65) 9.38 (0.123) 1301.38 (35.79) 41.98 (0.324) 
WV 210.93 (11.10) 6.80 (0.100) 829.04 (24.83) 26.74 (0.225) 
WY 171.29 (12.15) 5.53 (0.110) 1501.56 (56.36) 48.44 (0.510) 

Simple National Average 221.13 7.63 1,040.25 34.29 
Simple National Std.Dev 173.72 5.43 656.54 20.78 
Weighted Nat’l. Average 254.73 (16.85) 8.22 (0.15) 1253.72 (41.10) 40.44 (0.37) 

Approximated standard errors in parentheses.28 n/a: Not available 
 

The average social shadow value of G,  

(25) 31
31

1
0∑

=
+=

i
itFF  

where F is the social shadow value of research stocks defined in equation (22), and the 

average social monetary benefits from an extra dollar invested in agricultural R&D in t0, 

(26)  31
31

1

*

0
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i

itBB ,  

where B* refers to social benefits as defined in equation (22), are reported for each state 

in the last two columns of Table 1. Except for Maine, all estimates of F  are positive and 

significantly different from zero. As expected, F  is greater than GZ , implying a positive 

shadow value for research spillovers, ∑
≠ij

SjiZ . The implied annual averages of the social 

benefits from R&D, in 1949 dollars, range from $3.79 (Rhode Island) to $90.09 

(Missouri). The national simple average is $34.29 with a standard deviation across states 

of $20.78. The national weighted average of the social benefits, with the weights being 

each state’s average shares in total output, amounts to $40.44 and is significant at the 1% 

level. 

The estimated average marginal IRR from own state investment in public 

agricultural R&D, 
∧

r , is obtained by plugging the estimate of GZ  from Table 1 into 

                                                 
28 Approximated standard errors obtained by the Delta method (Greene 2003).  
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equation (21) and solving for r.  Similarly, the estimated average marginal IRR from 

social investments in public agricultural R&D, , is obtained by plugging the estimate 

of

1

∧

r

F from Table 1 into equation (22) and solving for r1. Ninety five percent confidence 

intervals for 
∧

r  and  for each state are obtained by plugging the corresponding shadow 

values plus/minus two standard errors in equations 

1

∧

r

(21) and (22), respectively (Table 2 

and Figures 1 and 2). The simple average own state IRR for the nation is 26.9%, with a 

standard deviation of 8.91% across states. The weighted average own state IRR for the 

nation is 27.4%, and the 95% confidence interval is [26.2%; 29.5%]. The highest own 

state IRR is 39% and corresponds to South Dakota. The simple average social IRR for 

the nation is 40%, with a standard deviation of 8.38%. The weighted average social IRR 

for the nation is 42.3%, and the 95% confidence interval is [41.7%; 43.0%]. The highest 

social IRR is 51% and corresponds to Missouri. In all states but Maine the social IRR is 

significantly higher than the own state IRR, as indicated by the non-overlapping 

confidence intervals reported below the IRR estimates in Table 2. 
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Table 2. Own state (r) and social (r1 ) IRRs (in percentage), no stochastic spatial 
effects (Model 1), 95% confidence intervals in square brackets.  

State ∧

r  1

∧

r  State ∧

r  1

∧

r  State ∧

r  1

∧

r  

AL 30.08 
[29.5;30.6] 

39.41 
[39.0;39.8] MD n/a        

[n/a,n/a] 
33.78 

[32.7;34.7] OR 26.29 
[24.9;27.5] 

40.45 
[39.9;40.9] 

AR 37.58 
[36.8;38.3] 

48.05 
[47.6;48.5] ME n/a 

[n/a;18.5] 
n/a 

[n/a;15.3] PA 29.7 
[28.9;30.4] 

38.02 
[37.3;38.7] 

AZ 26.08 
[25.5;26.6] 

41.94 
[41.4;42.5] MI 32.07 

[31.4;32.7] 
45.71 

[45.2;46.2] RI 17.65 
[15.8;19.1] 

25.57 
[24.7;26.4] 

CA n/a 
[n/a;14.2] 

33.63 
[32.8;34.4] MN 33.48 

[32.4;34.4] 
45.54 

[44.9;46.2] SC 24.03 
[22.8;25.1] 

34 
[33.4;34.6] 

CO 29.69 
[29.0;30.3] 

46.82 
[46.2;47.4] MO 38.43 

[37.6;39.2] 
51.43 

[50.8;52.0] SD 38.98 
[38.1;39.8] 

49.37 
[48.8;49.9] 

CT 21.88 
[20.9;22.7] 

30.49 
[29.8;31.2] MS 24.31 

[23.2;25.2] 
39.77 

[39.2;40.3] TN 36.17 
[35.5;36.8] 

47.8 
[47.3;48.3] 

DE 28.95 
[27.7;30.0] 

34.01 
[33.2;34.7] MT 27.14 

[26.2;28.0] 
40.76 

[40.1;41.4] TX 25.33 
[22.5;27.4] 

39.46 
[38.8;40.1] 

FL 16.67 
[12.9;19.0] 

31.62 
[30.9;32.3] NC 31.25 

[30.3;32.1] 
40.2 

[39.6;40.7] UT 25.51 
[24.0;26.8] 

41.94 
[41.3;42.5] 

GA 28.19 
[27.3;29.0] 

40.67 
[40.1;41.2] ND 26.19 

[25.3;27.0] 
39.96 

[39.2;40.7] VA 33.12 
[32.5;33.7] 

41.2 
[40.8;41.6] 

IA 34.85 
[33.8;35.8] 

47.63 
[47.0;48.3] NE 34.56 

[33.7;35.4] 
48.64 

[47.9;49.4] VT 34.68 
[33.7;35.5] 

36.98 
[36.2;37.7] 

ID 31.5 
[30.8;32.1] 

43.39 
[42.9;43.9] NH 24.88 

[22.6;26.6] 
30.93 

[29.6;32.1] WA 19.51 
[15.5;22.0] 

34.44 
[33.9;35] 

IL 28.13 
[27.0;29.1] 

47.18 
[46.5;47.8] NJ 21.86 

[20.9;22.7] 
32.04 

[31.2;32.8] WI 31.89 
[31.2;32.6] 

44.09 
[43.6;44.6] 

IN 31.5 
[30.7;32.2] 

43.21 
[42.7;43.6] NM 32.19 

[31.5;32.9] 
45.06 

[44.6;45.5] WV 29.57 
[28.8;30.3] 

40.14 
[39.6;40.6] 

KS 34.47 
[33.5;35.3] 

44.98 
[44.4;45.5] NV 28.18 

[27.1;29.1] 
42.39 

[41.8;42.9] WY 28.12 
[27.1;29.0] 

45.4 
[44.7;46.1] 

KY 32.4 
[31.7;33.1] 

47.65 
[47.1;48.2] NY 14.66 

[8.0;17.7] 
33.67 

[32.5;34.7] SNA* 28.65 
[25.7;28.5] 

39.84 
[39.2;40.8] 

LA 20.36 
[18.9;21.5] 

39.94 
[39.4;40.5] OH 30.54 

[29.8;31.2] 
43.33 

[42.8;43.8] 

MA 25.62 
[24.7;26.4] 

32.49 
[31.5;33.4] OK 30.78 

[30.2;31.3] 
47.34 

[46.6;48.0] 

WNA.* 27.37 
[26.2;29.5] 

42.33 
[41.7;43.0] 

Note: n/a: IRR can not be calculated since the corresponding shadow value is negative. SNA: Simple 
National Average. WNA: Weighted National Average*The bounds of the confidence interval for the 
National Average are calculated as the average of the respective bounds for all states. 
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Figure 1. Histogram of the own state IRR’s, (
∧

r ) – Model 1 
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Figure 2. Histogram of the social IRR’s, ( )  – Model 1 1

∧

r
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A modified version of the Keleijian and Robinson (KR) test for spatial 

autocorrelation in systems of equations, from Cohen and Morrison Paul is used on the 

errors of Model 1 to test for stochastic spatial dependence across states.  The KR test 

provides an estimate of the number of significant spatial lags in each equation. It is a 

large sample test based on the generalized method of moments (GMM) and it does not 

require the model to be linear, the disturbance terms to be normal, or the pattern of spatial 

correlation to be specified. The KR test requires an a priori choice of the neighboring 

states that might be spatially correlated, but it does not require knowledge of the spatial 

weights. A geographical pattern of proximity among states is proposed as the driving 

force for spatial autocorrelation in the error structure. For each state, the U.S. map is 

divided in concentric “rings” with the state under analysis as its center, the states that 

share a common border or intercept with the center as the first “ring” of neighboring 

states; the states that are detached from the center but share common borders or intercepts 

with the first “ring” as the second “ring” of neighboring states; and so on and so forth.29 

In this geographical partitioning of the space, states are expected to be more closely 

related to immediate neighboring states than those farther away. The results from the KR 

test suggest that there exists stochastic spatial dependency among states that are as much 

as four states apart from one another.  This would be consistent with knowledge 

spillovers flowing widely across states and generating the spatial lag structures. 30   The 

                                                 
29 For example, Wyoming, South Dakota, Iowa, Missouri, Kansas and Colorado belong to the first “ring” of 
neighboring states for Nebraska; while New Mexico, Arizona, Utah, Idaho, Montana, North Dakota, 
Minnesota, Wisconsin, Illinois, Kentucky, Tennessee, Arkansas and Oklahoma form its second “ring” of 
neighboring states; Texas, California, Nevada, Oregon, Washington, Michigan, Indiana, Ohio, West 
Virginia, Virginia, North Carolina, Louisiana, Mississippi, Alabama and Georgia form its third “ring” of 
neighboring states. 
30 We cannot discard the possibility of other variables not included in the model structure, like weather for 
example, adding to this dependency. In any case IRRs should be corrected if spatial dependency is present 
no matter what the source. 
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variable cost function, , and the capital share, , support a spatial lag length of 5, 

while the share of purchased inputs, , has a spatial lag of length 4. 

cln KSH

MSH

To incorporate the effects of stochastic spatial dependency in the estimation of 

the benefits from public agricultural R&D, Model 2 is estimated using the GS3SLS 

procedure proposed by Keleijian and Prucha (2004). The first stage corresponds to the 

estimation of Model 1. In the second stage, the residuals from Model 1 and the lag 

structure suggested by the KR test are used to estimate the spatial autocorrelation 

parameters for each estimating equation using GMM. The estimates of the spatial 

autocorrelation parameters (Table 3), which are all bounded to the unit circle, are used to 

perform a Cochrane-Orcutt-type transformation on the observed variables, in a similar 

fashion to the standard procedure to correct for serial autocorrelation in time series. In the 

third stage, Model 2 determined by equations (16) and (17) is re-estimated on the 

transformed variables with symmetry and linear homogeneity in prices maintained. 

Table 3. Estimates of the spatial autocorrelation parameters. 31

Equation 1ρ  2ρ  3ρ  4ρ  5ρ  

cln  0.265554 0.493288 0.196007 -0.37656 0.180117 

KSH  0.634002 -0.14269 0.22608 0.063719 0.010952 

MSH  0.587572 -0.05815 0.353718 -0.19113  
 

The share of labor has been dropped from the estimation to avoid singularity as in 

estimation of Model 1. One hundred and seventy four parameters are estimated with 6192 

observations (three stacked equations and 43 years for each of the 48 states) in Model 2.  

The system R-square for Model 2 (R2=0.911) is higher than the one from Model 1, and 

the AICs are lower for each estimating equation. Model 2 provides a better fit to the 

                                                 
31 Standard errors for estimates in Table 3 are not reported because the significance of the spatial effects has 
been determined through the KR test, as a previous step to the estimation of the ρ’s using GMM. 
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transformed data than Model 1 does to the untransformed data. The estimated parameters 

conform to symmetry and homogeneity as these properties have been imposed in the 

estimation.  The Hessian is negative semi-definite at the mean of the data for each state 

implying concavity of the cost in prices at the mean of the data.  The cost function is non-

decreasing in output as the marginal cost evaluated at the mean of the data is positive for 

all states. 32 The estimates from Model 2 and the associated goodness of fit measures are 

reported in Appendix 3.  

The effects of G and S on the demand for variable inputs (measured as the 

elasticities of demand with respect to the fixed public inputs) are all significant in Model 

2. An increase in G or S generates an increase in the demand for purchased inputs and 

capital, and a decrease in the demand for labor, suggesting that technical change induced 

by public agricultural R&D has been biased towards the use of purchased inputs and 

capital and against labor. 33,34

The own state shadow value of G, GZ , and the own state monetary benefits from 

an extra dollar invested in R&D in t0, B , are evaluated at the mean and reported for each 

state in the first two columns of Table 4. The estimates of GZ are statistically significant 

and positive for all states.35 B ranges from $0.05 in Oregon to $2.63 in Maine and the 

simple national average is $0.94, while the weighted national average is $1.02 and is 

                                                 
32 The marginal cost elasticities evaluated at the mean of the variables indicate increasing returns to scale 
for all states, satisfying one of the necessary conditions for endogenous growth (Onofri and Fulginiti). A 
second condition, namely that of non-negative returns to public inputs, is also satisfied as the estimates of 
the shadows for public R&D in Table 4 show. 
33 Land is a substitute for purchased inputs and capital, and a complement of labor. 
34 For all states, the own-price elasticities are negative, as expected, and the cross-price elasticities for all 
inputs are positive, indicating that labor, purchased materials and capital are substitutes. 
35 The coefficients of variation for California, and Maine are now significantly lower than in Model 1 
(55%, 18%, respectively), while the coefficient of variation for Maryland is higher (77%). 
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statistically significant at the 1% level (constant 1949 dollars). The estimates of own state 

benefits are now significantly lower than the own state benefits obtained in Model 1. 

The social shadow value of public agricultural R&D, F , and the social monetary 

benefits from an extra dollar invested in R&D in t0, *B , are evaluated at the mean and 

reported for each state in the last two columns of Table 4. All social shadows are non-

negative and significantly different from zero. Social shadows are higher than own state 

shadow values for public agricultural R&D stocks (estimates of F  are greater than GZ ), 

implying a positive shadow value for spillouts, ∑
≠ij

SjiZ . Social benefits, *B , range from 

$0.33 in Rhode Island to $18.46 in Missouri, with a simple national average of $6.39 

(constant 1949 dollars) and a weighted national average of $7.98, significant at the 1% 

level. As mentioned before, benefits from the investments have a higher impact in the 

distant future than in the years immediately following the investment in R&D.   

Table 4. Own state and social shadow values ( GZ , F ) and benefits ( B , *B ) from 
agricultural R&D, with stochastic spatial effects (Model 2, constant 1949 dollars) 

STATE GZ  B  F  *B  
AL 34.9 (5.78) 1.13 (0.052) 123.7 (15.79) 3.99 (0.143) 
AR 51 (17.07) 1.65 (0.154) 317.0 (40.70) 10.23 (0.368) 
AZ 11.6 (3.16) 0.38 (0.029) 198.4 (24.39) 6.4 (0.221) 
CA 17.1 (9.41) 0.55 (0.085) 94.4 (12.34) 3.04 (0.112) 
CO 21.1 (6.40) 0.68 (0.058) 385.9 (43.37) 12.45 (0.392) 
CT 14.4 (2.63) 0.47 (0.024) 12.9 (8.41) 0.42 (0.076) 
DE 33.2 (8.90) 1.07 (0.081) 29.9 (12.86) 0.97 (0.116) 
FL 22 (3.64) 0.71 (0.033) 64.8 (8.56) 2.09 (0.077) 
GA 31.5 (6.39) 1.02 (0.058) 159.1 (21.18) 5.13 (0.192) 
IA 37.1 (18.19) 1.2 (0.165) 390.4 (46.32) 12.59 (0.419) 
ID 31.7 (7.51) 1.02 (0.068) 226.3 (26.90) 7.3 (0.243) 
IL 12.3 (8.61) 0.4 (0.078) 358.3 (44.04) 11.56 (0.398) 
IN 29.4 (9.13) 0.95 (0.083) 183.1 (24.95) 5.91 (0.226) 
KS 62.3 (14.88) 2.01 (0.135) 313.0 (33.41) 10.1 (0.302) 
KY 14.3 (9.72) 0.46 (0.088) 350.9 (42.92) 11.32 (0.388) 
LA 5.5 (3.25) 0.18 (0.029) 157.3 (19.09) 5.07 (0.173) 
MA 22.4 (4.13) 0.72 (0.037) 21.6 (13.30) 0.7 (0.12) 
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MD 1.9 (1.42) 0.06 (0.013) 55.0 (15.76) 1.78 (0.143) 
ME 81.4 (14.80) 2.63 (0.134) 72.0 (15.52) 2.32 (0.14) 
MI 30 (8.27) 0.97 (0.075) 243.9 (34.21) 7.87 (0.31) 
MN 52.2 (14.40) 1.68 (0.13) 313.7 (36.78) 10.12 (0.333) 
MO 51.7 (20.58) 1.67 (0.186) 572.3 (63.53) 18.46 (0.575) 
MS 17.6 (4.60) 0.57 (0.042) 174.3 (18.59) 5.62 (0.168) 
MT 30 (5.88) 0.97 (0.053) 231.6 (25.33) 7.47 (0.229) 
NC 55.5 (9.75) 1.79 (0.088) 175.1 (19.58) 5.65 (0.177) 
ND 30.3 (5.19) 0.98 (0.047) 214.2 (24.12) 6.91 (0.218) 
NE 52.4 (14.32) 1.69 (0.13) 525.6 (56.47) 16.96 (0.511) 
NH 49.9 (9.32) 1.61 (0.084) 80.6 (13.73) 2.6 (0.124) 
NJ 13 (2.63) 0.42 (0.024) 16.8 (11.33) 0.54 (0.103) 
NM 23.8 (8.07) 0.77 (0.073) 240 (30.81) 7.74 (0.279) 
NV 6.3 (6.96) 0.2 (0.063) 172.7 (24.64) 5.57 (0.223) 
NY 8.6 (3.78) 0.28 (0.034) 20.7 (17.32) 0.67 (0.157) 
OH 31.7 (7.86) 1.02 (0.071) 185.9 (26.30) 6 (0.238) 
OK 30.1 (6.23) 0.97 (0.056) 444.6 (47.68) 14.34 (0.431) 
OR 1.6 (7.67) 0.05 (0.069) 143.4 (20.04) 4.63 (0.181) 
PA 20.3 (7.56) 0.65 (0.068) 34.1 (19.68) 1.1 (0.178) 
RI 12.7 (2.56) 0.41 (0.023) 10.4 (4.96) 0.33 (0.045) 
SC 35.9 (4.51) 1.16 (0.041) 96 (10.45) 3.1 (0.095) 
SD 70.8 (21.84) 2.28 (0.198) 420 (49.68) 13.55 (0.449) 
TN 34.8 (13.23) 1.12 (0.12) 342.2 (40.86) 11.04 (0.37) 
TX 24.2 (11.91) 0.78 (0.108) 168.5 (20.00) 5.44 (0.181) 
UT 10.4 (7.20) 0.33 (0.065) 228.5 (26.57) 7.37 (0.24) 
VA 34.2 (8.31) 1.1 (0.075) 122.6 (19.00) 3.96 (0.172) 
VT 65.1 (13.25) 2.1 (0.12) 58.9 (16.08) 1.9 (0.145) 
WA 20.2 (6.84) 0.65 (0.062) 98.6 (11.24) 3.18 (0.102) 
WI 28.7 (9.29) 0.93 (0.084) 212.3 (28.65) 6.85 (0.259) 
WV 13.5 (6.21) 0.44 (0.056) 80.3 (19.50) 2.59 (0.176) 
WY 13.6 (7.01) 0.44 (0.063) 359.4 (41.15) 11.59 (0.372) 

Simple National Average 29.25 0.94 197.95 6.39 
Simple National Std.Dev 18.64 0.60 141.88 4.58 
Weighted National Avg. 31.55 (10.48) 1.02 (0.095) 247.4 (30.52) 7.98 (0.276) 

Approximated standard errors in parentheses. 

The estimated own state (
∧

r ) and social ( ) IRRs consistent with Model 2 for 

each state are reported in Table 5 and Figures 3 through 6, along with their 95% 

confidence intervals. The highest average own state IRR corresponds to Maine and 

equals 23.18%, while the lowest corresponds to Oregon and equals 2%. The simple 

average own state IRR for the nation is 16% with a standard deviation across states of 

4.51%. The weighted average own state IRR for the nation is 16.5%, with a 95% 

1

∧

r

 31



 

confidence interval ranging from 8.6% to 19.8%. In all states but California, Maryland 

and Maine (states where the own state IRR could not be estimated in Model 1), the own 

state IRR from Model 2 is significantly lower than that from Model 1. 36   

These estimates are consistent with the estimates of returns to investments in 

public agricultural R&D and extension by Lu, Cline and Quance (25%), White and 

Havlicek (7-36%), Evenson (11-45%), Oehmke (11.6%), and Alston, Craig and Pardey 

(7-31%). However, they are significantly lower than the rates estimated in most other 

studies. Evenson (2001) reports IRRs to aggregate public sector agricultural research (not 

including extension) from several studies ranging from 25% to 212%.  

The social IRRs from Model 2 range from 11.26% in Rhode Island to 37.09% in 

Missouri. The simple national average is 27% and its standard deviation across states is 

6.56%. The weighted national average is 29.3%, and the 95% confidence interval is  

[26.5% ; 31.1%]. The social IRRs are lower in Model 2 than in Model 1 for all states 

except for Maine (state for which the social IRR could not be calculated in Model 1).  

These are significant differences as indicated by the non-overlapping confidence 

intervals. The social IRRs obtained from Models 1 are, on average, 14% higher than the 

ones estimated with Model 2. 

Our estimates of the social IRRs, once correction has been made for stochastic 

spatial dependency, even though impressive relative to market returns of private 

investments, are significantly lower than those calculated by Evenson (1989), Huffman 

and Evenson (1993, 2006), and Yee et al (2002).  These authors estimate rates between 

49% and 600%.  

                                                 
36 Mean difference of 12.8% and a standard deviation of 4.6%. 
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Table 5. Own state (
∧

r ) and social ( ) IRRs, with stochastic spatial effects (Model 2)  1

∧

r

95% confidence intervals in parentheses 

State ∧

r  1

∧

r  State ∧

r  1

∧

r  State ∧

r  1

∧

r  

AL 18.01 
[15.7;19.7] 

25.91 
[24.0;27.4] MD 2.78 

[n/a;7.2] 
20.74 

[15.7;23.6] OR 1.99 
[n/a;13.9] 

26.9 
[24.7;28.6] 

AR 20.28 
[13.9;23.5] 

32.53 
[30.4;34.3] ME 23.18 

[20.4;25.2] 
22.4 

[18.9;24.7] PA 14.9 
[7.7;18.1] 

17.88 
[n/a;22.5] 

AZ 11.88 
[7.8;14.2] 

29.14 
[27.2;30.7] MI 17.12 

[12.6;19.7] 
30.61 

[28.3;32.4] RI 12.33 
[9.6;14.2] 

11.26 
[n/a;14.9] 

CA 13.97 
[n/a;18.2] 

24.13 
[22.2;25.7] MN 20.42 

[15.7;23.2] 
32.45 

[30.5;34.0] SC 18.18 
[16.5;19.5] 

24.24 
[22.7;25.5] 

CO 15.13 
[10.1;17.8] 

34.01 
[32.1;35.6] MO 20.36 

[11.4;24.0] 
37.09 

[35.1;38.7] SD 22.3 
[16.6;25.4] 

34.66 
[32.6;36.3] 

CT 13.04 
[10.6;14.7] 

12.42 
[n/a;17.1] MS 14.12 

[10.2;16.5] 
28.24 

[26.6;29.6] TN 17.99 
[10.1;21.4] 

33.1 
[31.1;34.7] 

DE 17.73 
[13.4;20.3] 

17.12 
[6.7;20.8] MT 17.12 

[14.3;19.1] 
30.24 

[28.5;31.7] TX 15.89 
[n/a;19.9] 

28.01 
[26.2;29.5] 

FL 15.36 
[13.1;17.0] 

21.75 
[19.9;23.2] NC 20.79 

[18.2;22.7] 
28.27 

[26.5;29.7] UT 11.27 
[n/a;16.0] 

30.14 
[28.3;31.7] 

GA 17.41 
[14.5;19.4] 

27.61 
[25.5;29.2] ND 17.19 

[14.8;18.9] 
29.68 

[27.9;31.1] VA 17.89 
[14.1;20.3] 

25.85 
[23.4;27.7] 

IA 18.38 
[n/a;22.5] 

34.1 
[32.1;35.7] NE 20.44 

[15.8;23.2] 
36.41 

[34.5;38.0] VT 21.77 
[18.6;23.9] 

21.16 
[16.5;23.9] 

ID 17.45 
[13.8;19.7] 

30.07 
[28.2;31.6] NH 20.15 

[17.4;22.1] 
23.12 

[20.5;25.0] WA 14.89 
[8.9;17.8] 

24.42 
[22.8;25.8] 

IL 12.19 
[n/a;17.0] 

33.44 
[31.4;35.1] NJ 12.46 

[9.7;14.3] 
13.86 

[n/a;18.7] WI 16.87 
[11.1;19.8] 

29.62 
[27.4;31.3] 

IN 17.02 
[11.7;19.9] 

28.58 
[26.4;30.3] NM 15.81 

[9.7;18.8] 
30.49 

[28.4;32.2] WV 12.69 
[0.5;16.3] 

23.1 
[19.0;25.7] 

KS 21.5 
[17.6;24.0] 

32.43 
[30.7;33.9] NV 8.68 

[n/a;14.9] 
28.17 

[25.9;29.9] WY 12.71 
[n/a;16.7] 

33.47 
[31.5;35.0] 

KY 13 
[n/a;17.8] 

33.29 
[31.2;35.0] NY 10.31 

[0.3;13.7] 
15.02 

[n/a;20.8] SNA 15.69 
[9.7;18.8] 

26.95 
[23.1;29.1] 

LA 7.97 
[n/a;12.0] 

27.53 
[25.7;29.0] OH 17.45 

[13.6;19.8] 
28.68 

[26.4;30.4] 

MA 15.46 
[12.9;17.3] 

15.26 
[n/a;19.9] OK 17.15 

[14.1;19.2] 
35.1 

[33.3;36.6] 

WNA 16.54 
[8.6;19.8] 

29.31 
[26.5;29.3] 

Note: n/a: IRR can not be calculated since the corresponding shadow value is negative. SNA: Simple 
National Average. WNA: Weighted National Average*The bounds of the confidence intervals for the 
National Averages are calculated as the average of the respective bounds for all states. 
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Figure 3. Histogram of the own state IRR’s (
∧

r ) - Model 2. 
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Figure 4. Histogram of the social IRR’s ( ) - Model 2. 1
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Figure 5. Own state IRR’s to public agricultural R&D – Model 2 

 

References: Red: r = 0-10% ;Yellow: r = 10-20%; Blue: r > 20% 
 
 
Figure 6. Social IRR’s to public agricultural R&D expenditures – Model 2 
 

 
References: Yellow: r = 10-20%; Blue: r = 20-30%; Orange: r > 30% 
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Huffman et al. (2002), the only other study of this nature that is publically 

available, obtain estimates for the Midwestern states.  For comparison purposes we 

calculate a simple average and a weighted average of our estimates for the states of 

Minnesota, Iowa, Illinois, Missouri, and Indiana.  The simple and weighted average own 

state IRRs for the Midwestern states, 18% and 17.32% 37 respectively, are higher than the 

11% in their study. Our simple and weighted social IRR for the Midwestern states are 

approximately 33%38 figures that are lower than the “significantly higher than 40%” 

reported in their paper.39  

 

5. Conclusions 

The present study is an attempt at providing a quantitative assessment of the 

returns to public agricultural R&D investments during the last five decades in the United 

States.  This is done first by deriving the returns to a local public good from a theoretical 

model of firm behavior using the concept of virtual prices, then showing how to measure 

them when no information is available on market rates of return. Our method explicitly 

acknowledges for the spillover effects of these investments by incorporating them 

structurally and stochastically in the model and by allowing endogenous derivation of 

virtual prices, own and social.  The objective is to use these estimates in calculating 

marginal internal rates of return to the use of public monies on R&D investments in 

agriculture.  The study uses a data set of inputs and outputs developed by Craig, Pardey 

and Acquaye for specific use in productivity analysis combined with R&D stocks built 

                                                 
37 The 95% confidence interval is [5.98%; 21.14%] 
38 The 95% confidence interval is [31.21; 34.91]. 
39 Our estimates of the average elasticity of cost with respect to the stock of public R&D in these states is -
5%, lower than the -87% estimated in their study.  
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following Evenson’s inverted-V lag structure.  Discussions on the size of returns to R&D 

investments in U.S. agriculture are even more important given the international food 

crisis and in light of the proposed cuts in federal monies.  

The own state internal rate of return we estimate is, on average for the nation, 

17%.  The social internal rate of return we estimate is, on average for the nation, 29%. 

Knowledge spillovers are important in agriculture and an attempt at capturing all 

information structurally and stochastically should be considered.  After adjusting for 

stochastic spatial effects, the returns to agricultural investments in R&D in the United 

States have been impressive, although our estimates are lower than estimates for the 

Midwest by Huffman.  In this sense, this study provides evidence in support of Alston 

and Pardey’s (2001) assertion that “improper attribution of locational spillovers generates 

high and very variable estimates of the rate of return to agricultural research.” 

Although not a primary focus of this analysis, our study has also found that in 

aggregate U.S. agriculture, technical change induced by public agricultural R&D has 

been biased towards the use of capital and purchased inputs and against the use of labor.  

We also found evidence of potential long term impacts of public R&D investments on 

long run growth of the sector.  The capacity to generate growth endogenously and 

perpetually through public investments in R&D makes this an important policy tool.  This 

is an even more important insight when faced with the alternative use of food crops for 

biofuels and the implication for food prices and the federal government’s potential 

reductions in budget for agricultural research and development.  

A number of important shortcomings of this analysis should be mentioned.  First, 

we know of updated an improved aggregates, in particular for capital, being worked out 
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by Andersen, Alston and Pardey.  Presumably these would be better to use in the analysis 

but the data is not yet available for public use. Second, given the growing importance of 

private investments in agricultural R&D we might err by attributing benefits to public 

investments that might have been the result of private investments.  We hope that the 

quality adjustments included by Craig, Pardey and Acquaye in the painstaking job of 

constructing the output and input indexes are enough to diminish the impact of this 

potential flaw. We would expect that the appropriable benefits of private research are 

embodied in the input aggregates used and therefore effectively captured in this study. 

Similarly, the omission of the extension services, the stock of infrastructure and of 

international spillovers might also render our estimates upward biased. Third, our 

analysis is static, and assumes naïve expectation formation in production and decision 

making, all these compromising our estimates.  

All in all even if we provide estimates of the rate of return to public R&D in 

agriculture lower than previously suggested, an average return of 29% on public funds is 

still impressive compared to the 9% and 12% average returns of the S&P500 and 

NASDAQ composite indexes during the same period.  
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Appendix 1. Descriptive statistics. 

Descriptive statistics of the variables pooled through time and states. 
Variable  Units N   Mean  Std Dev  Minimum Maximum 

Output Quantity (1949=100) 2064 145.51 55.88 62.65 418.68 
Land Quantity (1949=100) 2064 84.56 20.34 23.63 122.88 
Labor Quantity (1949=100) 2064 59.49 21.22 16.68 100.99 
Capital Quantity (1949=100) 2064 121.47 33.32 40.72 302.30 
Purchased Inputs Quantity (1949=100) 2064 179.36 85.60 39.08 562.24 
Expenditures in  
Land in 1949 $1,000 48 132,515 116,648 2,119 529,117 
Expenditures in  
Labor in 1949 $1,000 48 303,343 217,003 11,909 931,771 
Expenditures in  
Capital in 1949 $1,000 48 177,403 143,910 8,546 526,525 
Expenditures in  
Purchased Inputs in 1949 $1,000 48 140,533 115,487 8,641 534,242 
Total Value of  
Agricultural Output in 1949 $1,000 48 620,240 566,447 21,858 2,399,574 
Source: Acquaye, Alston, and Pardey (2003). 
 
Descriptive statistics of the variables used in the analysis pooled through time and 
states. 
Variable  Units N   Mean   Std Dev  Minimum Maximum

wM (1949=100) 2064       201  117 94 593
wL (1949=100) 2064       446  328 95 1415
wK (1949=100) 2064       207  115 84 483

SHM Proportion of the Variable 
Cost 2064    0.3882 0.1182 0.1455 0.8195

SHL Proportion of the Variable 
Cost 2064    0.2810 0.0986 0.0623 0.6594

SHK Proportion of the Variable 
Cost 2064    0.3307 0.0651 0.1182 0.5300

T $1,000 
(constant 1949 dollars) 2064   122,989 118897 587 532774

y $1,000 
(constant 1949 dollars) 2064   920,314 905341 14694 5631427

G $1,000 
(constant 1949 dollars) 2064     1,729  1943 99 16624

S $1,000 
(constant 1949 dollars) 2064     7,649  5979 138 31426

c $1,000 
(constant 1949 dollars) 2064   664,066 545272 10702 3183774

Sources: G and S are based on author’s calculations. All other variables are from 
Acquaye, Alston, and Pardey (2003). 
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Appendix 2. Model 1: Full model with no SAR error structure 
 
Method of estimation: ITSUR 
Parameters in the model: 174 
Linear Restrictions: 55 
Parameters Estimated: 119 
Method: Gauss 
Number of Iterations: 50 
Final Convergence Criteria: CONVERGE=0.001 Criteria Met 
Observations Processed: 2064 
 

Equation     DF 
Model DF Error R-Square Adj. R-Sq. AIC 

ln c 83.11 1981 0.8084 0.8004 0.24942 
SHM 17.94 2046 0.9376 0.9371 0.001031 
SHK 17.94 2046 0.8034 0.8017 0.000985 

System R-Square: 0.896487    
 
Parameter Estimates: 

Parameter Estimate SE T-value Parameter Estimate SE T-value 

δT 1.661054 0.1796 9.25 βKY -0.03839 0.00509 -7.54 

δY -1.03266 0.2336 -4.42 βTY 0.144139 0.0386 3.73 

δG 0.439636 0.2601 1.69 βMG 0.009626 0.00415 2.32 

βMK 0.067766 0.00568 11.93 βLG -0.01025 0.00386 -2.65 

βMT -0.01813 0.00601 -3.02 βKG 0.000619 0.00377 0.16 

βMY 0.124598 0.00561 22.21 βTG 0.014571 0.0281 0.52 

βLK 0.037924 0.00415 9.14 βYG -0.09133 0.0463 -1.97 

βLT 0.068861 0.00575 11.98 βGS -0.24097 0.021 -11.46 

βLY -0.08621 0.0052 -16.56 βML 0.081212 0.00325 24.98 

βLL -0.11914 0.00352 -33.87 βMS 0.034992 0.00415 8.43 

βMM -0.14898 0.00501 -29.71 βLS -0.03773 0.00387 -9.75 

βKK -0.10569 0.00835 -12.66 βKS 0.002742 0.00388 0.71 

βTT -0.19386 0.0293 -6.62 βTS -0.16861 0.0162 -10.39 

βYY -0.07296 0.0644 -1.13 βGG 0.31271 0.0374 8.35 

βKT -0.05074 0.00559 -9.07 βYS 0.239682 0.0181 13.25 

Parameters estimates of dummy variables are not reported but could be obtained from the 
authors. 
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Appendix 3. Model 2. Full model with SAR error structure. 

Method of estimation: ITSUR 
Parameters in the model: 174 
Linear Restrictions: 55 
Parameters Estimated: 119 
Method: Gauss 
Number of Iterations: 41 
Final Convergence Criteria: CONVERGE=0.001 Criteria Met 
Observations Processed: 2064 
 

Equation  
DF 

Model 
DF 

Error 
R-Square Adj.R-Sq. AIC 

ln c* 83.11 1981 0.9324 0.9296 0.06615 

SHM* 17.94 2046 0.926 0.9254 0.000611 

SHK* 17.94 2046 0.8904 0.8895 0.000418 
System R-Square: 0.911236    

* Transformed variables. 
 

Parameter Estimate SE T-value Parameter Estimate SE T-value
δT 1.007875 0.1101 9.15 βKY -0.05499 0.00384 -14.33 

δY -0.35228 0.1432 -2.46 βTY -0.07576 0.0204 -3.71 

δG -0.40512 0.1617 -2.51 βMG 0.013477 0.00299 4.51 

βMK 0.074332 0.00888 8.37 βLG -0.01807 0.0026 -6.95 

βMT -0.03649 0.00736 -4.96 βKG 0.004589 0.0026 1.77 

βMY 0.135337 0.00451 30.02 βTG 0.035987 0.0166 2.17 

βLK 0.070494 0.00739 9.54 βYG -0.04832 0.0268 -1.80 

βLT 0.076869 0.00634 12.12 βGS 0.035599 0.0132 2.69 

βLY -0.08035 0.00378 -21.25 βML 0.058759 0.0058 10.14 

βLL -0.12925 0.0072 -17.95 βMS 0.040074 0.00347 11.54 

βMM -0.13309 0.00907 -14.68 βLS -0.03284 0.00329 -9.99 

βKK -0.14483 0.0119 -12.20 βKS -0.00724 0.00342 -2.12 

βTT 0.03303 0.0156 2.12 βTS -0.05169 0.0096 -5.39 

βYY 0.161682 0.0351 4.61 βGG 0.039228 0.0207 1.89 

βKT -0.04038 0.00602 -6.70 βYS 0.020784 0.0104 2.00 

The parameters corresponding to dummy variables are not reported but could be obtained 
from the authors. 
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