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Electronics have become a standard in agricultural equipment and the trend of “smarter” 

equipment is on the rise.  To have “smarter” equipment, a working knowledge of the 

accuracy of the data being transmitted throughout that equipment is needed.  The 

controller area network (CAN) bus is the current interface to machine operation data 

transmitted between electronic control units (ECUs). 

Because CAN bus has been around for nearly thirty years, numerous devices have been 

created for interfacing with the bus.  Choosing a device can be a challenge, especially 

without knowing if there are differences between the logging methods for true data 

representation.  By logging simultaneously with three different methods, data was 

analyzed to determine if excessive error existed between logged datasets. 

Additionally because many messages are calculated (e.g., not measured directly), 

determining the accuracy of those messages can be important for management decisions 

or research studies.  One calculated CAN bus message that holds a great deal of value is 

the engine fuel rate, and because it is calculated rather than measured, excessive error 

may exist in the CAN bus value.  A comparison between the calculated CAN bus fuel 

rate message and a physically measured fuel rate provided information on the message 



 

 

accuracy.  The Nebraska Tractor Test Laboratory (NTTL) has a certified fuel rate 

measuring system capable of ±0.5% accuracy (OECD, 2012; Wold, et al., 2015). 

Results showed that error between logging methods was quite low, however file size was 

an issue with some of the logging methods.  Waveform file logging required only 6% 

memory space compared to the frame logging methods.  Fuel rate as recorded from the 

CAN bus resulted in a ±5% error from physically measured fuel rates.  Error for higher 

fuel rates within the torque curve were closer to ±1%.  These results indicated that the 

fuel rate given by the CAN bus can indeed be used for management or research purposes. 
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Chapter One: Introduction 

Electronics in Agriculture 

The use of electronic equipment in agricultural field machinery can be traced back to the 

1960’s with the introduction of a seed population planter monitor by the DICKEY-John 

Corporation (Stone, Benneweis, & Van Bergeijk, 2008).  This was only the beginning of 

what would become an evolutionary step for agricultural field equipment.  As time went 

on, additional manufacturers added electronic capability to agricultural field equipment.  

From planter monitors to rate control systems, grain mass flow and moisture sensors, all 

the way to more user friendly, manufacturer crossable advanced interfaces of total 

machine operating parameters.  Because additional electronic applications were being 

integrated into agricultural field equipment, an available communication system was 

needed.  With a multi-master serial communication protocol (controller area network 

(CAN) bus 2.0) already available, the Society of Automotive Engineering (SAE) group 

began work on a higher layer protocol to use the CAN bus 2.0 layer.  This protocol (SAE 

J1939) was able to use a predefined message set to operate and diagnose machine 

operating parameters (Voss, 2008).  Because this protocol was focused towards heavy on- 

and off-road trucks, which share many commonalities with agricultural field tractors, the 

American Society of Agricultural Engineers (ASAE now ASABE) worked jointly with 

the SAE to create a protocol standard, ASAE IET 353/1 and SAE ORMTC/SC32, which 

integrated the International Standard Organization (ISO) working group 

ISO/TC23/SC19/WG1, standard with the SAE J1939 protocol into the agricultural and 

forestry industry (Stone & Zachos, 1993). An extension of the SAE J1939 operating 
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parameters were later added for advanced implement communication, which are built 

upon the ISO 11783 platform (Stone et al., 2008).   

CAN Bus Use in Agriculture 

Because of the joint efforts of SAE and ASAE, J1939 applications were introduced into 

the agricultural sector.  SAE J1939 allows for control and diagnostics of numerous 

predefined machine operating parameters including engine control, transmission control, 

brake control, etc., as well as manufacturer proprietary messages (Stone & Zachos, 

1993).  Although SAE J1939 created messages that allowed control and interface of 

many vehicle operating parameters, additional tractor and implement control parameters 

were still needed in the agricultural sector thus creating the German Institute for 

Standards (DIN) 9684 protocol (Schueller, 1988).  DIN 9684 was later integrated into the 

ISO 11783 standard (Stone, McKee, Formwalt, & Benneweis, 1999).  ISO 11783 uses the 

same protocol layer as SAE J1939, but is focused toward the agriculture and forestry 

sector allowing for specifically related information to be available from both the tractor 

bus as well as an implement bus (Stone et al., 1999).  Because of these advancements, 

and manufacturer adoption of both SAE J1939 and ISO 11783 networks, CAN bus 

interface has become a viable source for monitoring machine operating parameters. 

CAN Bus Data Logging in Agriculture 

Before the availability of easily accessible machine operation information, different 

methods were used to calculate these operating parameters (Colvin, McConnell, & Catus, 

1989; Grisso, Perumpral, Vaughan, Roberson, & Pitman, 2014).  These methods were 

often tedious and required a great amount of time and effort.  However because so many 

messages are now readily available via the machine diagnostic connector, this has 
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become a common source for manufacturers as well as research institutes to gain 

knowledge of machine operation and efficiency (Darr, 2012; Fountas et al., 2015; Pitla, 

Lin, Shearer, & Luck, 2014; Udompetaikul, Upadhyaya, & Vannucci, 2011).   With the 

advent of CAN based protocols such as SAE J1939 and ISO 11783, there has also been 

an increase in the amount of data being transferred from the machine for availability to 

machine operators for management decisions.  This has grown from having limited 

parameters to having a great deal of information that terms such as “big data” and “data 

mining” have entered the agricultural arena (Ruß & Brenning, 2010; Russo, 2013; van 

Rijmenam, 2013).  Because there is so much data being transferred, some questions can 

be drawn from the principles behind message use for owner/operator decision 

management and research goals.  One of those questions being, of the vast array of 

messages being broadcast (some of which are a calculated value rather than a sensor-

based measurement) are they accurate enough to use in these managerial decision and 

research outcomes?  Rising petroleum costs have caused fuel use to become increasingly 

important in management decisions for growers (Trostle, 2010), and because SAE J1939 

Engine Fuel Rate is one of the calculated messages being broadcast by the CAN bus, 

determining the message accuracy is needed.  By using different tools for CAN bus data 

logging, different methods of converting the raw data from the CAN bus to engineering 

units and then comparing SAE J1939 Engine Fuel Rate to a physically measured value of 

fuel rate consumption, confidence can be gained regarding its accuracy.  

CAN Bus 

In order to gain access to the answers desired, a fundamental knowledge of both CAN 

bus and SAE J1939 is needed.  
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CAN bus is a serial communications protocol network with the ability to transfer data in 

speeds up to 1Mbit/s (Bosch, 1991).  CAN 2.0B allows for the broadcast of prioritized 

messages between nodes or Electronic Control Units (ECUs) in a multi-master system 

(Bosch, 1991).  This multi-master system allows for any ECU to broadcast a message as 

long as the bus is free.  CAN bus uses a physical layer comprised of a shielded twisted 

pair, two wire system; CAN high (CAN_H) and CAN low (CAN_L) (Bell, 2002).  CAN 

is a 5 V DC system where both CAN_H and CAN_L sit idle at 2.5 volts, and when a 

message is broadcast, CAN_H raises to 5 volts and CAN_L drops to 0 volts (Bell, 2002), 

producing a 5 volt differential to create a square wave of a certain size and timing 

location to indicate a message and the pertinent information within that message.  An 

oscilloscope reading from a presentation during the 2013 Agricultural Equipment 

Technology Conference (Darr, 2013) shows a higher layer CAN message (Figure 1).   

 

Figure 1: Oscilloscope Image courtesy of Iowa State University shows the 0x00F004 PGN Message with the data 

following after the identifier 

SAE J1939 

The Standards of Automotive Engineering began work on a higher layer CAN protocol 

draft in the early 1990’s.  This higher layer protocol is based on the seven layers of the 

Open Systems Interconnection (OSI) model (Figure 2) (Kvaser, 2014).  SAE J1939 
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utilizes the CAN 2.0B framework to broadcast a 29 bit message identifier (Bell, 2002).  

SAE J1939 uses a pre-defined message format to allow for multiple manufactures to have 

similar systems (Voss, 2008).  The SAE J1939 message is formed from Parameter Group 

Number (PGN).   SAE J1939 was proposed for use in agricultural equipment in 1993 

before the first draft of the document came out (Stone & Zachos, 1993).   

 

Figure 2: The OSI 7-Layer Reference Model showing higher layer protocol which is implemented in the SAE 

J1939 standard 

SAE J1939 messages are broadcast in hexadecimal format with certain bit timing and 

byte sizing to indicate the priority of the message, the message identifier, as well as the 

data within that message.  An example of one line of hexadecimal data from PGN F004 

(Electronic Engine Controller 1) (Source: SAE J1939 Document) as recorded from a 

Vector CAN Logging hardware/software package (CANcaseXL, Vector, Novi, MI/ 

CANalyzer, Vector, Novi, MI) in American Standard Code for Information Interchange 

(ASCII) shows as: 

0.012522 1  CF00400x     Rx    d 8 F0 FF 93 8C 1A FF FF FF 

Figure 1 illustrated the same message (PGN F004) as it is seen by an oscilloscope being 

broadcast across the bus.  The message identifier (F004) is at the beginning of the 

message to indicate to the other ECU’s on the bus where the message is coming from and 

the data contained within that message (e.g., F004 contains Actual Percent Engine 

Torque and Engine Speed messages).  A Suspect Parameter Number (SPN) is assigned to 
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specific parameters within each parameter group (Voss, 2008) (e.g., the Engine Speed is 

defined by SPN 190 within PGN F004). 

Engine Fuel Rate 

Because energy consumption, specifically Engine Fuel Rate (PGN FEF2; SPN 183), 

plays a vital role in management decisions, an understanding of the fuel system as 

implemented by modern mobile agriculture field equipment is needed.  Many tractors 

manufactured today utilize compression ignition diesel engines that use a common rail 

fuel delivery system.  The common rail systems uses a high pressure pump to pressurize 

the common rail to pressures up to 1800 bar (26,107 psi) which is then available for any 

of the injection nozzles to deliver to its cylinder (Mudafale, Lutade, & Gosavi, 2013).  

The fuel rate message is determined by manufacturer specified “fuel mapping” or 

different timing and pulsation of the solenoid valve injector which is broadcast via the 

vehicle Electronic Control Unit (ECU) (Goering, Stone, Smith, & Turnquist, 2006).  The 

complexity of the fuel calculation or vehicle fuel map is limited to the ECU operational 

parameters (Goering et al., 2006) which is the reason that discrepancies may be found 

between calculated fuel rate and physically measured fuel rate.  In the agricultural sector, 

little work has been published to verify the accuracy of the Engine Fuel Rate message.  

Objectives 

CAN data within the agricultural industry is very detailed and is becoming increasingly 

important for use in grower management decisions and research outcomes.  The 

objectives of this study were to 1) recognize some of the different methods available for 

CAN data logging and provide a comparison among those methods to observe efficiency 
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of logging, file sizes, and conversion methods and 2) determine if there is a difference 

between the SAE J1939 engine fuel rate and a physically measured fuel rate.   

The SAE J1939 Engine Fuel Rate was compared to a sensor-based fuel rate measurement 

from the Nebraska Tractor Test Laboratory (NTTL), a facility with the ability to measure 

to fuel consumption with an accuracy of ±0.5%, and deemed accurate for assessing 

tractor performance by the Organization for Economic Co-operation and Development 

(OECD).  The results of this study have a high impact on the agricultural sector by 

providing estimates of accuracy in the CAN bus fuel rate which could be used for field 

operational efficiency and management decisions. 
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Chapter Two: Comparing Various Hardware/Software 

Solutions and Conversion Methods for Controller Area 

Network (CAN) Bus data collection 

Abstract 

There are various hardware/software solutions available for collecting controller area 

network (CAN) bus data.  The data collected could be skewed based upon different 

external factors (e.g., hardware/software timing, processor timing, etc.).  Because of this, 

a study was performed to determine if there was a difference in the data collected from 

these various data acquisition solutions, and to quantify those differences. 

Two types of data were observed for this study.  The first data type was CAN bus frame 

data, where a data point is collected for each line of hex data sent from the ECU.  One 

problem with frame data is the resulting large file sizes, therefore a second data type 

collected was an averaged signal or waveform data.  Because of its smaller file size, 

waveform data is more desirable for long periods of collection.  Percent difference was 

calculated from two sets of frame data, and a set of frame data compared to waveform 

data. 

The resulting difference was less than .0025 RPM for engine speed comparisons, zero for 

fuel rate and fuel temperature comparisons, and the mean percent difference was less than 

.08% between the methods of data collection.  The error production could have resulted 

from jitter (or noise) in hardware and processor times, but was not found to grow directly 

with time.  This shows that even though there is error, it is a small enough of an error that 

for any practical application, data logged by different devices is basically the same. 
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Introduction 

Controller Area Network (CAN) bus use and data logging have become increasingly 

common in many industries.  In the agricultural sector, the CAN bus has become a 

common source of operations data.  A great deal of detailed information is transmitted 

through the CAN bus regarding field machinery functions (Stone et al., 2008).  Many 

typical row crop tractors today have 12 to 20 electronic control units (ECU) that are 

sharing sensed information as well as control signals regarding machine operation.  

Because there is so much information being broadcast on these machines, many have 

found it a useful resource to gain greater perspective on machine operating parameters 

(Darr, 2012; Pitla et al., 2014; Udompetaikul et al., 2011).  This can include aftermarket 

third party outfitters, parent company research and development, and scientific research 

conducted through universities.  However, when any of these groups begin to look into 

different data acquisition solutions for CAN bus data collection and analysis, the options 

are almost overwhelming.  SAE J1939 CAN bus messages are broadcast in hexadecimal 

format (frame data) and can be collected using numerous devices including, Vector, 

Kvaser, and National Instruments (NI). 

Because there are so many ways to log and convert the same CAN bus information, 

different logging and analysis methods could affect the outcome of a study focused on 

logging J1939 data.  File size and ease of conversion can both be observed to determine 

what the best option is for choosing the hardware or software package.   

This leads to the question of what differences exist in some of the available CAN 

collection hardware and software packages, and along with that, does the data collected 

by different packages portray the same information?  Data collected simultaneously from 
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the same machine using three different logging methods will provide information on 

whether or not there are actually differences between CAN bus logging solutions.  Frame 

data were collected using both Vector and NI packages as well as an averaged frame data 

represented as waveform data.  All three files were collected simultaneously by different 

user interfaces from the same source.  After synchronization, a simple comparison was 

performed to determine if there was any difference among the datasets collected.  

Different sets of data were observed to determine if the difference increased with time, or 

was related to hardware/software limitations or discrepancies.  Two of the file types were 

CAN frame data, which although had a higher resolution, resulted in extremely large files 

(over 1 gigabyte for 9.5 hours).  Because of the large files, a third method was used to log 

the same data.  Data from the third method, waveform, was compared to a resampled 

frame data set to determine if the averaged waveform data could be deemed precise 

enough to use for further studies. 

Objectives 

This study used three different hardware/software packages to collect similar 

information.  The first objective was to compare accumulated file size and available 

options for post processing.  The second objective was to determine if a difference 

existed between the data from these different methods of CAN bus logging. 

Methods and Materials 

The first portion of the study describes how to take CAN messages and convert each line 

into a useable form, such as an engineering unit with a time stamp.  This was 

accomplished using different methods, including a simple conversion within Microsoft 
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Excel which has the major limitation of file size, and NI Diadem, which is useful for 

large files. 

Because there are numerous options available for collecting CAN data, this study sought 

to identify differences between manufacturers of the CAN collection hardware/software, 

and determine any differences in the type of log files created from these different 

packages.  Vector has the ability to log different file types, including the ASCII 

hexadecimal message shown previously.  NI LabVIEW TDMS files were additional 

sources used for this study.  Data was recorded using three different methods, Vector 

frame data (logged as an ASCII file), NI averaged hexadecimal data collected from a 

waveform chart, and NI frame data (both logged as NI TDMS files).   

Test Setup 

A 270 engine horsepower row crop tractor (John Deere 8270R) was used as the test 

subject for this study.  The test was conducted over a period of approximately 9.5 hours 

on a power take-off (PTO) dynamometer (Figure 3) at the Nebraska Tractor Test 

Laboratory (NTTL) facility.  The parameters of this study were defined by the 

dynamometer portion (OECD Code 2 section 4.1.1(OECD, 2012)) of NTTL official test 

number 2099, which consisted of varying engine speeds and loads throughout the 9.5 

hours.  During the testing time, data were collected using a Vector CAN logging 

hardware/software package (CANcaseXL/CANalyzer 8.0, Vector Informatik, Novi, MI) 

and NI hardware/ software packages (NI cDAQ 9482/NI LabVIEW, National 

Instruments, Austin, TX).   Machine interface was achieved through the controller area 

network (CAN) bus to obtain the three separate representations of data (Vector Frame, NI 

Frame and NI Waveform). 
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Figure 3: 700 Horsepower Dry Gap Eddy Current Dynamometer used by the Nebraska Tractor Test 

Laboratory 

Controller Area Network Interface 

For this study, the interface with the tractor’s CAN bus was achieved through the 

Deutsch HD10-9-1939 J1939 diagnostic connector (Figure 4).  The J1939 diagnostic 

connector is a universal solution for Heavy Trucks and Off-Road equipment including 

agricultural equipment.   

 

Figure 4: Deutsch HD10-9-1939 J1939 Diagnostic Connector: Green= CAN Low, Yellow= CAN High, Red= 

Voltage source, Black= Vehicle Ground 
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The Deutsch HD10-9-1939 vehicle diagnostic connection pinout allows for not only 

vehicle CAN bus interface, but also implement bus interface (Figure 5).  The ability to 

interface into the implement bus allows for collection of various signals including ISO 

11783 messages. 

 

Figure 5: SAE J1939 Vehicle Diagnostic Connector Terminal Pinout (as found in the SAE J1939 Standards 

document) 

Frame Data 

Frame data reads in all messages from the network in the respective frequencies as sent 

by each ECU (National Instruments, 2014). 

Frame data were collected from various ECU’s during the collection period.  These ECUs 

had different logging frequencies.  For example, the Electronic Engine Controller 1 

(EEC1; PGN F004) logs signals including Engine Speed (SPN 190) and Actual Percent 

Engine Torque (SPN 513) at a rate of 100 Hz.  The Fuel Economy (Liquid) (LFE1; PGN 

FEF2) logs signals including the engine fuel rate (SPN 183) and Engine Throttle Position 

(SPN 52) at a rate of 10 Hz.  The Engine Temperature 1 (ET1; PGN FEEE) logs signals 

including Engine Coolant Temperature (SPN 110) and Engine Fuel Temperature 1 (SPN 

174) at a rate of 1 Hz.  Because of these different logging frequencies, frame log files can 
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vary in size by a great deal.  If data from multiple PGNs were desired, a frame data log 

file with more PGNs having a 100 Hz log rate will be larger than a frame data log file 

with more PGN’s having a 1 Hz log rate, an issue that will be compared later in this 

study. 

Waveform Data 

Waveform data resamples frame data into a waveform with a fixed sample rate (National 

Instruments, 2014). 

Because frame data log files can become large in size depending on the number of PGNs 

desired to be recorded, an additional method was used to collect data from an averaged 

source.  NI LabVIEW was used to create an application program interface (API) that 

logged frame data as a waveform, and then averaged that waveform data and recorded it 

at a rate of 2Hz.  This method was used because of the desire to gain the same data but in 

a smaller log file size. 

SAE J1939 Database  

For this study, a vector database was created using a J1939 template and the SAE J1939-

71 document(SAE, 2009).  By using this database, messages and signals could be filtered 

for individual collection (rather than collecting every message broadcast on the CAN 

bus). These individual message frames were collected, stored, and interpreted later using 

the same database.  A description of how messages were added to the Vector J1939 

formatted database can be found in Appendix A. 

Data Collection Methods 

Data were collected with two different hardware options, a NI CompactDAQ 9862 

(Figure 6a) and a Vector CANcaseXL (Figure 6b).  Three different software methods 
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were used, Vector CANalyzer and two separate APIs written in NI LabVIEW software.  

One set of LabVIEW code was used to collect raw hex (frame) data and another averaged 

that data into the waveform data.  The waveform collection method was performed to 

observe an additional option for collecting the same data, but with a much smaller file 

size.  Data were collected on the same machine at the same time using all three collection 

methods.   

                              

                                                   

(a)                                                                                         (b)        

Figure 6: (a) NI CompactDAQ 9862 Single Port High Speed CAN Interface  and (b) Vector CANcaseXL Dual 

Port High Speed CAN Interface  

By using the filter function in Vector CANalyzer, 10 signals were logged (Table 1).  Two 

signals (Engine Speed [PGN F004,SPN 190] and Actual Percent Engine Torque [PGN 

F004, SPN 512]) were logged at 100Hz, one signal (Fuel Rate[PGN FEF2, SPN 183]) 

was logged at 10Hz, one signal (Engine Oil Pressure [PGN FEEF, SPN 100]) was logged 

at 2Hz, and six signals (Fan Speed [PGN FEBD, SPN 1639], Engine Coolant 

Temperature [PGN FEEE, SPN 110], Engine Fuel Temperature 1 [PGN FEEE, SPN 
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174], Engine Oil Temperature 1 [PGN FEEE, SPN 175], Ambient Air Temperature [PGN 

FEF5, SPN 171], and Engine Air Inlet Temperature [PGN FEF5, SPN 172]) were logged 

at 1Hz. 

Table 1: PGN and SPN information of the 10 files logged 

PGN F004 FEF2 FEEF FEBD FEEE FEF5 

SPN 190 183 100 1639 110 171 

 512    174  

     175  

Frequency (Hz) 100 10 2 1 1 1 

All signal PGN and SPN information found in SAE J1939-71 standard (SAE, 2009). The 

same signals were logged using the NI LabVIEW Frame data API at identical 

frequencies.  The NI LabVIEW Waveform API logged only 5 of those signals including 

Engine Speed (100Hz averaged), Actual Percent Engine Torque (100Hz averaged), Fuel 

Rate (10Hz averaged), Fan Speed (1Hz) and Fuel Temp (1Hz). 

After the data were collected, Microsoft Excel and NI Diadem Bus Log Converter were 

used to convert the collected frame data into engineering units.  Diadem was used to 

synchronize the data from the three sources.  Collected data were then imported into 

Microsoft (MS) Excel in 30 or 60 second time increments (depending on frequency of 

collected data), from incremental times throughout the 9.5 hour overall test run of the 

machine used for this study.  Data for these comparisons were both steady state as well as 

transient. 

Microsoft Excel Hex to Engineering Unit Conversion 

Vector J1939 data files in the ASCII format were converted using Microsoft Excel Hex to 

Decimal functions according to the SAE 1939 standard.  The ASCII collected dataset was 

opened with MS Excel using the tab delimited function.  After the file was opened, a 

filter was applied to the PGN column (e.g. if only the engine speed was desired to be 
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converted, a filter could be used to only select Electronic Engine Controller 1 PGN: F004 

in the PGN column (Table 2)).   

Table 2: Filtered Vector ASCII message showing only the PGN F004 

Time Stamp PGN Bytes - - - D4 D5 - - - 

0.01096 CF00400x 8 FE FF 94 2C 29 FF FF FF 

0.021415 CF00400x 8 FE FF 93 26 29 FF FF FF 

0.031039 CF00400x 8 FE FF 93 22 29 FF FF FF 

0.041613 CF00400x 8 FE FF 94 20 29 FF FF FF 

0.051034 CF00400x 8 FE FF 94 26 29 FF FF FF 

After filtering out the desired PGN, data values were seen following the PGN and 

message data length (e.g. 8 Bytes is the length of the F004 message).  By using the SAE 

J1939 Vehicle Application Layer document (SAE, 2009) the Engine Speed SPN 190 is 

found to start at the fourth byte and have a length of two bytes, and offset of zero and a 

resolution of .125 rpm/bit.  By using the Hex2Dec function in MS Excel, the data bytes 

for SPN 190 were converted to a decimal value.  After converting to decimal format, a 

total decimal value was calculated using Equation 1 as the original values were in binary 

format.  After calculating the total decimal, the resolution for the specified engine speed 

SPN (.125 rpm/bit) was used to convert the total decimal to the engineering unit 

(Equation 2).  Example results are shown in Table 3. 

Equation 1: Total Decimal Calculation for Hex to Engineering Unit Conversion 

2560*D4+2561*D5=Total Decimal                                      (1) 

Equation 2: Using SAE J1939 SPN Resolution for Final Conversion to Engineering Units 

Total Decimal*Resolution=Engine Speed                 (2) 
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Table 3: PGN F004 Engine Speed values calculated by using equations 1 and 2 with resolution (.125 rpm/bit) 

found in SAE J1939 document 

Time 

Stamp PGN Bytes - - - D4 D5 - - - 

D4 

Dec 

D5 

Dec 

Total 

Dec 

Engine 

Speed 

(RPM) 

0.01096 CF00400x 8 FE FF 94 2C 29 FF FF FF 44 41 10540 1317.5 

0.021415 CF00400x 8 FE FF 93 26 29 FF FF FF 38 41 10534 1316.75 

0.031039 CF00400x 8 FE FF 93 22 29 FF FF FF 34 41 10530 1316.25 

0.041613 CF00400x 8 FE FF 94 20 29 FF FF FF 32 41 10528 1316 

0.051034 CF00400x 8 FE FF 94 26 29 FF FF FF 38 41 10534 1316.75 

This procedure is applicable to any message with a database such as the SAE J1939 

Vehicle Application Layer document (SAE, 2009).  As shown, after calculation an 

available time stamp and a message value exist in a useable engineering unit.  Note the 

timestamp for this message, which represents a 100Hz frequency data set. The same 

would occur for other messages depending on ECU logging rate (e.g. Fuel Rate is logged 

at 10Hz).  

National Instruments Diadem Hex to Engineering Units Conversion 

NI Diadem was a tool used for viewing, sorting and analyzing large data sets.  For this 

study, Diadem Bus Log Converter function was used because of its ability to easily 

convert CAN hex data into engineering units.  Use of this tool was accomplished by 

choosing the correct file type within the Bus Log Converter (e.g., NI-XNET, Vector 

ASCII, Vector BLF, etc.) then selecting a database to use for conversion.  For this study a 

database similar to the standard Vector J1939 database was used, but with fewer 

messages.  Within the Vector database created, each message’s source type was changed 

from Null Address to 0x0 to work within NI software/hardware applications.  Without 

changing the source address to 0x0 in the database, NI would not recognize the database 

message and logging was not possible.  After using the database in the Bus Log 

Converter a log file was created and then imported into Diadem for viewing and analysis 



19 

 

(Appendix B(i)).  This resulted in an individual time stamp for each ECU, along with 

each line of hex data produced from that ECU and converted into engineering units.  

Diadem created an individual time stamp for each ECU because they logged at different 

rates as explained in the previous Frame Data section. 

Frame Data Synchronization    

Frame data from NI and Vector were able to be correlated directly.  After converting the 

NI and Vector frame data into engineering units, the two data sets had to be synchronized 

because they were started at slightly different times from the two separate user interfaces.  

Figures 7 and 8 show the fuel rate from both sets of frame data before and after 

synchronization, respectively.  The data were synchronized by adjusting the time stamp 

of one set of data within NI DIAdem.

 

Figure 7: Fuel Rate (L hr-1) frame data converted to engineering units from both Vector and NI before time 

synchronization 

  

Figure 8: Fuel Rate (L hr-1) frame data from Vector and NI after time synchronization 
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The same procedure was used to compare other signals as well.  For this study three data 

sets were used for comparison, Engine Speed (100Hz), Fuel rate (10Hz), and Fuel 

Temperature (1Hz).  This gave an accurate representation of a variety of CAN Frame 

data sets to verify if there was a significant difference between these frame data sets.   

Frame Data Re-Sample/Average 

In order to synchronize an average 1Hz waveform data set with the frame data, frame 

data were resampled from 100Hz/10Hz to 1Hz, depending on the ECU (Figure 9) and 

then aligned with the waveform data in a similar method to the frame to frame data 

comparison (Appendix B(iii)).   The resample procedure in NI DIAdem averaged the 

values to either side of the desired time stamp to create a new sample, or an averaged 

sample. 

 

Figure 9: J1939Engine Speed Frame data (RPM) averaged from 100Hz to 1Hz 

Analysis 

To determine error between the three data types, a dynamometer test was conducted over 

a period of 9.5 hours.  Frame data and waveform data were synchronized as previously 

detailed.  The 9.5 hour test length allowed for enough time to show that if excessive 

differences were detected, the possibility of an underlying frequency or pattern might 

also be found.  For the 100Hz data set (Frame Engine Speed), 35 sets of 30 s data were 
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exported.  Out of the 9.5 hour test, the first of these 30 second data sets was exported at 

the beginning of the test (where the two frame data sets were synchronized) and another 

set thereafter every 15 minutes, providing the 35 sets of 30 second data.  For the 10Hz 

data (Fuel Rate), five data sets were exported starting at the frame data synchronization 

and then every two hours afterwards from the 9.5 hour test data set.  A 1Hz data (Engine 

Fuel Temp) also had five datasets exported at an increment of 2 hours from the 9.5 hour 

test data set similar to the Fuel Rate export.  The lower sample rate for the 10Hz and 1Hz 

data sets was due to the fact that the difference in values were not as significant as the 

higher frequency data as the results will also indicate.   

Waveform data were originally collected via the LabVIEW API at a 2Hz rate due to the 

program’s limitations.  Because the API averaged frame data in real time, attempting to 

average multiple signals in less than 2Hz resulted in program failure.  Frame data were 

resampled to a rate of 1Hz for an additional study, so the 2Hz waveform signals were 

also resampled to 1Hz for easy comparison with the 1Hz Frame data.  To compare 

waveform to frame data, 19 sets of 60 s engine speed data were exported from the 9.5 

hour test data set at increments of 30 minutes.  Like the frame data comparison, this gave 

an accurate depiction of the actual difference between the frame data logged and 

waveform data logged.   

For each of the exported data sets, percent differences were calculated using MS Excel 

(Equations 3 and 4).  These calculated percent differences gave an accurate indication of 

the true differences between the logging sources.   
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Equation 3: Percent difference calculation for frame data and waveform data comparisons  

% 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|(𝑉𝑒𝑐𝑡𝑜𝑟 (𝑜𝑟 𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚)𝑑𝑎𝑡𝑎−𝑁𝐼 𝐹𝑟𝑎𝑚𝑒 𝑑𝑎𝑡𝑎)|

(
𝑉𝑒𝑐𝑡𝑜𝑟 (𝑜𝑟 𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚)𝑑𝑎𝑡𝑎+𝑁𝐼 𝐹𝑟𝑎𝑚𝑒 𝑑𝑎𝑡𝑎

2
)

∗ 100                              (3) 

Equation 4: Difference calculation for frame and waveform data comparison  

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑜𝑟 𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚)𝑑𝑎𝑡𝑎 − 𝑁𝐼 𝐹𝑟𝑎𝑚𝑒 𝑑𝑎𝑡𝑎                               (4) 

Results 

File Sizes 

For this study, data were logged from the John Deere 8270R over a 34,328 s (approx. 9.5 

hour) period of time.  As stated in the methods, the two frame data sets logged identical 

signals, however the waveform data set only logged five of those signals.  Table 4 

summarizes the file sizes as logged during the 9.5 hour test from each logging method.  

The file types are also shown in Table 4, however it is noteworthy to mention that even 

though TDMS files could be opened with MS Excel, the NI Frame file could not be 

opened in Excel because of its size.  Based on the difference in file sizes (Table 4), there 

were advantages to using the Vector Frame collection method. This method generated 

smaller data files of actual hex data (compared to the NI Frame) whereas using the NI 

Waveform collection method created much smaller overall file sizes.   

Table 4: Log file sizes as recorded from their sources 

Source Log File Type Size (kB) Time (s) 

NI Waveform TDMS 26,702 34349.50 

NI Frame TDMS 1,208,869 34327.81 

Vector Frame ASC II 443,501 34322.19 

However, because more frame signals were logged than waveform signals, a breakdown 

of the files into signals and samples per signal was performed to show file size by 

samples.  The log files were broken down into their respective signals along with the 

frequency in which each signal was logged.  Only the NI Frame and NI Waveform set 
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were shown because the NI Frame and Vector Frame log file samples were similar in 

magnitude.  Table 5 shows these two log files broken down into the elements of signals 

along with signal frequency to portray the composition of each file.  From Table 5, it was 

clear that the Torque and Engine Speed signal are the majority of the log file size for the 

NI Frame data set.  By using an API that has the ability to average the frame data, the file 

size for those signals in particular was greatly reduced. 

Table 5: Total samples as logged from NI Frame and Waveform logging sources with a breakdown of each 

signal that was logged along with the number of samples for each signal 

Signals 

NI Frame 

Frequency (Hz) Number of  Samples 

Waveform 

Frequency (Hz) 

Number of 

Samples 

Torque 100 3,432,781 2 68,699 

Engine Speed 100 3,432,781 2 68,699 

Fuel Rate 10 343,278 2 68,699 

Oil Pressure 2 68,655   

Fan Speed 1 34,328 2 68,699 

Coolant Temp 1 34,328   

Fuel Temp 1 34,328 2 68,699 

Oil Temp 1 34,328   

Ambient Air Temp 1 34,328   

Engine Air Intake 

Temp 1 34,328   

Total Samples   7,483,463  343,495 

 

Hex Data to Engineering Units 

Two methods of J1939 hexadecimal frame data conversion to engineering units were 

attempted during this study.  Although MS Excel had the built in feature of HEX2DEC, it 

required more time to perform conversions.  To perform conversions the use of a 

database with SPN location, length, offset and resolution was required. Since only one 

signal could be converted at a time, Excel was somewhat cumbersome for converting 

hexadecimal frame data to engineering units.  Another major limitation was the file size 
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that could be loaded into MS Excel.  Excel only accepts 1,048,576 rows of data 

(Microsoft, 2014).   

The NI DIAdem Bus Log Converter performed this operation more quickly, and only 

required the database used for logging in order to convert.  The additional benefits of 

DIAdem were the abilities to further manipulate and analyze the data.   

Difference Between Logging Methods 

Four different data sets were analyzed to find the percent difference between the three 

methods of J1939 data logging as outlined in the methods section.  An average of the 

percent difference was calculated for the each of the comparisons to show an overall 

result of the differences found throughout the 9.5 hour test (Table 6).   

Table 6: Averaged differences and averaged percent differences as found for each of the comparisons 

 
100Hz 

Frame Data 

10Hz Frame 

Data 

1Hz Frame 

Data 

Waveform vs 

Frame Data 

Difference -0.00003 0 0 -0.00041 

Mean % Difference 0.03959 0 0 0.00643 

NI Frame vs Vector Frame data sets were compared first.  Because these two files logged 

the same messages in the same format (hexadecimal), three of the different signal 

frequencies were compared, Engine Speed (100Hz), Fuel Rate (10Hz), and Fuel 

Temperature (1Hz).  Of those three signal frequencies, only the Engine Speed data 

(Figures 10 and 11) produced a measurable difference and percent difference over the test 

time.  After synchronization of both the fuel rate and fuel temperature frame datasets, 

percent differences were zero at every point of collection over the 9.5 hour test.   
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Figure 10: NI Frame vs Vector Frame mean difference of engine speed over the 9.5 hour test 

 

Figure 11: NI Frame vs Vector Frame mean percent difference of engine speed over the 9.5 hour test 

The second comparison sought to determine the error between a frame data set and the NI 

Waveform dataset.  For this analysis, the NI Frame Engine Speed data were compared to 

the NI Waveform Engine Speed data over the 9.5 hour test.  Figures 12 and 13 show the 

resulting difference and mean percent difference, respectively for the 19 sets of 60 s data 

exported and analyzed.  
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Figure 12: Frame vs Waveform mean difference of engine speed over the 9.5 hour test 

 

Figure 13: Frame vs Waveform mean percent difference of engine speed over the 9.5 hour test 
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Conclusions 

With regard to conversion of J1939 hex messages to engineering units, while numerous 

options exist, each method should be considered depending on the end use of the data.  

Although MS Excel was a bit cumbersome, and took longer than NI DIAdem to perform 

conversions, MS Excel was significantly less expensive and available for use on a variety 

of operating platforms (e.g., Windows, Mac, or MS Office for Android applications).  

This was the one advantage that highly outweighed the quick performance of NI 

DIAdem. 

In comparing the NI and Vector frame data, the only cause for the difference indicated 

between the two data sets was attributed to either hardware jitter (or delay variations 

(Nolte, Hansson, & Norstrom, 2002)), processor timing, or other sources unseen by the 

user.   Differences between datasets were eliminated by analyzing data immediately after 

synchronization.  Rather than synchronizing data once and then comparing throughout a 

long data set, if synchronization was done before a point where two small sets of data 

were desired for comparison, the resulting difference was zero.  This was only discovered 

through trials of various synchronization points and although cumbersome, this would 

eliminate any difference.  But again, with the percent difference as low as it was 

throughout the 9.5 hour data set (<.07%) it is unlikely that the error would exceed any 

criteria for scientific data analysis. 

Because research data may be gathered for long periods on equipment running in the field 

(as opposed to a test stand), and the equipment could run for weeks on end, 

corresponding log file sizes become an important factor in logging methodology.  If a 

compact logging device that allows for only small file sizes were available, the ability to 
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log for multiple days or weeks could greatly outweigh the higher resolutions of actual 

frame data.  Even though half the files where logged with the waveform collection, the 

waveform data file size was 6% of the smaller of the two frame data sets.  Although there 

was some difference shown between the various types of J1939 data collection, for most 

practical purposes in the agriculture industry, this percent difference is so minimal it 

would not adversely impact the outcomes of studies using any of these logging sources. 

This would include scientific study, or manufacturers desiring further study on CAN bus 

applications.  
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Chapter Three: Validation of machine CAN Bus J1939 

fuel rate accuracy using Nebraska Tractor Test 

Laboratory fuel rate data 

Abstract 

A pilot study was performed to determine if there were differences between data 

collected using the machine controller area network (CAN) bus Society of Automotive 

Engineers (SAE) J1939 standard fuel rate and data collected from a physical 

measurement system utilized by the Nebraska Tractor Test Laboratory (NTTL).  The 

pilot study concluded that there was a difference between the data (up to a 6.22% error), 

which indicated a need to perform further studies on this comparison. 

The SAE J1939 standard fuel rate message (PGN: FEF2 SPN: 183) utilized by the 

machine CAN bus has a theoretical value, however little work has been done to verify the 

accuracy of this value.  Because fuel flow rate values reported are rarely measured 

directly on field equipment using a flow meter, the value is likely estimated based on 

other operating parameters, (e.g., engine speed, number of cylinders, injector timing and 

pulsation, etc.).  The goal of this study was to compare fuel rate values collected from the 

CAN bus to the physically measured fuel rate value from tractor performance tests 

conducted at the Nebraska Tractor Test Laboratory (NTTL).  The fuel rate values were 

collected simultaneously and then synchronized to confirm accuracy of results.  The 

values for comparison where comprised of certain performance test points as described in 

the Organization for Economic Co-operation and Development (OECD) Code 2. The 

specific test points consisted of the tractor’s engine torque curve, within section 4.1.1, 
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along with multiple points of varying engine speed and engine power, section 4.1.3.1, 

(OECD, 2012).  The NTTL has a certified fuel rate measuring system with an accuracy of 

±0.5% (OECD, 2012; Wold et al., 2015). 

Fuel rate, as recorded from the CAN bus, resulted in a ±5% error of actual physically 

measured fuel rates.  Error for higher fuel rates within the torque curve were closer to 

±1%.  This produced confidence in the ability to use machine data for in field efficiency 

and/or spatial fuel usage for additional analysis, whether used for research or grower cost 

analysis with an accurate knowledge of actual fuel consumed during operation.   

Introduction 

The use of electronics in agricultural field operations began in the 1960’s and has 

progressed to agricultural field machines that utilize electronic control units (ECUs) for 

full control of engines and almost every other parameter of the machine (Stone et al., 

2008).  Today, the most common source of data and data transmission on agricultural 

field machinery is the controller area network (CAN) Bus.  The CAN bus protocol was 

officially introduced by the Robert Bosch GmbH in 1986 in conjunction with the car 

manufacturer Mercedes Benz (Voss, 2005).  Since then, CAN applications have been 

used throughout numerous industries including light duty passenger automotive, heavy 

duty on- and off-road automotive, marine, factory and agricultural (Voss, 2005).  A 

higher layer protocol used to manage communication over the bus network and derived 

from the seven layer Open Systems Interconnection (OSI) model (Kvaser, 2014) based 

on CAN 2.0B (Voss, 2008) was implemented by the Standards of Automotive 

Engineering (SAE) as early as 1994.  This higher layer was the SAE J1939 protocol 

which uses predefined parameters in the form of a public database to give manufacturers 
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a guide for ECU programming (Voss, 2008).  Application of the CAN protocol standard 

SAE J1939 was proposed for use in agricultural field machinery in the early 1990’s 

(Stone & Zachos, 1993).   

The use of the SAE J1939 public database allows the scientific community to quickly 

access important machine operating parameters; including machine fuel consumption rate 

(Darr, 2012; Pitla et al., 2014; Udompetaikul et al., 2011).  Because the SAE J1939 data 

is publicly available, and researchers are using the data to answer questions regarding the 

efficiency of machines, understanding the accuracy of these messages is important.  The 

SAE J1939 engine fuel rate message is one that is especially important.  Because the SAE 

J1939 fuel rate value is estimated based on different ECU inputs (e.g., number of 

cylinders, rpm, size and timing of each PWM injection valve, etc.) rather than physically 

measured, a calculated comparison between J1939 fuel rate messages to a physically 

measured fuel rate was performed.  Physically measured fuel rate data came from the 

Nebraska Tractor Test Laboratory (NTTL), which is an Organization for Economic Co-

operation and Development (OECD) approved test station and has the ability to measure 

fuel consumption to an accuracy of ±0.5% (Wold et al., 2015).  The NTTL utilizes 

electronic data acquisition to provide physical measurements of fuel consumption on 

agricultural tractors (Grisso et al., 2012; Ingle, 2011; Kim, Bashford, & Sampson, 2005).  

By knowing the accuracy of the calculated CAN fuel rate message, information from that 

message can be used for more confident research and management decisions. 

Objectives 

The goal of this study was to evaluate the accuracy of fuel flow CAN bus messages for 

agricultural machinery as this has become one of many readily available data sources for 
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researchers and industry professionals. There are two main objectives to this study, 1) to 

provide an analysis of the accuracy of the CAN based J1939 fuel rate messages under 

steady state conditions, and 2) determine if any variation in errors exists across different 

fuel flow rate ranges for the tractors assessed. 

Methods and Materials 

Test Setup 

Six mid to high horsepower (245-370 engine horsepower) row crop tractors were used for 

this study.  The tractors used were NTTL official tests 2098 through 2103 (8245R, 

8270R, 8295R, 8320R, 8370R IVT, and 8345RT).  The data collection from both CAN 

bus and NTTL was done during the Power Take-Off (PTO) portion of the official NTTL 

tests.  The PTO portion of the NTTL tests use a 700 maximum horsepower dry gap Eddy 

Current Dynamometer (Figure 14) for load variation.   During the PTO testing, multiple 

engine speed and load variations were selected to identify tractor operating outputs.  For 

this study,  the engine torque curve (22 RPM ranges from 2100RPM to 1050RPM at full 

load) and five extra points for fuel consumption characteristics (100% engine speed-80% 

load, 90% engine speed-80% load, 90% engine speed-40% load, 60% engine speed-60% 

load, and 60% engine speed-40% load) were used.  This created 27 sets of 60 s data for 

analysis. 
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Figure 14: 700 HP dry gap Eddy Current Dynamometer used by the NTTL for official testing 

CAN Bus Interface 

To interface with the vehicle CAN bus, different physical connections are available based 

upon the type of vehicle being connected to.  For this study, a Deutsch HD10-9-1939 

J1939 Diagnostic Connector (Figure 15) was used as the physical connection to the 

tractor CAN bus.  CAN_H (Pin C) is indicated by the yellow wire, CAN_L (Pin D) is 

indicated by the green wire, vehicle voltage source is indicated by the red wire (Pin B), 

and vehicle ground is indicated by the black wire (Pin A).  The J1939 Diagnostic 

Connector is the standard connection to the CAN bus for agricultural equipment.   
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Figure 15: Deutsch HD10-9-1939 J1939 Diagnostic Connector with pinout schematic: Vehicle CAN and 

Implement CAN (Green= CAN Low, Yellow= CAN High) Red= Voltage source, Black= Vehicle Ground 

Signals Logged 

Engine Fuel Rate (PGN FEF2, SPN 183), a J1939 message calculated based upon 

“Command-Fuel-Quantity and verified by the fuel-rail-pressure and fly-wheel feedback” 

(Walter, 2015) was the primary focus of this study.  The calculated fuel rate was 

compared to the physically measured mass flow rate as recorded by NTTL in National 

Instruments (NI) technical data management streaming (TDMS) format.   

A second message, Engine Speed (PGN F004, SPN 190), was also logged to give an 

accurate assessment of signal synchronization.  Because the engine speed as recorded 

from both J1939 and NTTL are physically measured by the rotational speed of the same 



35 

 

shaft, it was determined that this was an ideal source for synchronizing the two data sets.  

Based on the shaft rotation speed transitions, as engine speed decreases or increases, both 

sensors are measuring the same shaft in real-time, therefore transient engine speeds 

should match.  This synchronization was done by taking both data sets, and correcting the 

time in NI DIAdem on one of the signals to synchronize it with the other.  By correcting 

the J1939 message time, all messages followed the same time stamp of the NTTL 

messages.   

Data Acquisition 

CAN bus J1939 data was recorded with a NI Compact Data Acquisition (cDAQ) module 

(9482 single port high speed module, National Instruments, Austin, TX).  A database 

based on the Vector database (Vector j1939.dbc, Vector Informatik, Novi, MI) was 

created to allow the NI API to interpret and log the CAN bus messages. The NI API 

acquired data from the cDAQ 9482 module and utilized the CAN Input Stream to TDMS 

Logfile to log the signals specified from the database.  The SAE J1939 signals logged 

through this program included Engine Speed, Actual Percent Engine Torque, Fuel Rate, 

Fan Speed, Fuel Inlet Temperature, Coolant Temperature, Oil Temperature, Ambient Air 

Temperature, Engine Intake Air Temperature and Oil Pressure.  Although ten signals 

were recorded, only two of these signals were used for comparison with NTTL signals, 

Engine Speed and Fuel Rate.  The TDMS file format was then able to be used with NI 

DIAdem software.   

The NTTL used various analog and digital sensors (Figure 16) along with various NI 

cDAQ modules where signals were processed with a LabVIEW program created by 

NTTL staff.  The NI LabVIEW program logged signals at a 1000 Hz frequency, then 
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averaged each signal over a one second time period to give a 1 Hz value which was then 

recorded as raw data.  The engine speed was recorded by a Banner D12 Fiber Optic 

Digital Pulse Sensor connected to a NI cDAQ 9435 module.   

 

Figure 16: NTTL Analog and Digital signal collection point for Dynamometer testing 

The fuel rate was collected using a Micro Motion mass flow sensor (Micro Motion model 

CMFS015M324J2BMEZZZ, Emerson Process Management, Boulder, CO), which 

measured mass flow using the Coriolis method, along with a PUCK800 transmitter 

connected to a NI cDAQ 9203 module.  According to the manufacturers specifications 

the Micro Motion sensor has a maximum flow rate of 5.4 kg min-1 (324 kg hr-1/714.298 

lb. hr-1).  Figure 17 shows the error based on flow percentage of the Micro Motion flow 

meter according to the manufacturers specifications provided with the flow meter 

(Appendix E).  Fuel rates for this study ranged between 15.42 kg hr-1 and 62.14 kg hr-1 

(4.8-19.2% of Micro Motion maximum flow rate).   
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Figure 17: Micro Motion mass flow sensor error based on flow percentage (with 100% being 324 kg hr-1) 

  To confirm that the NTTL fuel measurement setup was accurate with regard to the 

Micro Motion factory calibrations, results from a previous study provided an assessment 

of error produced by the NTTL fuel measurement system (Figure 18).  The results of this 

study showed that the NTTL fuel measurement system provided an accuracy of ±0.5% 

for all flow rates except four points at the lowest tested flow rate (Wold et al., 2015).  

Figure 18 indicates that most samples had an error within ±0.25% over the majority of 

the fuel rate ranges. 

 

Figure 18: Results of a NTTL fuel calibration with prediction intervals (Wold et al., 2015) 
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The official OECD tests at the NTTL used red dyed farm grade #2 diesel fuel.  Each 

batch of diesel fuel delivered has its specific gravity measured and then corrected to 15⁰C 

(59⁰F).  The temperature correction allowed for a density measurement to correspond 

with OECD code 2.7.1 (OECD, 2012) which was used for mass flow rate to volumetric 

flow rate conversion.  The corrected density used for the batch of fuel during this study 

was 7.036 lb gal-1.  This density was then used in equation 5 to convert fuel recorded by 

the Micro Motion sensor from lb hr-1 to L hr-1. 

Equation 5: Calculation used for NTTL mass flow rate to volumetric flow rate conversion 

𝐹𝑢𝑒𝑙 𝑅𝑎𝑡𝑒 (
𝐿

ℎ𝑟
) = 𝐹𝑢𝑒𝑙 𝑅𝑎𝑡𝑒 (

𝑙𝑏

ℎ𝑟
) ∗

𝑔𝑎𝑙

7.036 𝑙𝑏
∗

3.785 𝐿

𝑔𝑎𝑙
                       (5)  

  Figures 19 and 20 outline the NTTL fuel measurement system.  In the NTTL fuel 

system, fuel passed from a holding tank to a filter, then through the Micro Motion mass 

flow sensor.  After travelling through the mass flow sensor, the fuel flowed into a 

Murphy LM305 lubrication level maintainer (a liquid float).  From the outlet of the 

LM305 fuel float, the fuel entered a fuel heater and then entered into the fuel inlet of the 

machine.  The fuel from the return line of the machine (the fuel not used by the tractor’s 

injection system) was passed through a cooler and then flowed back into the LM305 fuel 

float.  Once the machine reached steady state operation, the fuel rate measured 

represented the fuel from the holding tank required to keep the LM305 fuel float at a 

level position. 
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Figure 19: Fuel measurement system used by NTTL 

 

Figure 20: NTTL fuel measurement diagram to show how Micro Motion sensor and Murphey fuel float work 

together to accurately measure tractor fuel consumption 

Signal Comparison 

Because J1939 data were logged by NI LabVIEW in a TDMS format, NI DIAdem was 

used to import the frame hex data and convert it into useable engineering units in 

preparation for comparison to NTTL data.  NI DIAdem has a Bus Log Converter function 

which was used to perform the frame hex to engineering unit conversion.  To use the Bus 

Log Converter, the TDMS file logged by the NI X-Net API was selected, along with the 



40 

 

Vector J1939 database created for use with the LabVIEW program as described 

previously.  The Bus Log Converter function used the parameters (including data length, 

resolution, data range, and offset) within the Vector database to convert the frame data to 

engineering units with a time stamp.  This provided the signals logged from the CAN bus 

in engineering units, but gave them in their original frame transmission frequencies 

(Engine Speed at 100Hz, Fuel Rate at 10Hz).  To compare J1939 signals to NTTL 

signals, both had to be in similar format and frequency.  Because the NTTL data were 

recorded at a frequency of 1 Hz, the J1939 frame data needed to be converted to 1 Hz to 

be correctly compared.  NI DIAdem was used to resample these signals to a 1 Hz dataset.  

Within DIAdem, the Reducing Classification function was used to resample both the 

J1939 Engine Speed and Fuel Rate.  The Reducing Classification function, based on the 

width of sample (in this case one second) averaged the original data within that width to 

create a new resampled data set at the desired width.  For example, the engine speed was 

originally 100 Hz and contained 1,000,000 data points, and if a 1 Hz resampled dataset 

were desired, the original number of data points was divided by the frequency 

[1,000,000/100=10,000] to get a new dataset at the desired frequency (Figure 21). 

 

Figure 21: DIAdem Reducing Classification function result showing 100Hz J1939 engine speed frame data 

resampled to 1Hz for comparison to NTTL 1Hz engine speed data 
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Timing synchronization was accomplished by using the Engine Speed from both datasets 

because the Engine Speed was logged by both hardware/software suites from the same 

rotating shaft in real time.  The reason that a secondary signal was used (rather than just 

synchronizing based on fuel rate) was due to the NTTL fuel measurement system method 

of operation.  Because a float was used as the point of reference for fuel demand, there 

was a lag in transient fuel rates.  Results from a previous pilot study (Marx & Luck, 

2013) showed that comparison between CAN bus and NTTL fuel rates during transient 

periods resulted in very high error (up to 6.22%).  A regression from a direct comparison 

of CAN bus fuel rate vs NTTL fuel rate should have an ideal slope of one-to-one.  It is 

clear from Figure 22 that during the pilot study this was not the case.  

 

Figure 22: Pilot study results showing that transient fuel rates had outliers resulting in very high overall error 

Because of the high error produced from transient fuel rates, synchronizing the two data 

sets and then truncating and comparing only steady state data was performed to eliminate 
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stamp for the J1939 messages was shifted to align with the time stamp for the NTTL 

data.  Figure 23a shows the difference in time from the original data sets (because two 

separate computers were used for data logging, there was no direct correlation between 

data sets resulting in a 1-5 second difference).  Figure 23b shows the two data sets after 

synchronization. 

    

(a)                                                                                            (b) 

Figure 23: J1939 engine speed and NTTL engine speed shown (a) before time correction and (b) after lining up a 

transition period to synchronize data sets 

By synchronizing the engine speed time stamps, the fuel rate time stamp followed along 

with the J1939 Engine Speed time stamp to give a direct time correlation to NTTL fuel 

rate (Figure 24). 
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Figure 24: J1939 fuel rate and NTTL fuel rate during a transient period of the test (Note the lag in NTTL data 

due to fuel measuring system again indicating steady state data only be compared) 

After the engine speed and fuel rate data were synchronized, the 27 sets of 60 s truncated 

steady state data were exported to Microsoft (MS) Excel.  Figure 25 illustrates the 27 sets 

of 60 s fuel rate data as exported into MS Excel for the John Deere 8245R (NTTL Test 

number 2098), which shows the fuel rates for the torque curve (2100 RPM to 1050 RPM) 

along with the five additional OECD points. 

 

Figure 25: J1939 and NTTL volumetric fuel rate comparison in L hr-1 over the torque curve and additional 

OECD points of one tractor (8245R) 
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Once the fuel rate and engine speed datasets for all six tractors were exported into MS 

Excel, an error value was calculated for both the engine speed and fuel rate.  To calculate 

error between NTTL values and J1939 values, a percent error calculation (equation 6) 

was used.  This gave a true error between the two signals, whether positive or negative, at 

every second for each of the 60 s steady state datasets for the 27 total datasets for each 

tractor.  The average of the percent error values was then calculated for each 60 s dataset 

and were entered into a master MS Excel program separating values for statistical 

analysis.  This generated two values to run statistical analysis on, engine speed error and 

fuel rate error.   

Equation 6:  Percent error calculation for both engine speed and fuel rate with NTTL being set as the theoretical 

value and the J1939 value as the experimental value 

% 𝐸𝑟𝑟𝑜𝑟 =
𝐽1939−𝑁𝑇𝑇𝐿

𝑁𝑇𝑇𝐿
∗ 100                                                        (6) 

Statistical Analysis 

The calculated error for each machine was based on the data from the torque curve and 

five additional OECD points, which gave a representation of field operating conditions 

including varying fuel rate from high to low as well as variations of percent load and 

percent engine speed.  Because each machine has a slightly different fuel consumption 

rate, these 27 rates were categorized into percentage ranges.  To classify the fuel range 

categories, the highest fuel consumption rate and lowest fuel consumption rate were 

found for each tractor from the data sets acquired, then based on those high and low flow 

rates, flow rates from the 27 data sets were entered into percentage ranges from high fuel 

flow rate to low flow fuel rate (e.g. Tractor 1 had a high flow rate of 48.14 L hr-1 and a 

low flow rate of 17.67 L hr-1 giving ranges from 17.67 L hr-1  to 48.14 L hr-1  in 

increments of 6.10 L hr-1).  The percentage ranges based upon high and low flow of each 
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tractor are 0 to 20% (treatment 5), 20 to 40% (treatment 4), 40 to 60% (treatment 3), 60 

to 80% (treatment 2) and 80 to 100% (treatment 1).  Table 7 provides the fuel rates (in L 

hr-1) for each of the treatments for each of the tractors. 

Table 7: Machines and respective fuel rates and treatments for statistical analysis.  Low fuel rate and high fuel 

rate is shown for each machine as well as the fuel rates used for percentage calculation for treatment 

Tractor 

Low 

Flow 

Rate 

( L hr-1) 

High 

Flow 

Rate 

(L hr-1) 

Treatment 

5 

0-20% 

(L hr-1) 

Treatment 

4 

21-40% 

(L hr-1) 

Treatment 

3 

41-60% 

(L hr-1) 

Treatment 

2 

61-80% 

(L hr-1) 

Treatment 

1 

81-100% 

(L hr-1) 

1 17.67 48.14 17.67-23.76 23.76-29.86 29.86-35.95 35.95-42.05 42.05-48.14 

2 18.88 52.32 18.88-25.57 25.57-32.26 32.26-38.94 38.94-45.63 45.63-52.32 

3 20.64 57.09 20.64-27.93 27.93-35.22 35.22-42.51 42.51-49.80 49.80-57.09 

4 21.85 62.11 21.85-29.90 29.90-37.95 37.95-46.01 46.01-54.06 54.06-62.11 

5 24.33 66.95 24.33-32.85 32.85-41.38 41.38-49.90 49.90-58.42 58.42-66.95 

6 26.06 71.99 26.06-35.24 35.24-44.43 44.43-53.62 53.62-62.80 62.80-71.99 

A randomized complete block design was used, with the tractor serving as the block. 

There were a total of six blocks, and the block was treated as a random effect. An 

analysis of variance (ANOVA), implemented in Statistical Analysis Software  (SAS) 

v9.4 PROC GLIMMIX, was used to ascertain whether the responses of engine speed 

mean percent error and fuel rate mean percent error differed among the treatments (fuel 

rate percentage ranges). Although an overall average fuel rate error was calculated for 

each tractor, the five treatment ranges were chosen to provide error analysis of different 

fuel consumption rates rather than just an average fuel rate error.   

Data used for the response variables were compiled based upon the fuel rate treatments 

from table 7.  SAS v9.4 code used for this study can be found in appendix C.   

Results 

To ensure that the data between the two sources were synchronized, the engine speed 

measured by both logging systems (CAN bus and NTTL) were compared.  Because the 

speed was measured off of the same shaft simultaneously, the error should be very low if 



46 

 

they were properly synchronized.  Based on the SAS analysis of the engine speed error, 

there was no significant differences between the two different measurement methods 

(P>.05) and with that, the average error (Estimate) throughout the data collection points 

was small (Table 8).   

Table 8: Results of Engine Speed Error from the GLIMMIX procedure showing that there is no significant 

difference between any of the treatments. 

Treatment  

(#) 

Treatment 

(%) 

Engine Speed 

Average Error 

(%) 

Standard Error 
Pr>|t|  

(Alpha=0.05) 

1A 80-100 0.003 0.003 0.2227 

2A 60-80 -0.002 0.004 0.6280 

3A 40-60 0.000 0.004 0.9672 

4A 20-40 -0.004 0.006 0.4952 

5A 0-20 -0.004 0.006 0.5503 

The resulting average error of the engine speed between both data acquisition systems 

was small (<±0.005%) and provided proof in the methodology used to synchronize the 

two datasets.  This provided proof that comparison of the two fuel rates would represent a 

valid comparison during steady state operation.   

To confirm that transient outliers were eliminated, NTTL fuel rate was plotted versus 

J1939 fuel rate of one of the test tractors to highlight the absence transient outliers 

(Figure 26).  Because transient outliers produced large errors (because of NTTL 

measurement methods), only steady state portions of data were used to develop a 

comparison of actual fuel error.   
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Figure 26: NTTL fuel rate plotted against J1939 fuel rate to show absence of transient outliers 

Figure 27 displays the actual fuel error calculated from one of the tractors used (John 

Deere 8245R), which is comprised of the 22 sets of lug run data and the five additional 

OECD points (60 s of data within each) entered into one graph.  Time transitions were 

eliminated to produce a chart depicting actual error from those 27 sets of 60 s data. 

Relative time from 0 to 1320 s shows the torque curve datasets and time from 1329 to 

1620 s shows the additional OECD data points. 

 

Figure 27: Actual fuel rate error (L hr-1) from one of the test tractors 
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Because the mean percent fuel error was desired, the results of these datasets (similar to 

Figure 27) were used to calculate percent error.  This produced six separate replications 

as demonstrated from the John Deere 8245R in Figure 28. 

 

Figure 28: Percent fuel error from one of the test tractors as calculated based on equation 2 

After calculating the mean percent error for engine speed error and fuel rate error, 

average values for each of the tractors was calculated (Table 9) to outline the error 

differences between the tractors.  The values shown only represent an average error for 

each of these responses over the 27 datasets.  Average fuel errors indicated that while 

tractors tested were similar in machine class, fuel consumption rates did not directly 

correlate with errors between the two measurement systems, with some tractors’ J1939 

fuel rate being higher than the NTTL and some being lower than the NTTL.    

Table 9: Averaged error for fuel rate error, standard deviation of fuel rate error and engine speed error for 

each tractor used within study 

Tractor 
Average Fuel Rate 

(L hr-1) 

Average Fuel 

Error  

(%) 

Average Fuel Error 

Standard Deviation 

(%) 

Average Engine Speed 

Error  

(%) 

1 39.152 -0.301 0.333 0.003 

2 42.739 0.160 0.370 0.001 

3 47.020 0.648 0.414 0.001 

4 50.677 0.200 0.488 -0.008 

5 54.721 -0.276 0.351 0.000 

6 58.433 -0.868 0.311 0.006 

-12

-10

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200 1400 1600 1800

F
u

e
l
 
E

r
r
o

r
 
(
%

)

Relative Time (s)

Percent Error



49 

 

Because this represented an average across the entire test ranges, a more detailed look at 

the fuel error was desired.  The SAS program was used to output a report on least squares 

means (LSM) to determine if there was significance between the different treatments 

(percent ranges from maximum to minimum fuel rates).  Table 10 shows the LSM value 

outputs as treatments from 0 to 100% in 20% ranges.  The Estimate shows the average 

percent error calculated from each treatment.  For example, the 80 to 100% fuel rate 

treatment had an average error of 0.218%, indicating that among the six tractors used, for 

the highest fuel rates, the average error was less than 0.25%.  Standard error (which is the 

error associated with each Estimate) was also calculated to show the strength of the 

calculated error.  The probability associated with each of the treatments was provided to 

determine if there was significant differences between the treatments.  As Table 10 shows 

for fuel rate mean percent error, treatments 80 to 100%, 60 to 80% and 0 to 20% were not 

significantly different from each other and treatments 40 to 60% and 0 to 20% were not 

significantly different from each other indicating that these treatments were similar to 

each other in magnitude of fuel error.  The treatment of 20 to 40% was however 

significantly lower compared to all other fuel rate treatment ranges.  

Table 10: Results of the Fuel Error from the GLIMMIX procedure, showing that treatment 1,2 and 5 are not 

significantly different, 5 and 3 are not significantly different, but 3 is significantly different than 1,2 and 5, and 

treatment 4 is significantly different than all treatments 

Treatment  

(#) 

Treatment  

(%) 

Fuel Rate 

Average Error 

(%) 

Standard Error 
Pr>|t|  

(Alpha=0.05) 

1A 80-100 0.218 0.221 0.3254 

2A 60-80 0.116 0.266 0.6636 

3B 40-60 -0.441 0.273 0.1085 

4C 20-40 -1.312 0.342 0.0002 

5AB 0-20 -0.311 0.350 0.376 

To illustrate fuel error from tractor by treatment, the fuel errors from each point were 

plotted (Figures 29 and 30).  Figure 29 shows fuel error points as recorded based on the 
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tractor which produced them.  Figure 30 shows the fuel error based on flow rate, which 

provides a comparison to the NTTL fuel measurement system error shown previously in 

Figure 18.  The error shown in Figure 30 indicates higher error at lower flow rates; 

however, the errors were much greater than those evaluated for the NTTL fuel collection 

system (Figure 18). 

 

Figure 29: Fuel error from each treatment for the six tractors used in this study 

 

Figure 30: Fuel error by volumetric flow rate 
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To further represent error derived from treatments, a graph was created to depict error by 

treatment rather than tractor (Figure 31).  This clearly demonstrates that treatment 5 (0 to 

20%) had a much wider distribution of error than any of the other treatments.  

 

Figure 31: Fuel error from each tractor shown by treatment (Trt 1=80-100%. Trt 2=60-80%. Trt 3=40-60%, Trt 

4=20-40%, and Trt 5= 0-20%) 

The fuel error by treatment results shown in Figure 31 reinforced that treatment number 

five (0 to 20% fuel rate) had a good deal of variation.  To quantify the magnitude of this 

variation, standard deviation of the fuel rate error for each treatment was calculated.  

Table 11 shows the average fuel rate error and standard deviation per treatment to depict 

the variation within the treatments.  From table 11, it is clear that treatment five (0 to 

20% fuel rate) had the highest variation with a standard deviation of over 2.75.  The 

datasets used for treatment five were primarily from the five additional OECD points 

(varying throttle, varying loads). 
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Table 11: Results of standard deviation calculation of fuel which shows that treatment five had a high variation 

in fuel error for every tractor. 

Treatment 

(#) 

Treatment 

(%) 

Fuel Rate 

Average Error 

(%) 

Fuel Rate Error 

Standard Deviation 

(%) 

1 80-100 0.218 0.926 

2 60-80 0.116 0.769 

3 40-60 -0.390 0.922 

4 20-40 -1.420 0.575 

5 0-20 -0.311 2.728 

Conclusions 

Results of the engine speed error analysis proved that J1939 and NTTL data were 

properly synchronized allowing for analysis of fuel rate comparison.  The fuel error 

analysis (Table 10), indicated that there was error from each of the tractors used, as well 

as greater error from the lower three fuel rate treatments (0 to 60% of full flow).  While 

the analysis methods were consistent for the study tractors, some showed a positive error 

between fuel rates where other tractors showed negative error within the same datasets.  

This caused a reduction in the average error when the results of all six test tractors were 

combined.  For any tractor in this horsepower range, chosen at random, the results 

represented an accurate error prediction.  If an absolute error value were calculated, the 

results would likely be quite different.  Absolute error would indicate positive error 

between fuel measurement systems, which would indicate that CAN bus fuel rates were 

always estimated at higher levels that in reality, which was not the case based on this 

study.   

The data collected during testing were considered to give an accurate depiction of actual 

field conditions due to the high loads as well as varying loads and throttle positions.   

The results of the standard deviation calculations for each fuel treatment showed that 

treatment five (0 to 20% fuel rate) had a great deal of variation (2.73%).  Treatment five 
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was primarily OECD additional points which consisted of only varying throttle positions 

and varying load conditions. Tractors equipped with IVT transmissions or when the 

principle of “throttle back and shift up a gear” are used, the parameters of this study may 

be inaccurate as a replication of real field conditions.  These both result in more partial 

throttle partial load operations which could lead to a higher standard deviation in error as 

seen in treatment 5 (0 to 20%).  Although this study showed treatment five to have a low 

mean percent error, because the variation was so high, if only partial throttle partial load 

operations were used, actual fuel consumption might not be as accurate as depicted by the 

CAN bus.  Only one tractor equipped with an IVT was used for this study, but for the test 

points used, varying transmission output had little to no effect in comparison with non-

IVT tractors for the steady state PTO tests. 

Even though there was error produced in the comparison between the calculated J1939 

fuel rate and physically measured NTTL fuel rate, whether looking at the statistical 

analysis or averaged analysis, the error was quite minimal (always less than ±5%).  The 

only time that a greater error was seen was in the pilot study during transient fuel rates.  

If this test were to be repeated in the field with the same equipment (i.e., NTTL fuel 

measurement system) a greater error would likely be noticed because of the constant 

change in engine speed and/or load.  However, because the error shown by this study was 

relatively low during steady state conditions, depending upon the use of the data, J1939 

fuel rate data could certainly be used for logistical and research purposes rather than 

attempting to physically measure fuel rate consumption with flow meters. 
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Chapter 4: Summary and Conclusions 

Controller Area Network including higher layer protocols such as SAE J1939, ISO 11783 

and NMEA 2000 has become a common source for a wide variety of information 

regarding machine operation in mobile agricultural field equipment.  Because this trend 

will only continue to grow, knowing that the information being collected is accurate 

becomes more and more important.  As farm managers and researchers begin to rely on 

this information rather than calculating based on former procedures or having some type 

of physically measured value, the need for accuracy knowledge of these messages will 

also only increase.  

As field cropping machines continue to grow in complexity, the use of CAN bus data will 

also likely become more heavily relied upon.  Automation in field cropping systems and 

equipment is a growing trend in agriculture (Darr, et al., 2004; Powell, 2005).  

Considering recent advancements in agricultural telematics, data accuracy broadcast to 

and from this equipment is rather important. 

This study was able to produce significant results regarding not only the accuracy of 

multiple data logging methods, but additionally the accuracy of one of the most desired 

messages for calculating field efficiency, fuel rate.  Because the tractors used for this 

study varied in horsepower, and gave a general population for mid to high horsepower 

machines, the results showing a low error from statistical analysis illustrates a confidence 

in the fuel rate being produced via the SAE J1939 fuel rate message.   

From data collected during this study, it was clear that logging from different sources did 

not yield a great enough difference to choose one over the other.  It also provided 



55 

 

evidence that re-sampling higher frequency data sets produced a useable and more 

manageable dataset.  The greatest result from the assessment of different data collection 

methods was actual file size.  Because raw hexadecimal files were so large, logging for 

long periods of time could become a hassle if not impossible.  This points towards 

logging data as an averaged set in a fashion as presented in this study.  This would greatly 

reduce overall file size while still providing accurate, desired information. 

This study and the pilot study conducted showed that because of the fuel measurement 

system used by NTTL, transient data couldn’t be used as a result of the lag in the NTTL 

system.  By looking at the J1939 fuel rate data, at transient periods the fuel rate changed 

almost instantaneously.  This leads us to the questions, if this is, in fact the actual fuel 

consumption, or could it be based primarily on requested fuel rate.  If a more accurate 

depiction of actual fuel consumption could be determined, the lag in the NTTL system 

might not be as far off as this study shows.  Setting aside the question of transient 

conditions, viewing steady state actual accuracy of the engine fuel rate as logged by the 

CAN bus, it was evident that there was some amount of error (always less than ±5%) but 

generally closer to ±1% during high load, steady state operations.  This offers an 

assurance that the fuel rate as portrayed by the CAN bus could be used for management 

decisions or research objectives. 

Future Work 

At steady state conditions, little error (±5%) was found between the calculated CAN bus 

fuel rate and the measured NTTL fuel rate.  Steady state however is rarely used in real 

life operating conditions.  When a tractor is working in the field, the terrain is rarely 

perfectly flat creating, and the load is rarely constant.  This shows that although this study 
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validated the accuracy of the SAE J1939 fuel rate message in agricultural tractors, 

additional studies could be performed to determine results of transient loads.  When 

looking at a graph of the J1939 fuel rate during transient states, the transient is almost a 

perfect step function.  It is highly unlikely that the actual fuel being consumed by the 

tractor during transient periods creates a perfect step function.  By creating and using a 

system that more accurately measures transient fuel rates, further studies could be 

performed to indicate true fuel usage during actual farming operations.  This would also 

tie into a better understanding of the partial load/partial throttle applications where in this 

study a higher percent error was found. 

By finding a more accurate transient load error approximation, a might be possible to find 

a coefficient for calculating a more precise fuel use rate in actual farming operations. 
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Appendices 

Appendix A: Vector Database Tutorial 

Adding Messages to a Vector 8.1 Database 

1. On messages, right click and select “New.” 

 

 

2. This will prompt an area to create the parameters of the new message.  

 

3. Enter the message name.  For example, if the message is for the Electronic Engine 

Controller 1, the acronym could be EEC1. 

4. Click on the button for editing the message ID.   
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5. Locate the Parameter Group Network information on the SAE J1939 document.  

Within this document, use the PGN to enter into the database.  

 

6. Enter in the PGN as found on the SAE J1939 document.  

 

7. After creating the new message, signals can be added. To add a signal, locate the 

signal desired to be added in the SAE J1939-71 document.  For this example, 
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Engine Speed is the desired signal.  Under EEC1, Engine speed is defined as SPN 

190.  Note that by counting the length of the messages preceding SPN 190, the 

start bit can be located.  For SPN 190, the start bit is 24.  

 

8. Now under the signals section of the Vector database editor, right click and select 

new.  This will create a new signal ready to be edited.  

 

9. In the new signal, specify the name (from the SPN name), and the additional 

information again as stated in the SAE J1939 document.  
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10. After filling out the information, the new signal will be mostly done.  

 

11. To add the signal to the message that was previously created, click on the 

“Messages” tab at the top of the signal and choose “Add”.  This will allow you to 

select the message to which the newly created signal belongs.   
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12. After adding the signal to the message, a few additional details need to be 

finished.  Under the attributes tab, enter in the SPN number and the value type.  

 

13. The last step to completing the signal is to specify the start bit.  This can be done 

by simply double clicking on the start bit number located in the main pane of the 

vector DB editor and typing in the start bit.  
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Appendix B: NI DIAdem Tutorial 

Appendix (i): Using NI Diadem (2012 SP1) to Convert CAN to Engineering Units 

1. Open NI Diadem 

2. In the “Navigator” tab, go to File->Bus Log Converter… 

a. When the Bus Log Converter opens, choose the file type in the drop down 

box.  This allows you to choose file types like NI-XNET, NI-CAN, Vector 

file formats, and Kvaser file types. 

b. Next choose the Log file that is desired to be converted.  (Note: only 

logfiles of the chosen type will be shown when searching for the desired 

logfile) 

c. Under the Bus database configuration section, click on the Edit button to 

allocate a database for the conversion.  In the Edit window, click on the 

Add Bus to Configuration button (it is a button that simply says CAN with 

a small red animation).  Once you choose the database required to convert 

the CAN messages, you can close the Edit window.   

d. There is the ability to additional filtering before converting, but for all 

simplicity and to receive all messages recorded, there’s no need for 

additional filtering here.  

e. Before converting messages, you can choose a file name for the converted 

logfile, and then choose how to load the converted file into Diadem.  

f. Hit the Convert button and the Bus Log Conversion will begin. 
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Appendix (ii): Using Diadem to analyze CAN Data 

1. Once the data is converted and imported into Diadem (this happens either after 

you convert the data, or import data through the Navigation tab), you can begin to 

view the data through the View tab. 

a. Within the view tab, on the right hand side is the Data Portal, this is where 

data sets can be selected to be put into the display section of the pane.  

Diadem gives multiple options for customization for viewing data, graphs, 

etc. but for this example a simple view with a graph, data portal and data 

view pane will be used. 
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b. In the Data viewing pane, for the data imported from the previous Bus Log 

Conversion, the data is shown by separate ECU’s.  Each ECU is given a 

time stamp, and then the data from that ECU is shown next to that time 

stamp.  This is where it is easy to identify the frequency in which each 

ECU logs data.  For example, the Electronic Engine Control (EEC1) logs 

Engine Speed and Actual Percent Engine Torque at 100Hz.  Whereas Fuel 

Rate is logged at 10Hz, and Engine Fuel and Coolant Temps are logged at 

1Hz. 

c. The viewing pane also gives information about each channel.  For 

example, the time for recording was approximately 34,000 seconds 

(approx.. 9.5 hours), and because Engine Speed was logged at 100Hz, the 

viewing pane shows that there are over 3,400,000 data points for Engine 

Speed.  Information like this is beneficial for future averaging needs. 
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Appendix (iii): Averaging Data/ Resampling to a lower frequency 

1. To resample high frequency data, Diadem uses a tool called Reducing 

Classification to average data associated with a time signal.  The Reducing 

classification is located under the Analysis tab, Statistics button, the Reducing 

Classification.   

2. Once the Reducing Classification opens, you can choose the time signal as the x-

channel, and the desired signal to be reduced as the y-channel.  For example, if 

the engine speed is set as Channel 1 in the Diadem View Pane, you would choose 

[1] /Time as the x-channel, and               [1] /Engine Speed as the y-channel.  

There are then two tabs to be aware of within the Reducing Classification, the 

Settings tab and the X-Channel tab.  Choose Mean as the reduction mode, then go 

to the X-Channel tab. 
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3. Under the X-Channel tab, under the determination mode drop down, choose 

Begin/Width, Range.  This allow for the ability to enter where you want the 

resampled data to begin, the width of each resampled point, and the range of data 

in which you desire to resample.  Again using the Engine Speed as the desired 

channel to be resampled, the data length can be found in the Viewing Pane, for 

Engine Speed, it has 3432781 data points.  Knowing that the recorded frequency 

was 100Hz, the length can be divided by the frequency to indicate what the 

desired range is.  3432781/100=34327.81 seconds.  Once you calculate, two new 

channels will be created named ReducingClassificationX and 

ReducingClassificationY.  Ideally, in the Data Portal you can change the names to 

New Time and Engine Speed 1Hz, or something similar.   

4. By choosing the original signal and the reduced signal, it is clear to see that the 

information is a carbon copy of the original data, simply reduced. 
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Appendix (iv): Synchronizing Time 

 

1. In the View tab, have two time channels with their respective data (e.g. 

Engine Speed) set up to be viewed in the graph.  Do this by right clicking on 

the graph, then choose “Display” and enter in the two time channels and the 

two channels you desire to synchronize. 

2. In the View tab, open the calculator function. 

3. Double click on one of the times for one of the channels (e.g. if you have two 

sets of data with similar time stamps, simply chose one of the time columns). 

4. After double clicking one of the time channels, then chose “equals” and then 

double click the same time channel as chosen previously. 

5. Add or subtract any number depending on how far you desire to move that 

channel’s values.   

6. Click the “Calculate” button.  This will keep the calculator function open, but 

move the time channel in real time (as you press calculate, one of the times 

will shift on the graph). 

7. Do this as many times as needed, and by changing the magnitude and 

direction of the value. 
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Appendix C: SAS 9.4 Programming 

data J1939_Fuel_Error; 

input tractor trt fuel_error; 

datalines; 

 
Data Lines Not Shown 

 

symbol1 color=black value='dot';  

 symbol2 color=blue value='dot' ; 

 symbol3 color=green value='dot' ; 

 symbol4 color=orange value='dot'; 

 symbol5 color=purple value='dot'; 

 run; 

proc glimmix; 

class tractor trt; 

model fuel_error=trt; 

random tractor; 

covtest /cl; 

lsmeans trt/diff lines; 

run; 
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Appendix D: LabVIEW Programming 

Appendix (i): 2012 NI LabVIEW API for Waveform Data Collection 
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Appendix (ii): 2012 NI LabVIEW API for Frame Data Collection 
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Appendix E: Micro Motion Mass Flow Sensor Data 
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