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Electronics have become a standard in agricultural equipment and the trend of “smarter”
equipment is on the rise. To have “smarter” equipment, a working knowledge of the
accuracy of the data being transmitted throughout that equipment is needed. The
controller area network (CAN) bus is the current interface to machine operation data

transmitted between electronic control units (ECUs).

Because CAN bus has been around for nearly thirty years, numerous devices have been
created for interfacing with the bus. Choosing a device can be a challenge, especially
without knowing if there are differences between the logging methods for true data
representation. By logging simultaneously with three different methods, data was

analyzed to determine if excessive error existed between logged datasets.

Additionally because many messages are calculated (e.g., not measured directly),
determining the accuracy of those messages can be important for management decisions
or research studies. One calculated CAN bus message that holds a great deal of value is
the engine fuel rate, and because it is calculated rather than measured, excessive error
may exist in the CAN bus value. A comparison between the calculated CAN bus fuel

rate message and a physically measured fuel rate provided information on the message



accuracy. The Nebraska Tractor Test Laboratory (NTTL) has a certified fuel rate
measuring system capable of £0.5% accuracy (OECD, 2012; Wold, et al., 2015).

Results showed that error between logging methods was quite low, however file size was
an issue with some of the logging methods. Waveform file logging required only 6%
memory space compared to the frame logging methods. Fuel rate as recorded from the
CAN bus resulted in a £5% error from physically measured fuel rates. Error for higher
fuel rates within the torque curve were closer to +1%. These results indicated that the

fuel rate given by the CAN bus can indeed be used for management or research purposes.
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Chapter One: Introduction

Electronics in Agriculture

The use of electronic equipment in agricultural field machinery can be traced back to the
1960’s with the introduction of a seed population planter monitor by the DICKEY-John
Corporation (Stone, Benneweis, & Van Bergeijk, 2008). This was only the beginning of
what would become an evolutionary step for agricultural field equipment. As time went
on, additional manufacturers added electronic capability to agricultural field equipment.
From planter monitors to rate control systems, grain mass flow and moisture sensors, all
the way to more user friendly, manufacturer crossable advanced interfaces of total
machine operating parameters. Because additional electronic applications were being
integrated into agricultural field equipment, an available communication system was
needed. With a multi-master serial communication protocol (controller area network
(CAN) bus 2.0) already available, the Society of Automotive Engineering (SAE) group
began work on a higher layer protocol to use the CAN bus 2.0 layer. This protocol (SAE
J1939) was able to use a predefined message set to operate and diagnose machine
operating parameters (Voss, 2008). Because this protocol was focused towards heavy on-
and off-road trucks, which share many commonalities with agricultural field tractors, the
American Society of Agricultural Engineers (ASAE now ASABE) worked jointly with
the SAE to create a protocol standard, ASAE IET 353/1 and SAE ORMTC/SC32, which
integrated the International Standard Organization (1SO) working group
ISO/TC23/SC19/WG1, standard with the SAE J1939 protocol into the agricultural and

forestry industry (Stone & Zachos, 1993). An extension of the SAE J1939 operating



parameters were later added for advanced implement communication, which are built

upon the I1ISO 11783 platform (Stone et al., 2008).

CAN Bus Use in Agriculture

Because of the joint efforts of SAE and ASAE, J1939 applications were introduced into
the agricultural sector. SAE J1939 allows for control and diagnostics of numerous
predefined machine operating parameters including engine control, transmission control,
brake control, etc., as well as manufacturer proprietary messages (Stone & Zachos,
1993). Although SAE J1939 created messages that allowed control and interface of
many vehicle operating parameters, additional tractor and implement control parameters
were still needed in the agricultural sector thus creating the German Institute for
Standards (DIN) 9684 protocol (Schueller, 1988). DIN 9684 was later integrated into the
ISO 11783 standard (Stone, McKee, Formwalt, & Benneweis, 1999). ISO 11783 uses the
same protocol layer as SAE J1939, but is focused toward the agriculture and forestry
sector allowing for specifically related information to be available from both the tractor
bus as well as an implement bus (Stone et al., 1999). Because of these advancements,
and manufacturer adoption of both SAE J1939 and 1SO 11783 networks, CAN bus

interface has become a viable source for monitoring machine operating parameters.

CAN Bus Data Logging in Agriculture

Before the availability of easily accessible machine operation information, different
methods were used to calculate these operating parameters (Colvin, McConnell, & Catus,
1989; Grisso, Perumpral, Vaughan, Roberson, & Pitman, 2014). These methods were
often tedious and required a great amount of time and effort. However because so many

messages are now readily available via the machine diagnostic connector, this has



become a common source for manufacturers as well as research institutes to gain
knowledge of machine operation and efficiency (Darr, 2012; Fountas et al., 2015; Pitla,
Lin, Shearer, & Luck, 2014; Udompetaikul, Upadhyaya, & Vannucci, 2011). With the
advent of CAN based protocols such as SAE J1939 and I1SO 11783, there has also been
an increase in the amount of data being transferred from the machine for availability to
machine operators for management decisions. This has grown from having limited
parameters to having a great deal of information that terms such as “big data” and “data
mining” have entered the agricultural arena (Rul & Brenning, 2010; Russo, 2013; van
Rijmenam, 2013). Because there is so much data being transferred, some questions can
be drawn from the principles behind message use for owner/operator decision
management and research goals. One of those questions being, of the vast array of
messages being broadcast (some of which are a calculated value rather than a sensor-
based measurement) are they accurate enough to use in these managerial decision and
research outcomes? Rising petroleum costs have caused fuel use to become increasingly
important in management decisions for growers (Trostle, 2010), and because SAE J1939
Engine Fuel Rate is one of the calculated messages being broadcast by the CAN bus,
determining the message accuracy is needed. By using different tools for CAN bus data
logging, different methods of converting the raw data from the CAN bus to engineering
units and then comparing SAE J1939 Engine Fuel Rate to a physically measured value of
fuel rate consumption, confidence can be gained regarding its accuracy.

CAN Bus

In order to gain access to the answers desired, a fundamental knowledge of both CAN

bus and SAE J1939 is needed.



CAN bus is a serial communications protocol network with the ability to transfer data in
speeds up to 1Mbit/s (Bosch, 1991). CAN 2.0B allows for the broadcast of prioritized
messages between nodes or Electronic Control Units (ECUSs) in a multi-master system
(Bosch, 1991). This multi-master system allows for any ECU to broadcast a message as
long as the bus is free. CAN bus uses a physical layer comprised of a shielded twisted
pair, two wire system; CAN high (CAN_H) and CAN low (CAN_L) (Bell, 2002). CAN
isa 5V DC system where both CAN_H and CAN_L sit idle at 2.5 volts, and when a
message is broadcast, CAN_H raises to 5 volts and CAN_L drops to 0 volts (Bell, 2002),
producing a 5 volt differential to create a square wave of a certain size and timing
location to indicate a message and the pertinent information within that message. An
oscilloscope reading from a presentation during the 2013 Agricultural Equipment

Technology Conference (Darr, 2013) shows a higher layer CAN message (Figure 1).

Run : : Moise Filter Off

Identifier

CAN High

CAN Low

Figure 1: Oscilloscope Image courtesy of lowa State University shows the 0x00F004 PGN Message with the data
following after the identifier

SAE J1939
The Standards of Automotive Engineering began work on a higher layer CAN protocol
draft in the early 1990°s. This higher layer protocol is based on the seven layers of the

Open Systems Interconnection (OSI) model (Figure 2) (Kvaser, 2014). SAE J1939



utilizes the CAN 2.0B framework to broadcast a 29 bit message identifier (Bell, 2002).
SAE J1939 uses a pre-defined message format to allow for multiple manufactures to have
similar systems (Voss, 2008). The SAE J1939 message is formed from Parameter Group
Number (PGN). SAE J1939 was proposed for use in agricultural equipment in 1993

before the first draft of the document came out (Stone & Zachos, 1993).

7. Application Layer ’

6. Presentation Layer

5. Session Layer

protoco

4. Transport Layer

wio higher layer

A ) )\

3. Network Layer

2. Data Link Layer p

1. Physical Layer D

Figure 2: The OSI 7-Layer Reference Model showing higher layer protocol which is implemented in the SAE
J1939 standard

SAE J1939 messages are broadcast in hexadecimal format with certain bit timing and
byte sizing to indicate the priority of the message, the message identifier, as well as the
data within that message. An example of one line of hexadecimal data from PGN F004
(Electronic Engine Controller 1) (Source: SAE J1939 Document) as recorded from a
Vector CAN Logging hardware/software package (CANcaseXL, Vector, Novi, MI/
CANalyzer, Vector, Novi, MI) in American Standard Code for Information Interchange

(ASCII) shows as:
0.012522 1 CF00400x Rx d 8 FO FF 93 8C 1A FF FF FF

Figure 1 illustrated the same message (PGN F004) as it is seen by an oscilloscope being
broadcast across the bus. The message identifier (FOO04) is at the beginning of the
message to indicate to the other ECU’s on the bus where the message is coming from and
the data contained within that message (e.g., FO04 contains Actual Percent Engine

Torque and Engine Speed messages). A Suspect Parameter Number (SPN) is assigned to



specific parameters within each parameter group (Voss, 2008) (e.g., the Engine Speed is

defined by SPN 190 within PGN F004).

Engine Fuel Rate

Because energy consumption, specifically Engine Fuel Rate (PGN FEF2; SPN 183),
plays a vital role in management decisions, an understanding of the fuel system as
implemented by modern mobile agriculture field equipment is needed. Many tractors
manufactured today utilize compression ignition diesel engines that use a common rail
fuel delivery system. The common rail systems uses a high pressure pump to pressurize
the common rail to pressures up to 1800 bar (26,107 psi) which is then available for any
of the injection nozzles to deliver to its cylinder (Mudafale, Lutade, & Gosavi, 2013).
The fuel rate message is determined by manufacturer specified “fuel mapping” or
different timing and pulsation of the solenoid valve injector which is broadcast via the
vehicle Electronic Control Unit (ECU) (Goering, Stone, Smith, & Turnquist, 2006). The
complexity of the fuel calculation or vehicle fuel map is limited to the ECU operational
parameters (Goering et al., 2006) which is the reason that discrepancies may be found
between calculated fuel rate and physically measured fuel rate. In the agricultural sector,

little work has been published to verify the accuracy of the Engine Fuel Rate message.
Objectives

CAN data within the agricultural industry is very detailed and is becoming increasingly
important for use in grower management decisions and research outcomes. The
objectives of this study were to 1) recognize some of the different methods available for

CAN data logging and provide a comparison among those methods to observe efficiency



of logging, file sizes, and conversion methods and 2) determine if there is a difference
between the SAE J1939 engine fuel rate and a physically measured fuel rate.

The SAE J1939 Engine Fuel Rate was compared to a sensor-based fuel rate measurement
from the Nebraska Tractor Test Laboratory (NTTL), a facility with the ability to measure
to fuel consumption with an accuracy of £0.5%, and deemed accurate for assessing
tractor performance by the Organization for Economic Co-operation and Development
(OECD). The results of this study have a high impact on the agricultural sector by
providing estimates of accuracy in the CAN bus fuel rate which could be used for field

operational efficiency and management decisions.



Chapter Two: Comparing Various Hardware/Software
Solutions and Conversion Methods for Controller Area

Network (CAN) Bus data collection

Abstract

There are various hardware/software solutions available for collecting controller area
network (CAN) bus data. The data collected could be skewed based upon different
external factors (e.g., hardware/software timing, processor timing, etc.). Because of this,
a study was performed to determine if there was a difference in the data collected from
these various data acquisition solutions, and to quantify those differences.

Two types of data were observed for this study. The first data type was CAN bus frame
data, where a data point is collected for each line of hex data sent from the ECU. One
problem with frame data is the resulting large file sizes, therefore a second data type
collected was an averaged signal or waveform data. Because of its smaller file size,
waveform data is more desirable for long periods of collection. Percent difference was
calculated from two sets of frame data, and a set of frame data compared to waveform
data.

The resulting difference was less than .0025 RPM for engine speed comparisons, zero for
fuel rate and fuel temperature comparisons, and the mean percent difference was less than
.08% between the methods of data collection. The error production could have resulted
from jitter (or noise) in hardware and processor times, but was not found to grow directly
with time. This shows that even though there is error, it is a small enough of an error that

for any practical application, data logged by different devices is basically the same.



Introduction

Controller Area Network (CAN) bus use and data logging have become increasingly
common in many industries. In the agricultural sector, the CAN bus has become a
common source of operations data. A great deal of detailed information is transmitted
through the CAN bus regarding field machinery functions (Stone et al., 2008). Many
typical row crop tractors today have 12 to 20 electronic control units (ECU) that are
sharing sensed information as well as control signals regarding machine operation.
Because there is so much information being broadcast on these machines, many have
found it a useful resource to gain greater perspective on machine operating parameters
(Darr, 2012; Pitla et al., 2014; Udompetaikul et al., 2011). This can include aftermarket
third party outfitters, parent company research and development, and scientific research
conducted through universities. However, when any of these groups begin to look into
different data acquisition solutions for CAN bus data collection and analysis, the options
are almost overwhelming. SAE J1939 CAN bus messages are broadcast in hexadecimal
format (frame data) and can be collected using numerous devices including, Vector,
Kvaser, and National Instruments (NI).

Because there are so many ways to log and convert the same CAN bus information,
different logging and analysis methods could affect the outcome of a study focused on
logging J1939 data. File size and ease of conversion can both be observed to determine
what the best option is for choosing the hardware or software package.

This leads to the question of what differences exist in some of the available CAN
collection hardware and software packages, and along with that, does the data collected

by different packages portray the same information? Data collected simultaneously from
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the same machine using three different logging methods will provide information on
whether or not there are actually differences between CAN bus logging solutions. Frame
data were collected using both Vector and NI packages as well as an averaged frame data
represented as waveform data. All three files were collected simultaneously by different
user interfaces from the same source. After synchronization, a simple comparison was
performed to determine if there was any difference among the datasets collected.
Different sets of data were observed to determine if the difference increased with time, or
was related to hardware/software limitations or discrepancies. Two of the file types were
CAN frame data, which although had a higher resolution, resulted in extremely large files
(over 1 gigabyte for 9.5 hours). Because of the large files, a third method was used to log
the same data. Data from the third method, waveform, was compared to a resampled
frame data set to determine if the averaged waveform data could be deemed precise

enough to use for further studies.

Objectives

This study used three different hardware/software packages to collect similar
information. The first objective was to compare accumulated file size and available

options for post processing. The second objective was to determine if a difference

existed between the data from these different methods of CAN bus logging.
Methods and Materials

The first portion of the study describes how to take CAN messages and convert each line
into a useable form, such as an engineering unit with a time stamp. This was

accomplished using different methods, including a simple conversion within Microsoft
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Excel which has the major limitation of file size, and NI Diadem, which is useful for
large files.

Because there are numerous options available for collecting CAN data, this study sought
to identify differences between manufacturers of the CAN collection hardware/software,
and determine any differences in the type of log files created from these different
packages. Vector has the ability to log different file types, including the ASCII
hexadecimal message shown previously. NI LabVIEW TDMS files were additional
sources used for this study. Data was recorded using three different methods, Vector
frame data (logged as an ASCII file), NI averaged hexadecimal data collected from a

waveform chart, and NI frame data (both logged as NI TDMS files).

Test Setup

A 270 engine horsepower row crop tractor (John Deere 8270R) was used as the test
subject for this study. The test was conducted over a period of approximately 9.5 hours
on a power take-off (PTO) dynamometer (Figure 3) at the Nebraska Tractor Test
Laboratory (NTTL) facility. The parameters of this study were defined by the
dynamometer portion (OECD Code 2 section 4.1.1(OECD, 2012)) of NTTL official test
number 2099, which consisted of varying engine speeds and loads throughout the 9.5
hours. During the testing time, data were collected using a Vector CAN logging
hardware/software package (CANcaseXL/CANalyzer 8.0, Vector Informatik, Novi, MI)
and NI hardware/ software packages (NI cDAQ 9482/NI LabVIEW, National
Instruments, Austin, TX). Machine interface was achieved through the controller area
network (CAN) bus to obtain the three separate representations of data (Vector Frame, NI

Frame and NI Waveform).
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Figure 3: 700 Horsepower Dry Gap Eddy Current Dynamometer used by the Nebraska Tractor Test
Laboratory

Controller Area Network Interface

For this study, the interface with the tractor’s CAN bus was achieved through the
Deutsch HD10-9-1939 J1939 diagnostic connector (Figure 4). The J1939 diagnostic
connector is a universal solution for Heavy Trucks and Off-Road equipment including

agricultural equipment.

Figure 4: Deutsch HD10-9-1939 J1939 Diagnostic Connector: Green= CAN Low, Yellow= CAN High, Red=
Voltage source, Black= Vehicle Ground
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The Deutsch HD10-9-1939 vehicle diagnostic connection pinout allows for not only
vehicle CAN bus interface, but also implement bus interface (Figure 5). The ability to
interface into the implement bus allows for collection of various signals including ISO

11783 messages.

Pin no. Allocation
ECL_GND

Unswitched Power *

Tractor Bus CAN_H

A

B

iC

D Tractor Bus CAN_L
E Mot Specified ®
F

e}

H

]

Mot Specified ©
Not Specified ©

Implement Bus CAN_H

Implement Bus CAN_L
* A direct connection to positive battery power through a 10A fuse.

" Used for the shield of an SAE 11939 network in an SAE diagnostic connector.
* Used for SAE 11708 network in an SAE diagnostic connector

Figure 5: SAE J1939 Vehicle Diagnostic Connector Terminal Pinout (as found in the SAE J1939 Standards
document)

Frame Data

Frame data reads in all messages from the network in the respective frequencies as sent
by each ECU (National Instruments, 2014).

Frame data were collected from various ECU’s during the collection period. These ECUs
had different logging frequencies. For example, the Electronic Engine Controller 1
(EECL1; PGN FO004) logs signals including Engine Speed (SPN 190) and Actual Percent
Engine Torque (SPN 513) at a rate of 100 Hz. The Fuel Economy (Liquid) (LFE1; PGN
FEF2) logs signals including the engine fuel rate (SPN 183) and Engine Throttle Position
(SPN 52) at a rate of 10 Hz. The Engine Temperature 1 (ET1; PGN FEEE) logs signals
including Engine Coolant Temperature (SPN 110) and Engine Fuel Temperature 1 (SPN

174) at a rate of 1 Hz. Because of these different logging frequencies, frame log files can
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vary in size by a great deal. If data from multiple PGNs were desired, a frame data log
file with more PGNs having a 100 Hz log rate will be larger than a frame data log file
with more PGN’s having a 1 Hz log rate, an issue that will be compared later in this
study.

Waveform Data

Waveform data resamples frame data into a waveform with a fixed sample rate (National
Instruments, 2014).

Because frame data log files can become large in size depending on the number of PGNs
desired to be recorded, an additional method was used to collect data from an averaged
source. NI LabVIEW was used to create an application program interface (API) that
logged frame data as a waveform, and then averaged that waveform data and recorded it
at a rate of 2Hz. This method was used because of the desire to gain the same data but in
a smaller log file size.

SAE J1939 Database

For this study, a vector database was created using a J1939 template and the SAE J1939-
71 document(SAE, 2009). By using this database, messages and signals could be filtered
for individual collection (rather than collecting every message broadcast on the CAN
bus). These individual message frames were collected, stored, and interpreted later using
the same database. A description of how messages were added to the Vector J1939
formatted database can be found in Appendix A.

Data Collection Methods

Data were collected with two different hardware options, a NI CompactDAQ 9862

(Figure 6a) and a Vector CANcaseXL (Figure 6b). Three different software methods
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were used, Vector CANalyzer and two separate APIs written in NI LabVIEW software.
One set of LabVIEW code was used to collect raw hex (frame) data and another averaged
that data into the waveform data. The waveform collection method was performed to
observe an additional option for collecting the same data, but with a much smaller file
size. Data were collected on the same machine at the same time using all three collection

methods.

b INSTRUMENTS veckor”
@) (b)

Figure 6: (a) NI CompactDAQ 9862 Single Port High Speed CAN Interface and (b) Vector CANcaseXL Dual
Port High Speed CAN Interface

By using the filter function in Vector CANalyzer, 10 signals were logged (Table 1). Two
signals (Engine Speed [PGN F004,SPN 190] and Actual Percent Engine Torque [PGN
FO004, SPN 512]) were logged at 100Hz, one signal (Fuel Rate[PGN FEF2, SPN 183])
was logged at 10Hz, one signal (Engine Oil Pressure [PGN FEEF, SPN 100]) was logged
at 2Hz, and six signals (Fan Speed [PGN FEBD, SPN 1639], Engine Coolant

Temperature [PGN FEEE, SPN 110], Engine Fuel Temperature 1 [PGN FEEE, SPN
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174], Engine Oil Temperature 1 [PGN FEEE, SPN 175], Ambient Air Temperature [PGN

FEF5, SPN 171], and Engine Air Inlet Temperature [PGN FEF5, SPN 172]) were logged

at 1Hz.
Table 1: PGN and SPN information of the 10 files logged
PGN FO04  FEF2 FEEF FEBD FEEE FEF5
SPN 190 183 100 1639 110 171
512 174
175
Frequency (Hz) 100 10 2 1 1 1

All signal PGN and SPN information found in SAE J1939-71 standard (SAE, 2009). The
same signals were logged using the NI LabVIEW Frame data API at identical
frequencies. The NI LabVIEW Waveform API logged only 5 of those signals including
Engine Speed (100Hz averaged), Actual Percent Engine Torque (100Hz averaged), Fuel
Rate (10Hz averaged), Fan Speed (1Hz) and Fuel Temp (1Hz).

After the data were collected, Microsoft Excel and NI Diadem Bus Log Converter were
used to convert the collected frame data into engineering units. Diadem was used to
synchronize the data from the three sources. Collected data were then imported into
Microsoft (MS) Excel in 30 or 60 second time increments (depending on frequency of
collected data), from incremental times throughout the 9.5 hour overall test run of the
machine used for this study. Data for these comparisons were both steady state as well as

transient.

Microsoft Excel Hex to Engineering Unit Conversion

Vector J1939 data files in the ASCII format were converted using Microsoft Excel Hex to
Decimal functions according to the SAE 1939 standard. The ASCII collected dataset was
opened with MS Excel using the tab delimited function. After the file was opened, a

filter was applied to the PGN column (e.g. if only the engine speed was desired to be
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converted, a filter could be used to only select Electronic Engine Controller 1 PGN: FO04

in the PGN column (Table 2)).

Table 2: Filtered Vector ASCII message showing only the PGN F004

Time Stamp  PGN Bytes - - - Ds Ds - - -

0.01096 CF00400x 8 FE FF 94 2C 29 FF FF FF
0.021415 CF00400x 8 FE FF 93 26 29 FF FF FF
0.031039 CF00400x 8 FE FF 93 22 29 FF FF FF
0.041613 CF00400x 8 FE FF 94 20 29 FF FF FF
0.051034 CF00400x 8 FE FF 94 26 29 FF FF FF

After filtering out the desired PGN, data values were seen following the PGN and

message data length (e.g. 8 Bytes is the length of the FO04 message). By using the SAE

J1939 Vehicle Application Layer document (SAE, 2009) the Engine Speed SPN 190 is

found to start at the fourth byte and have a length of two bytes, and offset of zero and a

resolution of .125 rpm/bit. By using the Hex2Dec function in MS Excel, the data bytes

for SPN 190 were converted to a decimal value. After converting to decimal format, a

total decimal value was calculated using Equation 1 as the original values were in binary

format. After calculating the total decimal, the resolution for the specified engine speed

SPN (.125 rpm/bit) was used to convert the total decimal to the engineering unit

(Equation 2). Example results are shown in Table 3.

Equation 1: Total Decimal Calculation for Hex to Engineering Unit Conversion

256%*D4+256'*Ds=Total Decimal

1)

Equation 2: Using SAE J1939 SPN Resolution for Final Conversion to Engineering Units

Total Decimal*Resolution=Engine Speed

)
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Table 3: PGN F004 Engine Speed values calculated by using equations 1 and 2 with resolution (.125 rpm/bit)
found in SAE J1939 document

Engine
Time D4 D5 Total Speed
Stamp PGN Bytes - - - D4 D5 - - - Dec Dec Dec (RPM)
0.01096 CF00400x 8 FE FF 94 2C 29 FF FF FF 44 41 10540 13175

0.021415 CF00400x FE FF 93 26 29 FF FF FF 38 41 10534  1316.75
FE FF 93 22 29 FF FF FF 34 41 10530  1316.25
FE FF 94 20 29 FF FF FF 32 41 10528 1316

FE FF 94 26 29 FF FF FF 38 41 10534  1316.75

0.031039 CF00400x
0.041613 CF00400x

© 0 o o

0.051034 CF00400x

This procedure is applicable to any message with a database such as the SAE J1939
Vehicle Application Layer document (SAE, 2009). As shown, after calculation an
available time stamp and a message value exist in a useable engineering unit. Note the
timestamp for this message, which represents a 100Hz frequency data set. The same
would occur for other messages depending on ECU logging rate (e.g. Fuel Rate is logged

at 10Hz).

National Instruments Diadem Hex to Engineering Units Conversion

NI Diadem was a tool used for viewing, sorting and analyzing large data sets. For this
study, Diadem Bus Log Converter function was used because of its ability to easily
convert CAN hex data into engineering units. Use of this tool was accomplished by
choosing the correct file type within the Bus Log Converter (e.g., NI-XNET, Vector
ASCII, Vector BLF, etc.) then selecting a database to use for conversion. For this study a
database similar to the standard Vector J1939 database was used, but with fewer
messages. Within the Vector database created, each message’s source type was changed
from Null Address to 0x0 to work within NI software/hardware applications. Without
changing the source address to 0x0 in the database, NI would not recognize the database
message and logging was not possible. After using the database in the Bus Log

Converter a log file was created and then imported into Diadem for viewing and analysis
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(Appendix B(i)). This resulted in an individual time stamp for each ECU, along with
each line of hex data produced from that ECU and converted into engineering units.
Diadem created an individual time stamp for each ECU because they logged at different
rates as explained in the previous Frame Data section.

Frame Data Synchronization

Frame data from NI and Vector were able to be correlated directly. After converting the
NI and Vector frame data into engineering units, the two data sets had to be synchronized
because they were started at slightly different times from the two separate user interfaces.
Figures 7 and 8 show the fuel rate from both sets of frame data before and after
synchronization, respectively. The data were synchronized by adjusting the time stamp

of one set of data within NI DIAdem.

50
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NI Frame Fuel Rate
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Figure 7: Fuel Rate (L hr) frame data converted to engineering units from both Vector and NI before time
synchronization
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Figure 8: Fuel Rate (L hr') frame data from Vector and NI after time synchronization
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The same procedure was used to compare other signals as well. For this study three data
sets were used for comparison, Engine Speed (100Hz), Fuel rate (10Hz), and Fuel
Temperature (1Hz). This gave an accurate representation of a variety of CAN Frame

data sets to verify if there was a significant difference between these frame data sets.

Frame Data Re-Sample/Average

In order to synchronize an average 1Hz waveform data set with the frame data, frame
data were resampled from 100Hz/10Hz to 1Hz, depending on the ECU (Figure 9) and
then aligned with the waveform data in a similar method to the frame to frame data
comparison (Appendix B(iii)). The resample procedure in NI DIAdem averaged the

values to either side of the desired time stamp to create a new sample, or an averaged

sample.
o0 [l W HJIHM % T |
Eiiﬁi Mu | PWM MJ il wr W W g V\" W w Mv W | M AH’ M bl ‘WWW W
Analysis Figure 9: J1939Engine Speed Frame data (RPM) averaged from 100Hz to 1Hz

To determine error between the three data types, a dynamometer test was conducted over
a period of 9.5 hours. Frame data and waveform data were synchronized as previously
detailed. The 9.5 hour test length allowed for enough time to show that if excessive
differences were detected, the possibility of an underlying frequency or pattern might

also be found. For the 100Hz data set (Frame Engine Speed), 35 sets of 30 s data were
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exported. Out of the 9.5 hour test, the first of these 30 second data sets was exported at
the beginning of the test (where the two frame data sets were synchronized) and another
set thereafter every 15 minutes, providing the 35 sets of 30 second data. For the 10Hz
data (Fuel Rate), five data sets were exported starting at the frame data synchronization
and then every two hours afterwards from the 9.5 hour test data set. A 1Hz data (Engine
Fuel Temp) also had five datasets exported at an increment of 2 hours from the 9.5 hour
test data set similar to the Fuel Rate export. The lower sample rate for the 10Hz and 1Hz
data sets was due to the fact that the difference in values were not as significant as the
higher frequency data as the results will also indicate.

Waveform data were originally collected via the LabVIEW API at a 2Hz rate due to the
program’s limitations. Because the APl averaged frame data in real time, attempting to
average multiple signals in less than 2Hz resulted in program failure. Frame data were
resampled to a rate of 1Hz for an additional study, so the 2Hz waveform signals were
also resampled to 1Hz for easy comparison with the 1Hz Frame data. To compare
waveform to frame data, 19 sets of 60 s engine speed data were exported from the 9.5
hour test data set at increments of 30 minutes. Like the frame data comparison, this gave
an accurate depiction of the actual difference between the frame data logged and
waveform data logged.

For each of the exported data sets, percent differences were calculated using MS Excel
(Equations 3 and 4). These calculated percent differences gave an accurate indication of

the true differences between the logging sources.
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Equation 3: Percent difference calculation for frame data and waveform data comparisons

. Vector (or Waveform)data—NI Frame data)|

0 _

/0 leference - (Vector (or Waveform)data+NI Frame data) * 100 (3)
2

Equation 4: Difference calculation for frame and waveform data comparison

Dif ference = Vector (or Waveform)data — NI Frame data 4
Results

File Sizes

For this study, data were logged from the John Deere 8270R over a 34,328 s (approx. 9.5
hour) period of time. As stated in the methods, the two frame data sets logged identical
signals, however the waveform data set only logged five of those signals. Table 4
summarizes the file sizes as logged during the 9.5 hour test from each logging method.
The file types are also shown in Table 4, however it is noteworthy to mention that even
though TDMS files could be opened with MS Excel, the NI Frame file could not be
opened in Excel because of its size. Based on the difference in file sizes (Table 4), there
were advantages to using the Vector Frame collection method. This method generated
smaller data files of actual hex data (compared to the NI Frame) whereas using the NI

Waveform collection method created much smaller overall file sizes.

Table 4: Log file sizes as recorded from their sources

Source Log File Type Size (kB) Time (S)
NI Waveform TDMS 26,702 34349.50
NI Frame TDMS 1,208,869 34327.81
Vector Frame ASC 11 443,501 34322.19

However, because more frame signals were logged than waveform signals, a breakdown
of the files into signals and samples per signal was performed to show file size by
samples. The log files were broken down into their respective signals along with the

frequency in which each signal was logged. Only the NI Frame and NI Waveform set
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were shown because the NI Frame and Vector Frame log file samples were similar in
magnitude. Table 5 shows these two log files broken down into the elements of signals
along with signal frequency to portray the composition of each file. From Table 5, it was
clear that the Torque and Engine Speed signal are the majority of the log file size for the
NI Frame data set. By using an API that has the ability to average the frame data, the file

size for those signals in particular was greatly reduced.

Table 5: Total samples as logged from NI Frame and Waveform logging sources with a breakdown of each
signal that was logged along with the number of samples for each signal

NI Frame Waveform Number of

Signals Frequency (Hz) Number of Samples  Frequency (Hz) Samples
Torque 100 3,432,781 2 68,699
Engine Speed 100 3,432,781 2 68,699
Fuel Rate 10 343,278 2 68,699
Oil Pressure 2 68,655

Fan Speed 1 34,328 2 68,699
Coolant Temp 1 34,328

Fuel Temp 1 34,328 2 68,699
Oil Temp 1 34,328

Ambient Air Temp 1 34,328

Engine Air Intake

Temp 1 34,328

Total Samples 7,483,463 343,495

Hex Data to Engineering Units

Two methods of J1939 hexadecimal frame data conversion to engineering units were
attempted during this study. Although MS Excel had the built in feature of HEX2DEC, it
required more time to perform conversions. To perform conversions the use of a
database with SPN location, length, offset and resolution was required. Since only one
signal could be converted at a time, Excel was somewhat cumbersome for converting

hexadecimal frame data to engineering units. Another major limitation was the file size



that could be loaded into MS Excel. Excel only accepts 1,048,576 rows of data
(Microsoft, 2014).

The NI DIAdem Bus Log Converter performed this operation more quickly, and only
required the database used for logging in order to convert. The additional benefits of

DIAdem were the abilities to further manipulate and analyze the data.

Difference Between Logging Methods

Four different data sets were analyzed to find the percent difference between the three
methods of J1939 data logging as outlined in the methods section. An average of the
percent difference was calculated for the each of the comparisons to show an overall

result of the differences found throughout the 9.5 hour test (Table 6).

Table 6: Averaged differences and averaged percent differences as found for each of the comparisons

100Hz 10Hz Frame 1Hz Frame Waveform vs

Frame Data Data Data Frame Data
Difference -0.00003 0 0 -0.00041
Mean % Difference 0.03959 0 0 0.00643
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NI Frame vs Vector Frame data sets were compared first. Because these two files logged

the same messages in the same format (hexadecimal), three of the different signal
frequencies were compared, Engine Speed (100Hz), Fuel Rate (10Hz), and Fuel

Temperature (1Hz). Of those three signal frequencies, only the Engine Speed data

(Figures 10 and 11) produced a measurable difference and percent difference over the test

time. After synchronization of both the fuel rate and fuel temperature frame datasets,

percent differences were zero at every point of collection over the 9.5 hour test.
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Figure 10: NI Frame vs Vector Frame mean difference of engine speed over the 9.5 hour test
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Figure 11: NI Frame vs Vector Frame mean percent difference of engine speed over the 9.5 hour test

The second comparison sought to determine the error between a frame data set and the NI
Waveform dataset. For this analysis, the NI Frame Engine Speed data were compared to
the NI Waveform Engine Speed data over the 9.5 hour test. Figures 12 and 13 show the
resulting difference and mean percent difference, respectively for the 19 sets of 60 s data

exported and analyzed.
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Figure 12: Frame vs Waveform mean difference of engine speed over the 9.5 hour test
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Figure 13: Frame vs Waveform mean percent difference of engine speed over the 9.5 hour test

Synchronization

Synchronization was performed at the earliest available point where there was a clear
data transition (e.g., a sharp peak or valley in the two data sets). As seen by the results
of the comparisons, for the higher frequency logging it was clear that immediately
following synchronization, the resulting difference was zero but then increased as time
went on. It was also found that if the data was synchronized immediately before a
desired time period, the data would then line up and again have a resulting difference of

zero. This could prove useful if a large dataset was available, but only a small portion

within that dataset was desired for analysis.
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Conclusions

With regard to conversion of J1939 hex messages to engineering units, while numerous
options exist, each method should be considered depending on the end use of the data.
Although MS Excel was a bit cumbersome, and took longer than NI DIAdem to perform
conversions, MS Excel was significantly less expensive and available for use on a variety
of operating platforms (e.g., Windows, Mac, or MS Office for Android applications).
This was the one advantage that highly outweighed the quick performance of NI
DIAdem.

In comparing the NI and Vector frame data, the only cause for the difference indicated
between the two data sets was attributed to either hardware jitter (or delay variations
(Nolte, Hansson, & Norstrom, 2002)), processor timing, or other sources unseen by the
user. Differences between datasets were eliminated by analyzing data immediately after
synchronization. Rather than synchronizing data once and then comparing throughout a
long data set, if synchronization was done before a point where two small sets of data
were desired for comparison, the resulting difference was zero. This was only discovered
through trials of various synchronization points and although cumbersome, this would
eliminate any difference. But again, with the percent difference as low as it was
throughout the 9.5 hour data set (<.07%) it is unlikely that the error would exceed any
criteria for scientific data analysis.

Because research data may be gathered for long periods on equipment running in the field
(as opposed to a test stand), and the equipment could run for weeks on end,
corresponding log file sizes become an important factor in logging methodology. If a

compact logging device that allows for only small file sizes were available, the ability to
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log for multiple days or weeks could greatly outweigh the higher resolutions of actual
frame data. Even though half the files where logged with the waveform collection, the
waveform data file size was 6% of the smaller of the two frame data sets. Although there
was some difference shown between the various types of J1939 data collection, for most
practical purposes in the agriculture industry, this percent difference is so minimal it
would not adversely impact the outcomes of studies using any of these logging sources.
This would include scientific study, or manufacturers desiring further study on CAN bus

applications.
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Chapter Three: Validation of machine CAN Bus J1939
fuel rate accuracy using Nebraska Tractor Test

Laboratory fuel rate data

Abstract

A pilot study was performed to determine if there were differences between data
collected using the machine controller area network (CAN) bus Society of Automotive
Engineers (SAE) J1939 standard fuel rate and data collected from a physical
measurement system utilized by the Nebraska Tractor Test Laboratory (NTTL). The
pilot study concluded that there was a difference between the data (up to a 6.22% error),
which indicated a need to perform further studies on this comparison.

The SAE J1939 standard fuel rate message (PGN: FEF2 SPN: 183) utilized by the
machine CAN bus has a theoretical value, however little work has been done to verify the
accuracy of this value. Because fuel flow rate values reported are rarely measured
directly on field equipment using a flow meter, the value is likely estimated based on
other operating parameters, (e.g., engine speed, number of cylinders, injector timing and
pulsation, etc.). The goal of this study was to compare fuel rate values collected from the
CAN bus to the physically measured fuel rate value from tractor performance tests
conducted at the Nebraska Tractor Test Laboratory (NTTL). The fuel rate values were
collected simultaneously and then synchronized to confirm accuracy of results. The
values for comparison where comprised of certain performance test points as described in
the Organization for Economic Co-operation and Development (OECD) Code 2. The

specific test points consisted of the tractor’s engine torque curve, within section 4.1.1,
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along with multiple points of varying engine speed and engine power, section 4.1.3.1,
(OECD, 2012). The NTTL has a certified fuel rate measuring system with an accuracy of
+0.5% (OECD, 2012; Wold et al., 2015).

Fuel rate, as recorded from the CAN bus, resulted in a £5% error of actual physically
measured fuel rates. Error for higher fuel rates within the torque curve were closer to
+1%. This produced confidence in the ability to use machine data for in field efficiency
and/or spatial fuel usage for additional analysis, whether used for research or grower cost

analysis with an accurate knowledge of actual fuel consumed during operation.

Introduction

The use of electronics in agricultural field operations began in the 1960’s and has
progressed to agricultural field machines that utilize electronic control units (ECUs) for
full control of engines and almost every other parameter of the machine (Stone et al.,
2008). Today, the most common source of data and data transmission on agricultural
field machinery is the controller area network (CAN) Bus. The CAN bus protocol was
officially introduced by the Robert Bosch GmbH in 1986 in conjunction with the car
manufacturer Mercedes Benz (Voss, 2005). Since then, CAN applications have been
used throughout numerous industries including light duty passenger automotive, heavy
duty on- and off-road automotive, marine, factory and agricultural (Voss, 2005). A
higher layer protocol used to manage communication over the bus network and derived
from the seven layer Open Systems Interconnection (OSI) model (Kvaser, 2014) based
on CAN 2.0B (Voss, 2008) was implemented by the Standards of Automotive
Engineering (SAE) as early as 1994. This higher layer was the SAE J1939 protocol

which uses predefined parameters in the form of a public database to give manufacturers
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a guide for ECU programming (Voss, 2008). Application of the CAN protocol standard
SAE J1939 was proposed for use in agricultural field machinery in the early 1990’s
(Stone & Zachos, 1993).

The use of the SAE J1939 public database allows the scientific community to quickly
access important machine operating parameters; including machine fuel consumption rate
(Darr, 2012; Pitla et al., 2014; Udompetaikul et al., 2011). Because the SAE J1939 data
is publicly available, and researchers are using the data to answer questions regarding the
efficiency of machines, understanding the accuracy of these messages is important. The
SAE J1939 engine fuel rate message is one that is especially important. Because the SAE
J1939 fuel rate value is estimated based on different ECU inputs (e.g., number of
cylinders, rpm, size and timing of each PWM injection valve, etc.) rather than physically
measured, a calculated comparison between J1939 fuel rate messages to a physically
measured fuel rate was performed. Physically measured fuel rate data came from the
Nebraska Tractor Test Laboratory (NTTL), which is an Organization for Economic Co-
operation and Development (OECD) approved test station and has the ability to measure
fuel consumption to an accuracy of £0.5% (Wold et al., 2015). The NTTL utilizes
electronic data acquisition to provide physical measurements of fuel consumption on
agricultural tractors (Grisso et al., 2012; Ingle, 2011; Kim, Bashford, & Sampson, 2005).
By knowing the accuracy of the calculated CAN fuel rate message, information from that

message can be used for more confident research and management decisions.
Objectives

The goal of this study was to evaluate the accuracy of fuel flow CAN bus messages for

agricultural machinery as this has become one of many readily available data sources for



32

researchers and industry professionals. There are two main objectives to this study, 1) to
provide an analysis of the accuracy of the CAN based J1939 fuel rate messages under
steady state conditions, and 2) determine if any variation in errors exists across different

fuel flow rate ranges for the tractors assessed.
Methods and Materials

Test Setup

Six mid to high horsepower (245-370 engine horsepower) row crop tractors were used for
this study. The tractors used were NTTL official tests 2098 through 2103 (8245R,
8270R, 8295R, 8320R, 8370R IVT, and 8345RT). The data collection from both CAN
bus and NTTL was done during the Power Take-Off (PTO) portion of the official NTTL
tests. The PTO portion of the NTTL tests use a 700 maximum horsepower dry gap Eddy
Current Dynamometer (Figure 14) for load variation. During the PTO testing, multiple
engine speed and load variations were selected to identify tractor operating outputs. For
this study, the engine torque curve (22 RPM ranges from 2100RPM to 1050RPM at full
load) and five extra points for fuel consumption characteristics (100% engine speed-80%
load, 90% engine speed-80% load, 90% engine speed-40% load, 60% engine speed-60%
load, and 60% engine speed-40% load) were used. This created 27 sets of 60 s data for

analysis.
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Figure 14: 700 HP dry gap Eddy Current Dynamometer used by the NTTL for official testing

CAN Bus Interface

To interface with the vehicle CAN bus, different physical connections are available based
upon the type of vehicle being connected to. For this study, a Deutsch HD10-9-1939
J1939 Diagnostic Connector (Figure 15) was used as the physical connection to the
tractor CAN bus. CAN_H (Pin C) is indicated by the yellow wire, CAN_L (Pin D) is
indicated by the green wire, vehicle voltage source is indicated by the red wire (Pin B),
and vehicle ground is indicated by the black wire (Pin A). The J1939 Diagnostic

Connector is the standard connection to the CAN bus for agricultural equipment.
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Pin no. Allocation
ECU_GND

Uniswitched Power *

Tractor Bus CAN_H

a,

B

C

D Tractor Bus CAN_L
E Mot Specified ®
F

G

H

J

Mot Specified ©
Not Specified =

Implement Bus CAN_H

Imiplement Bus CAN_L
* A direct connection to positive battery power through a 10A fuse.

® Used for the shield of an SAE 11939 network in an SAE diagnostic connector.
* Used for SAE 11708 network in an SAE diagnostic connector

Figure 15: Deutsch HD10-9-1939 J1939 Diagnostic Connector with pinout schematic: Vehicle CAN and
Implement CAN (Green= CAN Low, Yellow= CAN High) Red= Voltage source, Black= Vehicle Ground

Signals Logged

Engine Fuel Rate (PGN FEF2, SPN 183), a J1939 message calculated based upon
“Command-Fuel-Quantity and verified by the fuel-rail-pressure and fly-wheel feedback”
(Walter, 2015) was the primary focus of this study. The calculated fuel rate was
compared to the physically measured mass flow rate as recorded by NTTL in National
Instruments (NI) technical data management streaming (TDMS) format.

A second message, Engine Speed (PGN F004, SPN 190), was also logged to give an
accurate assessment of signal synchronization. Because the engine speed as recorded

from both J1939 and NTTL are physically measured by the rotational speed of the same
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shaft, it was determined that this was an ideal source for synchronizing the two data sets.
Based on the shaft rotation speed transitions, as engine speed decreases or increases, both
sensors are measuring the same shaft in real-time, therefore transient engine speeds
should match. This synchronization was done by taking both data sets, and correcting the
time in NI DIAdem on one of the signals to synchronize it with the other. By correcting
the J1939 message time, all messages followed the same time stamp of the NTTL

messages.

Data Acquisition

CAN bus J1939 data was recorded with a NI Compact Data Acquisition (cDAQ) module
(9482 single port high speed module, National Instruments, Austin, TX). A database
based on the Vector database (Vector j1939.dbc, Vector Informatik, Novi, MI) was
created to allow the NI API to interpret and log the CAN bus messages. The NI API
acquired data from the cDAQ 9482 module and utilized the CAN Input Stream to TDMS
Logfile to log the signals specified from the database. The SAE J1939 signals logged
through this program included Engine Speed, Actual Percent Engine Torque, Fuel Rate,
Fan Speed, Fuel Inlet Temperature, Coolant Temperature, Oil Temperature, Ambient Air
Temperature, Engine Intake Air Temperature and Oil Pressure. Although ten signals
were recorded, only two of these signals were used for comparison with NTTL signals,
Engine Speed and Fuel Rate. The TDMS file format was then able to be used with NI
DIAdem software.

The NTTL used various analog and digital sensors (Figure 16) along with various NI
cDAQ modules where signals were processed with a LabVIEW program created by

NTTL staff. The NI LabVIEW program logged signals at a 1000 Hz frequency, then
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averaged each signal over a one second time period to give a 1 Hz value which was then
recorded as raw data. The engine speed was recorded by a Banner D12 Fiber Optic

Digital Pulse Sensor connected to a NI cDAQ 9435 module.

B . =

Figure 16: NTTL Analog and Digital signal collection point for Dynamometer testing

The fuel rate was collected using a Micro Motion mass flow sensor (Micro Motion model
CMFS015M324J2BMEZZZ, Emerson Process Management, Boulder, CO), which
measured mass flow using the Coriolis method, along with a PUCKS800 transmitter
connected to a NI cDAQ 9203 module. According to the manufacturers specifications
the Micro Motion sensor has a maximum flow rate of 5.4 kg min (324 kg hr'/714.298
Ib. hrl). Figure 17 shows the error based on flow percentage of the Micro Motion flow
meter according to the manufacturers specifications provided with the flow meter
(Appendix E). Fuel rates for this study ranged between 15.42 kg hrt and 62.14 kg hr?

(4.8-19.2% of Micro Motion maximum flow rate).
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Figure 17: Micro Motion mass flow sensor error based on flow percentage (with 100% being 324 kg hr)

To confirm that the NTTL fuel measurement setup was accurate with regard to the
Micro Motion factory calibrations, results from a previous study provided an assessment
of error produced by the NTTL fuel measurement system (Figure 18). The results of this
study showed that the NTTL fuel measurement system provided an accuracy of £0.5%
for all flow rates except four points at the lowest tested flow rate (Wold et al., 2015).
Figure 18 indicates that most samples had an error within £0.25% over the majority of

the fuel rate ranges.

Overall Max PI Actual Deviations Overall Min PI

1.00%
0.75%
0.50%
0.25%

0.00%
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Percent Error

-0.50%
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Flow rate (kg hr)

Figure 18: Results of a NTTL fuel calibration with prediction intervals (Wold et al., 2015)



38

The official OECD tests at the NTTL used red dyed farm grade #2 diesel fuel. Each
batch of diesel fuel delivered has its specific gravity measured and then corrected to 15°C
(59°F). The temperature correction allowed for a density measurement to correspond
with OECD code 2.7.1 (OECD, 2012) which was used for mass flow rate to volumetric
flow rate conversion. The corrected density used for the batch of fuel during this study
was 7.036 Ib gal™t. This density was then used in equation 5 to convert fuel recorded by

the Micro Motion sensor from Ib hr to L hr?.

Equation 5: Calculation used for NTTL mass flow rate to volumetric flow rate conversion

LY _ l_b gal 3.785L
Fuel Rate (E) = Fuel Rate (hr) e Tl ®)

Figures 19 and 20 outline the NTTL fuel measurement system. In the NTTL fuel
system, fuel passed from a holding tank to a filter, then through the Micro Motion mass
flow sensor. After travelling through the mass flow sensor, the fuel flowed into a
Murphy LM305 lubrication level maintainer (a liquid float). From the outlet of the
LM305 fuel float, the fuel entered a fuel heater and then entered into the fuel inlet of the
machine. The fuel from the return line of the machine (the fuel not used by the tractor’s
injection system) was passed through a cooler and then flowed back into the LM305 fuel
float. Once the machine reached steady state operation, the fuel rate measured
represented the fuel from the holding tank required to keep the LM305 fuel float at a

level position.
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Murphy Fuel Float

Fuel Holding Tank

@

Figure 19: Fuel measurement system used by NTTL
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Figure 20: NTTL fuel measurement diagram to show how Micro Motion sensor and Murphey fuel float work
together to accurately measure tractor fuel consumption
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Signal Comparison

Because J1939 data were logged by NI LabVIEW in a TDMS format, NI DIAdem was
used to import the frame hex data and convert it into useable engineering units in
preparation for comparison to NTTL data. NI DIAdem has a Bus Log Converter function
which was used to perform the frame hex to engineering unit conversion. To use the Bus

Log Converter, the TDMS file logged by the NI X-Net API was selected, along with the
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Vector J1939 database created for use with the LabVIEW program as described
previously. The Bus Log Converter function used the parameters (including data length,
resolution, data range, and offset) within the Vector database to convert the frame data to
engineering units with a time stamp. This provided the signals logged from the CAN bus
in engineering units, but gave them in their original frame transmission frequencies
(Engine Speed at 100Hz, Fuel Rate at 10Hz). To compare J1939 signals to NTTL
signals, both had to be in similar format and frequency. Because the NTTL data were
recorded at a frequency of 1 Hz, the J1939 frame data needed to be converted to 1 Hz to
be correctly compared. NI DIAdem was used to resample these signals to a 1 Hz dataset.
Within DIAdem, the Reducing Classification function was used to resample both the
J1939 Engine Speed and Fuel Rate. The Reducing Classification function, based on the
width of sample (in this case one second) averaged the original data within that width to
create a new resampled data set at the desired width. For example, the engine speed was
originally 100 Hz and contained 1,000,000 data points, and if a 1 Hz resampled dataset
were desired, the original number of data points was divided by the frequency

[1,000,000/100=10,000] to get a new dataset at the desired frequency (Figure 21).
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Figure 21: DIAdem Reducing Classification function result showing 100Hz J1939 engine speed frame data
resampled to 1Hz for comparison to NTTL 1Hz engine speed data
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Timing synchronization was accomplished by using the Engine Speed from both datasets
because the Engine Speed was logged by both hardware/software suites from the same
rotating shaft in real time. The reason that a secondary signal was used (rather than just
synchronizing based on fuel rate) was due to the NTTL fuel measurement system method
of operation. Because a float was used as the point of reference for fuel demand, there
was a lag in transient fuel rates. Results from a previous pilot study (Marx & Luck,
2013) showed that comparison between CAN bus and NTTL fuel rates during transient
periods resulted in very high error (up to 6.22%). A regression from a direct comparison
of CAN bus fuel rate vs NTTL fuel rate should have an ideal slope of one-to-one. Itis

clear from Figure 22 that during the pilot study this was not the case.
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Figure 22: Pilot study results showing that transient fuel rates had outliers resulting in very high overall error

Because of the high error produced from transient fuel rates, synchronizing the two data
sets and then truncating and comparing only steady state data was performed to eliminate

the discrepancies during the transient fuel rates. To synchronize the datasets, the time
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stamp for the J1939 messages was shifted to align with the time stamp for the NTTL

data. Figure 23a shows the difference in time from the original data sets (because two

separate computers were used for data logging, there was no direct correlation between

data sets resulting in a 1-5 second difference). Figure 23b shows the two data sets after

synchronization.
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Figure 23: J1939 engine speed and NTTL engine speed shown (a) before time correction and (b) after lining up a
transition period to synchronize data sets

By synchronizing the engine speed time stamps, the fuel rate time stamp followed along

with the J1939 Engine Speed time stamp to give a direct time correlation to NTTL fuel

rate (Figure 24).
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Figure 24: J1939 fuel rate and NTTL fuel rate during a transient period of the test (Note the lag in NTTL data
due to fuel measuring system again indicating steady state data only be compared)

After the engine speed and fuel rate data were synchronized, the 27 sets of 60 s truncated
steady state data were exported to Microsoft (MS) Excel. Figure 25 illustrates the 27 sets
of 60 s fuel rate data as exported into MS Excel for the John Deere 8245R (NTTL Test

number 2098), which shows the fuel rates for the torque curve (2100 RPM to 1050 RPM)

along with the five additional OECD points.
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Figure 25: J1939 and NTTL volumetric fuel rate comparison in L hr over the torque curve and additional
OECD points of one tractor (8245R)
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Once the fuel rate and engine speed datasets for all six tractors were exported into MS
Excel, an error value was calculated for both the engine speed and fuel rate. To calculate
error between NTTL values and J1939 values, a percent error calculation (equation 6)
was used. This gave a true error between the two signals, whether positive or negative, at
every second for each of the 60 s steady state datasets for the 27 total datasets for each
tractor. The average of the percent error values was then calculated for each 60 s dataset
and were entered into a master MS Excel program separating values for statistical
analysis. This generated two values to run statistical analysis on, engine speed error and

fuel rate error.

Equation 6: Percent error calculation for both engine speed and fuel rate with NTTL being set as the theoretical
value and the J1939 value as the experimental value

J1939—-NTTL

% Error = T

* 100 (6)

Statistical Analysis

The calculated error for each machine was based on the data from the torque curve and
five additional OECD points, which gave a representation of field operating conditions
including varying fuel rate from high to low as well as variations of percent load and
percent engine speed. Because each machine has a slightly different fuel consumption
rate, these 27 rates were categorized into percentage ranges. To classify the fuel range
categories, the highest fuel consumption rate and lowest fuel consumption rate were
found for each tractor from the data sets acquired, then based on those high and low flow
rates, flow rates from the 27 data sets were entered into percentage ranges from high fuel
flow rate to low flow fuel rate (e.g. Tractor 1 had a high flow rate of 48.14 L hrt and a
low flow rate of 17.67 L hr! giving ranges from 17.67 L hr! to 48.14 L hr! in

increments of 6.10 L hr?). The percentage ranges based upon high and low flow of each
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tractor are 0 to 20% (treatment 5), 20 to 40% (treatment 4), 40 to 60% (treatment 3), 60
to 80% (treatment 2) and 80 to 100% (treatment 1). Table 7 provides the fuel rates (in L

hrt) for each of the treatments for each of the tractors.

Table 7: Machines and respective fuel rates and treatments for statistical analysis. Low fuel rate and high fuel
rate is shown for each machine as well as the fuel rates used for percentage calculation for treatment

Low High Treatment Treatment Treatment  Treatment Treatment

Flow Flow 5 4 3 2 1

Rate Rate 0-20% 21-40% 41-60% 61-80% 81-100%

Tractor (LhrY) (Lhr?) (L hr) (L hrd) (L hrd) (L hr'd) (L hrd)

1 17.67 48.14 17.67-23.76  23.76-29.86  29.86-35.95  35.95-42.05  42.05-48.14
2 18.88 52.32 18.88-25.57  25.57-32.26  32.26-38.94  38.94-45.63  45.63-52.32
3 20.64 57.09 20.64-27.93  27.93-35.22  35.22-4251  4251-49.80  49.80-57.09
4 21.85 62.11 21.85-29.90  29.90-37.95  37.95-46.01  46.01-54.06  54.06-62.11
5 24.33 66.95 24.33-32.85  32.85-41.38  41.38-49.90 49.90-58.42  58.42-66.95
6 26.06 71.99 26.06-35.24  35.24-44.43  44.43-53.62  53.62-62.80  62.80-71.99

A randomized complete block design was used, with the tractor serving as the block.
There were a total of six blocks, and the block was treated as a random effect. An
analysis of variance (ANOVA), implemented in Statistical Analysis Software (SAS)
v9.4 PROC GLIMMIX, was used to ascertain whether the responses of engine speed
mean percent error and fuel rate mean percent error differed among the treatments (fuel
rate percentage ranges). Although an overall average fuel rate error was calculated for
each tractor, the five treatment ranges were chosen to provide error analysis of different
fuel consumption rates rather than just an average fuel rate error.

Data used for the response variables were compiled based upon the fuel rate treatments

from table 7. SAS v9.4 code used for this study can be found in appendix C.

Results
To ensure that the data between the two sources were synchronized, the engine speed
measured by both logging systems (CAN bus and NTTL) were compared. Because the

speed was measured off of the same shaft simultaneously, the error should be very low if
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they were properly synchronized. Based on the SAS analysis of the engine speed error,
there was no significant differences between the two different measurement methods
(P>.05) and with that, the average error (Estimate) throughout the data collection points

was small (Table 8).

Table 8: Results of Engine Speed Error from the GLIMMIX procedure showing that there is no significant
difference between any of the treatments.

Engine Speed

Treztﬁtr;nent Treg);)n)went Averazg/oe)Error Standard Error ( AIpFr)l;ilg.OS)
1A 80-100 0.003 0.003 0.2227
2A 60-80 -0.002 0.004 0.6280
3A 40-60 0.000 0.004 0.9672
4A 20-40 -0.004 0.006 0.4952
5A 0-20 -0.004 0.006 0.5503

The resulting average error of the engine speed between both data acquisition systems
was small (<£0.005%) and provided proof in the methodology used to synchronize the
two datasets. This provided proof that comparison of the two fuel rates would represent a
valid comparison during steady state operation.

To confirm that transient outliers were eliminated, NTTL fuel rate was plotted versus
J1939 fuel rate of one of the test tractors to highlight the absence transient outliers
(Figure 26). Because transient outliers produced large errors (because of NTTL
measurement methods), only steady state portions of data were used to develop a

comparison of actual fuel error.
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Figure 26: NTTL fuel rate plotted against J1939 fuel rate to show absence of transient outliers

Figure 27 displays the actual fuel error calculated from one of the tractors used (John
Deere 8245R), which is comprised of the 22 sets of lug run data and the five additional
OECD points (60 s of data within each) entered into one graph. Time transitions were
eliminated to produce a chart depicting actual error from those 27 sets of 60 s data.
Relative time from 0 to 1320 s shows the torque curve datasets and time from 1329 to

1620 s shows the additional OECD data points.
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Figure 27: Actual fuel rate error (L hrt) from one of the test tractors
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Because the mean percent fuel error was desired, the results of these datasets (similar to
Figure 27) were used to calculate percent error. This produced six separate replications

as demonstrated from the John Deere 8245R in Figure 28.
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Figure 28: Percent fuel error from one of the test tractors as calculated based on equation 2

After calculating the mean percent error for engine speed error and fuel rate error,
average values for each of the tractors was calculated (Table 9) to outline the error
differences between the tractors. The values shown only represent an average error for
each of these responses over the 27 datasets. Average fuel errors indicated that while
tractors tested were similar in machine class, fuel consumption rates did not directly
correlate with errors between the two measurement systems, with some tractors’ J1939

fuel rate being higher than the NTTL and some being lower than the NTTL.

Table 9: Averaged error for fuel rate error, standard deviation of fuel rate error and engine speed error for
each tractor used within study

e s R
(%) (%) (%)

1 39.152 -0.301 0.333 0.003

2 42.739 0.160 0.370 0.001

3 47.020 0.648 0.414 0.001

4 50.677 0.200 0.488 -0.008

5 54.721 -0.276 0.351 0.000

6 58.433 -0.868 0.311 0.006
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Because this represented an average across the entire test ranges, a more detailed look at
the fuel error was desired. The SAS program was used to output a report on least squares
means (LSM) to determine if there was significance between the different treatments
(percent ranges from maximum to minimum fuel rates). Table 10 shows the LSM value
outputs as treatments from 0 to 100% in 20% ranges. The Estimate shows the average
percent error calculated from each treatment. For example, the 80 to 100% fuel rate
treatment had an average error of 0.218%, indicating that among the six tractors used, for
the highest fuel rates, the average error was less than 0.25%. Standard error (which is the
error associated with each Estimate) was also calculated to show the strength of the
calculated error. The probability associated with each of the treatments was provided to
determine if there was significant differences between the treatments. As Table 10 shows
for fuel rate mean percent error, treatments 80 to 100%, 60 to 80% and 0 to 20% were not
significantly different from each other and treatments 40 to 60% and O to 20% were not
significantly different from each other indicating that these treatments were similar to
each other in magnitude of fuel error. The treatment of 20 to 40% was however

significantly lower compared to all other fuel rate treatment ranges.

Table 10: Results of the Fuel Error from the GLIMMIX procedure, showing that treatment 1,2 and 5 are not
significantly different, 5 and 3 are not significantly different, but 3 is significantly different than 1,2 and 5, and
treatment 4 is significantly different than all treatments

Fuel Rate

Tre?;r)nent Treg;)n)went Averezgi)Error Standard Error ( Alpir;:lg.OS)
1A 80-100 0.218 0.221 0.3254
2A 60-80 0.116 0.266 0.6636
38 40-60 -0.441 0.273 0.1085
4¢ 20-40 -1.312 0.342 0.0002
5AB 0-20 -0.311 0.350 0.376

To illustrate fuel error from tractor by treatment, the fuel errors from each point were

plotted (Figures 29 and 30). Figure 29 shows fuel error points as recorded based on the
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tractor which produced them. Figure 30 shows the fuel error based on flow rate, which
provides a comparison to the NTTL fuel measurement system error shown previously in
Figure 18. The error shown in Figure 30 indicates higher error at lower flow rates;
however, the errors were much greater than those evaluated for the NTTL fuel collection

system (Figure 18).
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Figure 29: Fuel error from each treatment for the six tractors used in this study
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Figure 30: Fuel error by volumetric flow rate
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To further represent error derived from treatments, a graph was created to depict error by
treatment rather than tractor (Figure 31). This clearly demonstrates that treatment 5 (0 to

20%) had a much wider distribution of error than any of the other treatments.
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Figure 31: Fuel error from each tractor shown by treatment (Trt 1=80-100%. Trt 2=60-80%. Trt 3=40-60%, Trt
4=20-40%, and Trt 5= 0-20%)

The fuel error by treatment results shown in Figure 31 reinforced that treatment number
five (0 to 20% fuel rate) had a good deal of variation. To quantify the magnitude of this
variation, standard deviation of the fuel rate error for each treatment was calculated.
Table 11 shows the average fuel rate error and standard deviation per treatment to depict
the variation within the treatments. From table 11, it is clear that treatment five (0 to
20% fuel rate) had the highest variation with a standard deviation of over 2.75. The
datasets used for treatment five were primarily from the five additional OECD points

(varying throttle, varying loads).
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Table 11: Results of standard deviation calculation of fuel which shows that treatment five had a high variation
in fuel error for every tractor.

Fuel Rate Fuel Rate Error
Treatment Treatment Average Error Standard Deviation
(*) (%) (%) (%)
1 80-100 0.218 0.926
2 60-80 0.116 0.769
3 40-60 -0.390 0.922
4 20-40 -1.420 0.575
5 0-20 -0.311 2.728

Conclusions

Results of the engine speed error analysis proved that J1939 and NTTL data were
properly synchronized allowing for analysis of fuel rate comparison. The fuel error
analysis (Table 10), indicated that there was error from each of the tractors used, as well
as greater error from the lower three fuel rate treatments (0 to 60% of full flow). While
the analysis methods were consistent for the study tractors, some showed a positive error
between fuel rates where other tractors showed negative error within the same datasets.
This caused a reduction in the average error when the results of all six test tractors were
combined. For any tractor in this horsepower range, chosen at random, the results
represented an accurate error prediction. If an absolute error value were calculated, the
results would likely be quite different. Absolute error would indicate positive error
between fuel measurement systems, which would indicate that CAN bus fuel rates were
always estimated at higher levels that in reality, which was not the case based on this
study.

The data collected during testing were considered to give an accurate depiction of actual
field conditions due to the high loads as well as varying loads and throttle positions.
The results of the standard deviation calculations for each fuel treatment showed that

treatment five (0 to 20% fuel rate) had a great deal of variation (2.73%). Treatment five
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was primarily OECD additional points which consisted of only varying throttle positions
and varying load conditions. Tractors equipped with IVT transmissions or when the
principle of “throttle back and shift up a gear” are used, the parameters of this study may
be inaccurate as a replication of real field conditions. These both result in more partial
throttle partial load operations which could lead to a higher standard deviation in error as
seen in treatment 5 (0 to 20%). Although this study showed treatment five to have a low
mean percent error, because the variation was so high, if only partial throttle partial load
operations were used, actual fuel consumption might not be as accurate as depicted by the
CAN bus. Only one tractor equipped with an IVT was used for this study, but for the test
points used, varying transmission output had little to no effect in comparison with non-
IVT tractors for the steady state PTO tests.

Even though there was error produced in the comparison between the calculated J1939
fuel rate and physically measured NTTL fuel rate, whether looking at the statistical
analysis or averaged analysis, the error was quite minimal (always less than £5%). The
only time that a greater error was seen was in the pilot study during transient fuel rates.

If this test were to be repeated in the field with the same equipment (i.e., NTTL fuel
measurement system) a greater error would likely be noticed because of the constant
change in engine speed and/or load. However, because the error shown by this study was
relatively low during steady state conditions, depending upon the use of the data, J1939
fuel rate data could certainly be used for logistical and research purposes rather than

attempting to physically measure fuel rate consumption with flow meters.
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Chapter 4: Summary and Conclusions

Controller Area Network including higher layer protocols such as SAE J1939, ISO 11783
and NMEA 2000 has become a common source for a wide variety of information
regarding machine operation in mobile agricultural field equipment. Because this trend
will only continue to grow, knowing that the information being collected is accurate
becomes more and more important. As farm managers and researchers begin to rely on
this information rather than calculating based on former procedures or having some type
of physically measured value, the need for accuracy knowledge of these messages will

also only increase.

As field cropping machines continue to grow in complexity, the use of CAN bus data will
also likely become more heavily relied upon. Automation in field cropping systems and
equipment is a growing trend in agriculture (Darr, et al., 2004; Powell, 2005).
Considering recent advancements in agricultural telematics, data accuracy broadcast to

and from this equipment is rather important.

This study was able to produce significant results regarding not only the accuracy of
multiple data logging methods, but additionally the accuracy of one of the most desired
messages for calculating field efficiency, fuel rate. Because the tractors used for this
study varied in horsepower, and gave a general population for mid to high horsepower
machines, the results showing a low error from statistical analysis illustrates a confidence

in the fuel rate being produced via the SAE J1939 fuel rate message.

From data collected during this study, it was clear that logging from different sources did

not yield a great enough difference to choose one over the other. It also provided
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evidence that re-sampling higher frequency data sets produced a useable and more
manageable dataset. The greatest result from the assessment of different data collection
methods was actual file size. Because raw hexadecimal files were so large, logging for
long periods of time could become a hassle if not impossible. This points towards
logging data as an averaged set in a fashion as presented in this study. This would greatly

reduce overall file size while still providing accurate, desired information.

This study and the pilot study conducted showed that because of the fuel measurement
system used by NTTL, transient data couldn’t be used as a result of the lag in the NTTL
system. By looking at the J1939 fuel rate data, at transient periods the fuel rate changed
almost instantaneously. This leads us to the questions, if this is, in fact the actual fuel
consumption, or could it be based primarily on requested fuel rate. 1f a more accurate
depiction of actual fuel consumption could be determined, the lag in the NTTL system
might not be as far off as this study shows. Setting aside the question of transient
conditions, viewing steady state actual accuracy of the engine fuel rate as logged by the
CAN bus, it was evident that there was some amount of error (always less than £5%) but
generally closer to £1% during high load, steady state operations. This offers an
assurance that the fuel rate as portrayed by the CAN bus could be used for management

decisions or research objectives.

Future Work

At steady state conditions, little error (£x5%) was found between the calculated CAN bus
fuel rate and the measured NTTL fuel rate. Steady state however is rarely used in real
life operating conditions. When a tractor is working in the field, the terrain is rarely

perfectly flat creating, and the load is rarely constant. This shows that although this study
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validated the accuracy of the SAE J1939 fuel rate message in agricultural tractors,
additional studies could be performed to determine results of transient loads. When
looking at a graph of the J1939 fuel rate during transient states, the transient is almost a
perfect step function. It is highly unlikely that the actual fuel being consumed by the
tractor during transient periods creates a perfect step function. By creating and using a
system that more accurately measures transient fuel rates, further studies could be
performed to indicate true fuel usage during actual farming operations. This would also
tie into a better understanding of the partial load/partial throttle applications where in this

study a higher percent error was found.

By finding a more accurate transient load error approximation, a might be possible to find

a coefficient for calculating a more precise fuel use rate in actual farming operations.
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Appendices

Appendix A: Vector Database Tutorial

Adding Messages to a Vector 8.1 Database

1. On messages, right click and select “New.”

=58 Metworks

-5 1939NTTL

-8 ECUs

----- & Environment variables
-2 Metwork nodes

ElE New
...E
E A Paste
...E C o (01 8FEFLO0:)
...E E List

2 EECT [0xC FO0400%)
- ET1 (0x18FEEED0x)

2. This will prompt an area to create the parameters of the new message.

| <

® Receivers Layout | A Attributes | Comment
Diefirition &) Signals | 2 Transmitters

M arme: Mew_tessage 12

Type: 41333 PG (et ID)

ID: 0x0 [3 pLC: &8

Tranzmitter: |- Mo Transmiter -

Tu Method: riotz0SendT ype

Cycle Time: |0

o) Coma ) [ o

60

3. Enter the message name. For example, if the message is for the Electronic Engine

Controller 1, the acronym could be EECL.

4. Click on the button for editing the message ID.
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Message ‘New_Message_13 (0xOx)

| B Receivers Layaut |  Attributes | Comment

Diefinitian A1 Signals | 2 Tranemitters

PGN: [0 Source: 0

Priorty: (=0 - Destination: ([0

[ ok J[ camea ||

[ Ok, H Cancel ] Apply

5. Locate the Parameter Group Network information on the SAE J1939 document.

Within this document, use the PGN to enter into the database.

PGN 61444 Electronic Engine Controller 1

Engine related parameters

Transmission Repetition Rate:
Data Length:

Extended Data Page:

Data Page:

PDU Format:

PDU Specific:

Default Priority:

Parameter Group Number:

engine speed dependent

8

0

0

240

4 PGN Supporting Information:
3

61444 (0x00F004)

6. Enter in the PGN as found on the SAE J1939 document.

"
Message "EEC1 (0xC et e

PGN:  [bFOD4 Source:

Prionty: 3 - Destination:

=0

Al

| ok || cance ||

7. After creating the new message, signals can be added. To add a signal, locate the

signal desired to be added in the SAE J1939-71 document. For this example,
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Engine Speed is the desired signal. Under EEC1, Engine speed is defined as SPN
190. Note that by counting the length of the messages preceding SPN 190, the

start bit can be located. For SPN 190, the start bit is 24.

Start Position Length Parameter Name SPN
1.1 4 bits Engine Torque Mode 899
1.5 4 bits Actual Engine - Percent Torgue High Resolution 4154
2 1 byte Driver's Demand Engine - Percent Torque 512
3 1 byte Actual Engine - Percent Torque 513
4-5 2 bytes Engine Speed 190
6 1 byte Source Address of Controlling Device for Engine Control 1483
7.1 4 bits Engine Starter Mode 1675
8 1 byte Engine Demand — Percent Torque 2432

8. Now under the signals section of the Vector database editor, right click and select

new. This will create a new signal ready to be edited.

, |

Deefirition ‘ (] Messagesl ® Receivers | A Athibutes I Walue Descnptlonsl Eomment|

Mame: Mew_Signal_23

Length [Bit 8

Byte Order: Intel [ Unit:
Walue Type: Init. Value: 0O

Factar, 1 Offget 0
Mirirurn: 0 Mawirnurn: 0
Walue Table: | ¢nonex -

Automatic min-max calculation

9. In the new signal, specify the name (from the SPN name), and the additional

information again as stated in the SAE J1939 document.

SPN 190 Engine Speed

Actual engine speed which is calculated over a minimum crankshaft angle of 720 degrees divided by the number of
cylinders.

Data Length: 2 bytes

Resolution: 0.125 rpm/hit, 0 offset

Data Range: 0108,031.875 rpm Operational Range: same as data range

Type: Measured

Supporting Information:
PGN reference: 61444



10. After filling out the information, the new signal will be mostly done.

Signal 'EngineSpeed” u

Diefinitian | =] Messagasl B Receivers | A Attibutes | Walue Descriptions | Comment|

Mame:
Length [Bit]:
Byte Order:
Walue Type:
Factor:
Mirimnurn:

‘alue Table

EngineSpeed
16
Unit: Tprm
Init. Value: O
0125 Offset 0
1] Marimum:  9031.875
<none» -

Automnatic min-max calculation

11. To add the signal to the message that was previously created, click on the
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“Messages” tab at the top of the signal and choose “Add”. This will allow you to

select the message to which the newly created signal belongs.



64

12. After adding the signal to the message, a few additional details need to be

finished. Under the attributes tab, enter in the SPN number and the value type.

Signal 'EngineSpeed” l X J

| Drefirition | (x| Messagesl +r Heceivers| A attributes |Va\ue Descriptionsl Comment|

Altribube Walue
-1 CANoe CAPL-Generator
A GenSigEVN ame Erve@Modenam...
-1/ CAMoe Panel-Generator
j GenSigEvName Erwi@Modenam...
=13 Interaction Layer
A GenSiglLSupport Tes*
A GenSiglnactivelalue [id
j GenSigSendType MaSigSendType®
A GenSigStatyalus o
-1 Nocategory assigned
j SigType Range
A GPN 150
Drefinition:
Fead from DE... “ite to DB Feset

Apply

13. The last step to completing the signal is to specify the start bit. This can be done
by simply double clicking on the start bit number located in the main pane of the
vector DB editor and typing in the start bit.

Marne Message Multiplexi... Start.. Leng.. ByteOr.. ValueType
b EngineSp.. EECL 16 Intel Unsigned




65

Appendix B: NI DIAdem Tutorial

Appendix (i): Using NI Diadem (2012 SP1) to Convert CAN to Engineering Units
1. Open NI Diadem
2. In the “Navigator” tab, go to File->Bus Log Converter...

a. When the Bus Log Converter opens, choose the file type in the drop down
box. This allows you to choose file types like NI-XNET, NI-CAN, Vector
file formats, and Kvaser file types.

b. Next choose the Log file that is desired to be converted. (Note: only
logfiles of the chosen type will be shown when searching for the desired
logfile)

c. Under the Bus database configuration section, click on the Edit button to
allocate a database for the conversion. In the Edit window, click on the
Add Bus to Configuration button (it is a button that simply says CAN with
a small red animation). Once you choose the database required to convert
the CAN messages, you can close the Edit window.

d. There is the ability to additional filtering before converting, but for all
simplicity and to receive all messages recorded, there’s no need for
additional filtering here.

e. Before converting messages, you can choose a file name for the converted
logfile, and then choose how to load the converted file into Diadem.

f. Hit the Convert button and the Bus Log Conversion will begin.



( Bus Log Converter [Noname.tcc] |i|
Lagfile
File type: MI-XMET (TDIMS]) -
Lagfile: B
File size: 0 Byte

Bus database configuration

Mame: Moname l Edlit... ]
Further settings Settings
|:| Bus filter Replace signal text l Load... ]
Bus Mame |:| Create sequence channel
[ Save As.. ]
[ Time filter
Erom: 0fs ’ Reset ]
To: 1lls
Result
TOM file: ColUsers'Public Documents' Mational Instruments DIAdem 2012\Dacuments . CANCon B
Filz impaort: ¥ Delete data in the Data Partal and load TDM file

" Laad TDM file

(" Create TOM file only

[ Clase ] l Cancel ][ Canvert ] [ Help

Appendix (ii): Using Diadem to analyze CAN Data
1. Once the data is converted and imported into Diadem (this happens either after
you convert the data, or import data through the Navigation tab), you can begin to
view the data through the View tab.
a. Within the view tab, on the right hand side is the Data Portal, this is where

data sets can be selected to be put into the display section of the pane.
Diadem gives multiple options for customization for viewing data, graphs,
etc. but for this example a simple view with a graph, data portal and data

view pane will be used.
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In the Data viewing pane, for the data imported from the previous Bus Log
Conversion, the data is shown by separate ECU’s. Each ECU is given a
time stamp, and then the data from that ECU is shown next to that time
stamp. This is where it is easy to identify the frequency in which each
ECU logs data. For example, the Electronic Engine Control (EEC1) logs
Engine Speed and Actual Percent Engine Torque at 100Hz. Whereas Fuel
Rate is logged at 10Hz, and Engine Fuel and Coolant Temps are logged at
1Hz.

The viewing pane also gives information about each channel. For
example, the time for recording was approximately 34,000 seconds
(approx.. 9.5 hours), and because Engine Speed was logged at 100Hz, the
viewing pane shows that there are over 3,400,000 data points for Engine

Speed. Information like this is beneficial for future averaging needs.

Al Cha... | | | | | | | | I

Name Time Actual_Engine_P... | EngneSpeed Time FuelRate Time Fan_Speed Time EngCoclantTemp | EngFuelTempl I

rame : gl gensp = e g s 7 EnACoRRntTene.. SRR H

Length 3432781 3432781 3432781 343278 343278 34327 34327 34328 34328 34328

Unit s % rpm s Lr s rpm s degC degC

‘Channel Contents

1 0.0041376 18 2194.5 0.0152322 16.35 0.9965352 1205 0.2766123 72 26

2 00146559 18 2193.5 0,1163792 6.1 1,9965753 1204 1.2766039 72 2

3 0.0240401 18 2194.75 0.2163794 16.3 2.9969282 1206 2.2769604 72 2%

4 0.0344385 18 2184.75 0.3163837 16.3 35565038 1205.5 32770017 72 %

5 0.0437083 18 2183.5 0.4152362 16.15 4.9967511 1205.25 4,2766095 72 %

3 00546807 18 218525 0,5158485 16.25 5.9969514 1204.5 5.2770172 73 2

7 00635631 18 2194 0.616655 16,25 6,9965337 1204.5 6.2767494 73 2

£ 0.0746136 18 2184.75 0.7185135 6.1 7.9969572 12045 7.2767618 73 %

E] 0.0839528 18 2186 08165665 16.3 8.9964032 1203 8.2766831 73 %

10 0.0996582 18 2194 0.9158523 16.15 9.9965857 1204.25 9.2759069 73 2%

11 0,1040538 18 2195.75 1,0151926 16,25 10,9966983 1202.75 10,2753203 73 2

12 0.1147084 18 2185.35 1.1152904 16,35 i13s84i88 126135 11.2758082 73 %

3 0.1240252 18 2184 12163751 16,25 12.9968444 1202.5 12.2767773 74 %

14 0.1345109 18 2185.25 1.3157833 16.1 139967345 1201 13.2761643 74 2

15 01436457 18 2194.75 1,4151483 6.3 14,9968697 1201 14.2766143 74 %

i3 01548455 iA 5134 i L 16,55 15 adA74aa 13075 18,5 7RA158 74 g =
i
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Appendix (iii): Averaging Data/ Resampling to a lower frequency
1. Toresample high frequency data, Diadem uses a tool called Reducing

Classification to average data associated with a time signal. The Reducing

0] i

s |1

a3
ANALYSIS

REPORT

| o]
= v educing Classification

ScRIPT | 2

classification is located under the"AnaIysis tab, Statistics button, the Reducing
Classification.

2. Once the Reducing Classification opens, you can choose the time signal as the x-
channel, and the desired signal to be reduced as the y-channel. For example, if
the engine speed is set as Channel 1 in the Diadem View Pane, you would choose
[1] /Time as the x-channel, and [1] /Engine Speed as the y-channel.
There are then two tabs to be aware of within the Reducing Classification, the
Settings tab and the X-Channel tab. Choose Mean as the reduction mode, then go

to the X-Channel tab.
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3. Under the X-Channel tab, under the determination mode drop down, choose
Begin/Width, Range. This allow for the ability to enter where you want the
resampled data to begin, the width of each resampled point, and the range of data

in which you desire to resample. Again using the Engine Speed as the desired

channel to be resampled, the data length can be found in the Viewing Pane, for

Z-channel; [1]Time -

¥-channel Is: 3 [AVEngineSpesd D

Begin/Width/Range -
Mo, of classes: 3Bn

Begin [s]: 0

End [s]: ELEFN)

Widlth [s]: 1

Range[s]: Bas27

Llass limits channel: [l ime

D Store

[ QK ] { Cancel J l Lalculate I l Help I

Engine Speed, it has 3432781 data points. Knowing that the recorded frequency

was 100Hz, the length can be divided by the frequency to indicate what the
desired range is. 3432781/100=34327.81 seconds. Once you calculate, two new
channels will be created named ReducingClassificationX and
ReducingClassificationY. Ideally, in the Data Portal you can change the names to
New Time and Engine Speed 1Hz, or something similar.

4. By choosing the original signal and the reduced signal, it is clear to see that the

information is a carbon copy of the original data, simply reduced.
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Appendix (iv): Synchronizing Time

In the View tab, have two time channels with their respective data (e.g.
Engine Speed) set up to be viewed in the graph. Do this by right clicking on
the graph, then choose “Display” and enter in the two time channels and the
two channels you desire to synchronize.

In the View tab, open the calculator function.

Double click on one of the times for one of the channels (e.g. if you have two

sets of data with similar time stamps, simply chose one of the time columns).

. After double clicking one of the time channels, then chose “equals” and then

double click the same time channel as chosen previously.

. Add or subtract any number depending on how far you desire to move that

channel’s values.

. Click the “Calculate” button. This will keep the calculator function open, but

move the time channel in real time (as you press calculate, one of the times
will shift on the graph).
Do this as many times as needed, and by changing the magnitude and

direction of the value.
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Appendix C: SAS 9.4 Programming

data J1939 Fuel Error;
input tractor trt fuel error;
datalines;

Data Lines Not Shown

symboll color=black wvalue='dot';
symbol?2 color=blue value='dot' ;
symbol3 color=green value='dot' ;
symbol4 color=orange value='dot';
symbol5 color=purple value='dot';
run;

proc glimmix;

class tractor trt;

model fuel error=trt;

random tractor;

covtest /cl;

lsmeans trt/diff lines;

run;
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Appendix D: LabVIEW Programming

Appendix (i): 2012 NI LabVIEW API for Waveform Data Collection

£
.7 m EngineSpeed

FuelRate

Fan_Speed

Actual_Engine_Percent_Torque
EngFuelTempl
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=1 [0
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File Dialog d CIEEI\ or create ¥

selected path Y

Waveform Chart

Select Signal Ljst from database

Select Interfacef,..f
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Appendix (ii): 2012 NI LabVIEW API for Frame Data Collection
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