
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Nebraska Game and Parks Commission -- Staff
Research Publications Nebraska Game and Parks Commission

2002

Effects of Predation and Environment on Quality of
Yellow Perch and Bluegill Populations in Nebraska
Sandhill Lakes
Craig P. Paukert
South Dakota State University

David W. Willis
South Dakota State University

Joel A. Klammer
Nebraska Game and Parks Commission

Follow this and additional works at: http://digitalcommons.unl.edu/nebgamestaff

Part of the Environmental Sciences Commons

This Article is brought to you for free and open access by the Nebraska Game and Parks Commission at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Nebraska Game and Parks Commission -- Staff Research Publications by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Paukert, Craig P.; Willis, David W.; and Klammer, Joel A., "Effects of Predation and Environment on Quality of Yellow Perch and
Bluegill Populations in Nebraska Sandhill Lakes" (2002). Nebraska Game and Parks Commission -- Staff Research Publications. Paper 49.
http://digitalcommons.unl.edu/nebgamestaff/49

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/nebgamestaff?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/nebgamestaff?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/nebgameparks?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/nebgamestaff?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/nebgamestaff/49?utm_source=digitalcommons.unl.edu%2Fnebgamestaff%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages


86

North American Journal of Fisheries Management 22:86–95, 2002
q Copyright by the American Fisheries Society 2002

Effects of Predation and Environment on Quality of Yellow
Perch and Bluegill Populations in Nebraska Sandhill Lakes

CRAIG P. PAUKERT* AND DAVID W. WILLIS

Department of Wildlife and Fisheries Sciences, Post Office Box 2140B,
South Dakota State University, Brookings, South Dakota 57007, USA

JOEL A. KLAMMER

Nebraska Game and Parks Commission, Post Office Box 508,
Bassett, Nebraska 68714, USA

Abstract.—We investigated factors that may influence the quality (e.g., high abundance, size
structure, condition, and growth) of yellow perch Perca flavescens and bluegill Lepomis macrochirus
populations in Nebraska sandhill lakes. Physical (e.g., lake depth, vegetation coverage), chemical
(e.g., alkalinity, conductivity), and biological (e.g., chlorophyll a, invertebrate abundance) char-
acteristics of 30 natural lakes were determined in 1998 and 1999. Growth, condition, and size
structure were not density-dependent for bluegills or yellow perch in these shallow (,4 m maximum
depth) lakes. However, bluegill abundance, size structure, and condition were positively related
to yellow perch abundance, size structure, and condition. Bluegill quality tended to increase with
increased emergent vegetation, whereas yellow perch quality was not correlated with any physi-
cochemical variable measured. Submergent vegetation coverage ranged from 5% to 97% of lake
surface area and was not related to panfish quality. The mean relative weight (Wr) of larger (15–
20 cm) bluegills was positively associated with high Daphnia and Cyclops abundance, whereas
the mean Wr of 20–25-cm yellow perch was not related to invertebrate abundance. Higher relative
abundance and lower proportional stock density of largemouth bass Micropterus salmoides were
positively related to panfish quality, even in lakes up to 341 ha. Quality panfish populations in
the Nebraska sandhills are influenced by predators, prey, and the environment. However, based
on the high correlation coefficients, largemouth bass may be most influential in structuring the
quality of bluegill and yellow perch populations in these shallow natural lakes.

Schneider (1999) suggested that Midwestern
lakes often contain panfish populations that exhibit
slow growth and low size structure. Such lakes
may have lower numbers of preferred-length pan-
fish (i.e., 20-cm bluegill Lepomis macrochirus and
25-cm yellow perch Perca flavescens [Gabelhouse
1984]) than lakes with lower panfish abundance.
However, bluegill populations in some water bod-
ies are capable of having high size structure (i.e.,
up to 62% of bluegills .20 cm; Schneider 1999)
and relatively high density (up to 504 fish/ha;
Schneider 1999).

Panfish quality, which we define as high relative
abundance, size structure, condition, and growth
in a given lake when compared to other natural
lakes in the Nebraska sandhills, can be affected by
the physical and chemical environment of lakes.
Fish production and yield have been linked to al-
kalinity (Hayes and Anthony 1964), phosphorus
(Hanson and Leggett 1982), the morphoedaphic
index (MEI; defined as total dissolved solids/mean
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lake depth; Ryder 1965; Jenkins 1982), and chlo-
rophyll a (Jones and Hoyer 1982). Bluegill size
structure increased with alkalinity in relatively un-
disturbed Mississippi lakes (Jackson and Brown-
Peterson 1997), and growth was faster in shallow,
alkaline Minnesota lakes than deepwater Minne-
sota lakes (Tomcko 1997). However, these studies
typically did not focus on quality panfish popu-
lations.

Submergent vegetation coverage may influence
the growth of bluegills and yellow perch (Theiling
1990; Lott 1991; Trebitz et al. 1997). In addition,
lakes with submergent vegetation coverage may
allow higher panfish abundance (Lucchesi 1991;
Hinch and Collins 1993) and a lower proportion
of larger fish (Colle et al. 1987) than lakes with
limited submergent vegetation. However, submer-
gent vegetation coverage may not be detrimental
to bluegill populations in some water bodies
(Schneider 1999). Although high submergent veg-
etation coverage may reduce predation on panfish,
and increased abundance may lead to intraspecific
competition, emergent vegetation has also been
related to panfish quality (Paukert and Willis
2000).
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Predators often affect panfish population qual-
ity. The proportion of large bluegills (i.e., $15 cm)
and yellow perch (i.e., $20 cm) increased with
increasing abundance of largemouth bass Microp-
terus salmoides in small Midwestern impound-
ments (Anderson 1976; Guy and Willis 1990,
1991). However, these relationships have rarely
been documented for large (i.e., .30 ha) natural
water bodies. In many Midwestern lakes and
ponds, increased bluegill abundance leads to slow-
er growth (Weiner and Hanneman 1982) and a low-
er proportion of larger bluegills (.15 cm; Nov-
inger and Legler 1978). However, Tomcko (1997)
did not find an inverse relationship between blue-
gill relative abundance and growth in Minnesota
lakes. Information is needed on the effects of pred-
ators and intraspecific competition on panfish qual-
ity in larger water bodies, so that biologists can
make informed management decisions to increase
panfish quality in these lakes.

The Nebraska sandhill lakes typically have high
panfish quality, defined as fish condition above the
75th percentile across the species range and
growth to sizes preferred by anglers in less than
5 years (Paukert and Willis 2000). However, some
sandhill lakes produce panfish that attain faster
growth, higher condition, and higher size structure
than other sandhill lakes. Therefore, our objectives
were to evaluate which factors affected the quality
of bluegill and yellow perch populations. We in-
dexed quality using relative abundance, size struc-
ture, condition, and growth. In particular, we de-
termined the effects of predators and environmen-
tal factors on the quality of bluegill and yellow
perch populations in an ecosystem that typically
has high-quality panfish.

Methods

Study area.—Thirty natural lakes were sampled
in the sandhill region in northcentral Nebraska in
1998 and 1999. These lakes depend on ground-
water and surface water drainage, with many hav-
ing flowing springs and seepages. Although the
lakes may have 2–3 months of ice cover, winter-
kills are limited (McCarraher 1977) because of the
flowing springs. Lakes varied in surface area from
15 to 907 ha and were shallow (maximum depth,
1.5–4.0 m) and almost entirely littoral (mean
depth, 1.0–2.9 m). Submergent vegetation cover-
age ranged from 4% to 97% (mean, 48%). Secchi
disk transparency was highly variable (14–258
cm), and total alkalinity ranged from 85 to 447
mg/L.

Twenty-nine of the 30 lakes contained yellow

perch, whereas 22 lakes contained bluegills. Lar-
gemouth bass were present in 22 lakes, northern
pike Esox lucius in 16, black bullhead Ameiurus
melas in 25, and common carp Cyprinus carpio in
9 of the lakes. Few small fishes that may serve as
prey, such as small cyprinids, were found in these
lakes, with golden shiners Notemigonus crysoleu-
cas found in only 11 waters. Ranching is the most
common land use in the sandhills, and 9 lakes were
located within national wildlife refuges. Angler
exploitation is presumably minimal; winter creel
surveys suggested that bluegill exploitation from
Valentine National Wildlife Refuge lakes is less
than 10% (Nebraska Game and Parks Commission,
unpublished data). Little angling effort occurs dur-
ing the summer because of the extensive vegeta-
tion coverage. Three lakes were closed to fishing,
and most of the 30 lakes were either on private
land or difficult to access.

Fish sampling.—Largemouth bass were sampled
by pulsed-DC (200–250 V, 3–6 A) nighttime elec-
trofishing at 12 randomly selected 10-min stations,
from 15 May to 23 June 1998 and from 2 May to
24 June 1999. Catch per unit effort (CPUE) of
largemouth bass was expressed as the number of
fish 20 cm or larger collected per hour of electro-
fishing. Fifteen lakes were sampled each year, for
a total of 30 lakes. All other fish species were
sampled at randomly selected locations with over-
night sets of double-throated trap nets (i.e., mod-
ified fyke nets) with 16-mm-bar measure mesh,
1.1-m 3 1.5-m frames, and 22-m leads. Total sam-
pling effort was 10 trap-net nights in lakes smaller
than 50 ha and 20 trap-net nights in lakes 50 ha
or larger. Yellow perch and bluegill CPUE was
expressed as the number of stock-length (CPUE-
S) and preferred-length (CPUE-P) fish, where
stock and preferred bluegills were 8 and 20 cm
total length (TL) and stock and preferred yellow
perch were 13 and 25 cm TL (Gabelhouse 1984).
Northern pike CPUE was expressed as the number
of stock-length fish ($35 cm) collected per trap-
net night.

Scales for age and growth analyses were taken
from 10 individuals per 1.0-cm length-group for
bluegills and yellow perch. These fish were
weighed to the nearest gram and measured for TL
to the nearest millimeter. All additional fish were
tallied by 1.0-cm length-group by species.

Mean length at age for bluegills and yellow
perch was fitted to a nonlinear least-squares re-
gression model (assuming additive errors) with the
von Bertalanffy growth function (Ricker 1975).
We then used the models to estimate growth as the
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time in years for bluegills and yellow perch to
reach preferred length. Fish condition was quan-
tified as relative weight (Wr) for 15–20-cm blue-
gills and 20–25-cm yellow perch, based on stan-
dard weight equations summarized by Anderson
and Neumann (1996). We omitted length-groups
that contained less than three fish from the Wr anal-
ysis. The size structure of the fish populations was
quantified in terms of the proportional stock den-
sity (PSD) and the relative stock density of pre-
ferred-length fish (RSD-P) (Anderson and Neu-
mann 1996) for population samples containing at
least 20 stock-length fish.

Biological sampling.—Chlorophyll a, zooplank-
ton, and macroinvertebrates were sampled 2–26
July 1998 (for the 15 lakes sampled for fishes in
1998) and 1–24 July 1999 (for the 15 lakes sam-
pled for fishes in 1999) at four locations in each
of the 30 lakes. Chlorophyll a was estimated from
duplicate samples of four offshore water samples
collected with a 2-m-long vertical tube sampler.
Samples were filtered through glass fiber filters in
the field and extracted in the laboratory by meth-
ods described by Lind (1985). Zooplankton were
collected as two replicates at each of four offshore
sites using a 2-m-long tube sampler (Rabeni 1996)
filtered through a 65-mm-mesh net. Macroinver-
tebrates were sampled with an Ekman dredge.
Three samples of macroinvertebrates were col-
lected at each of the four sites in each lake and
were hand-sieved in the field. In the laboratory,
zooplankton were identified to genus and counted,
and a maximum of 120 individuals of each genus
was measured. Macroinvertebrates were identified
to family and counted.

Physical and chemical sampling.—During the
same time that the biological sampling was con-
ducted, alkalinity and total phosphorus were es-
timated with Hach kits, and total dissolved solids
were recorded 0.5 m below the surface with an
electronic meter. Secchi disk transparency was
measured at four locations in each lake in July
during midday. Topographical maps and aerial
photographs were used to calculate the shoreline
development index (SDI; Lind 1985).

Vegetation and substrate were quantified for all
30 lakes in July 1999 at five to seven transects
evenly spaced across each lake. At 50–200-m in-
tervals (depending on lake size) along each tran-
sect, vegetation within a 1-m2 grid beside the boat
was classified as either emergent, submergent, or
floating. The percent coverage of each vegetation
class was calculated as the number of sites of that
class divided by the total number of sites sampled

across all transects in the lake (Paukert and Willis
2000).

Mean lake depth was calculated using measure-
ments (nearest 0.1 m) taken at each of the vege-
tation and substrate sites. Mean depth was calcu-
lated by dividing the sum of all the depth mea-
surements for each lake by the number of sites in
each lake. We then calculated MEI from our total
dissolved solids and mean lake depth measure-
ments.

Statistical analyses.—Principal components
analysis (PCA) was used to reduce the dimen-
sionality of our panfish, productivity, and inver-
tebrate abundance parameters into simpler indices
(Johnson 1998). In the panfish analyses, we in-
corporated our four indices of panfish quality
(CPUE-P, RSD-P, mean Wr, and time to reach pre-
ferred length) for bluegills and yellow perch sep-
arately. We then interpreted the principal compo-
nent (PC) axis (PC1, PC2, or PC3) as combinations
of our panfish quality indices. We also used PCA
to analyze our physicochemical variables (Secchi
depth, chlorophyll a, total phosphorus, MEI, total
alkalinity, SDI, and lake area) and our invertebrate
abundance data (Bosmina, Chydorus, Cyclops,
Daphnia, amphipods, chironomids, gastropods, ol-
igochaetes, and pelecypods). In all PC analyses,
we interpreted only axes with eigenvalues greater
than 1.0 (Johnson 1998).

We used Pearson correlations or, when the data
were not normally distributed, Spearman rank cor-
relations to determine the strength of the relation-
ships between the principal component scores of
our panfish quality, physicochemical, and inver-
tebrate abundance PCAs. To investigate the rela-
tionship between panfish quality and predator (lar-
gemouth bass and northern pike) CPUE and PSD
as well as emergent and submergent vegetation
coverage, we correlated bluegill and yellow perch
principal components directly with these variables.
To control our family-wise error rate for multiple
correlations, we used a Bonferroni correction (So-
kal and Rohlf 1995) to adjust our alpha level for
all correlations. We also sought to determine which
variable explained most of the variation in our
panfish PC indices. To do this, we used multiple
regression and a maximum R2 selection procedure
(Freund and Littell 1991), with panfish PC scores
as the dependent variables and physicochemical
and invertebrate PC scores, vegetation, and lar-
gemouth bass CPUE and PSD as independent var-
iables. Northern pike were not included in these
analyses because of insufficient sample size. All
statistical analyses were performed in SAS (SAS
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TABLE 1.—Means, medians, lower quartiles, upper quartiles, and number of lakes of the fish community characteristics
measured in Nebraska sandhill lakes, 1998–1999. The following abbreviations are used: CPUE-P 5 catch per unit effort
of preferred-length fish (number of fish per trap-net night for bluegills and yellow perch, number of fish per hour of
electrofishing for largemouth bass); RSD-P 5 relative stock density of preferred-length fish; Wr 5 relative weight; and
PSD 5 proportional stock density. The preferred length is 20 cm for bluegills and 25 cm for yellow perch. Time to
reach preferred length was estimated using von Bertalanffy growth functions.

Species and variable Mean (SD) Median
Lower
quartile

Upper
quartile

Number
of lakes

Bluegill
CPUE-P
RSD-P
Mean Wr (15–20 cm)
Time to reach preferred length

4.3 (5.9)
17 (18)

120 (12)
5.9 (2.2)

2.1
11

118
5.1

0.7
6.5

112
4.7

3.9
22

123
6.1

21
20
21
19

Yellow perch
CPUE-P
RSD-P
Mean Wr (20–25 cm)
Time to reach preferred length

3.7 (8.0)
17 (23)
90 (9)
5.6 (2.1)

0.5
7

89
4.9

0.1
2

82
4.3

2.0
18
98
6.5

19
25
25
22

Largemouth bass
CPUE $20 cm
PSD

66.7 (54.4)
58 (21)

48.9
57

15.5
39

117.5
73

22
20

TABLE 2.—Loadings for the principal components (PC) analyses of the bluegill and yellow perch populations in the
Nebraska sandhill lakes. CPUE-P 5 catch per unit effort of preferred-length fish; RSD-P 5 relative stock density of
preferred-length fish; and Wr 5 relative weight. The eigenvalues and percent variance explained by each axis are given
at the bottom of the table. Quality length is 15 cm for bluegills and 20 cm for yellow perch; preferred length is 20 cm
for bluegills and 25 cm for yellow perch.

Variable

Bluegills

PC1 PC2

Yellow perch

PC1 PC2

CPUE-P
RSD-P
Mean Wr (quality–preferred)
Time to reach preferred length
Eigenvalue
Percent variance explained

0.55
0.51
0.36

20.48
1.82

46

0.51
0.19

20.81
0.22
0.97

24

0.54
0.59
0.42

20.44
2.17

54

0.54
0.31

20.62
0.48
0.83

21

Institute 1996) with a significance level set a priori
at 0.05.

Results

Bluegill and yellow perch populations in the Ne-
braska sandhill lakes exhibited variable abun-
dance, growth, condition, and size structure (Table
1). However, few of these lakes contained low-
quality panfish populations. Bluegill CPUE-P
ranged from 0 to 18.5, whereas yellow perch
CPUE-P ranged from 0 to 33.3. Size structure
(RSD-P) was generally high (mean 5 17 for both
bluegills and yellow perch) and ranged from 0 to
74 for bluegill and from 0 to 76 for yellow perch.
Mean Wr for 15–20-cm bluegills ranged from 94
to 146, with only two populations having mean Wr

values less than 100; the mean for all populations
was 120. Mean Wr for 20–25-cm yellow perch was
lower (90) and ranged from 77 to 105. Only one
lake contained a high-density (80 stock-length fish

per trap-net night), slow-growing (14 years to
reach preferred length) bluegill population. The
time it took to reach preferred length ranged from
4.3 to 14 years (mean, 5.9) for bluegills and from
3.5 to 11.2 years (mean, 5.6) for yellow perch
(Table 1).

Principal Component Analysis Interpretations

Panfish population characteristics (i.e., relative
abundance, size structure, and growth) were typ-
ically associated with one another. Bluegill CPUE-
P and RSD-P component loadings were high on
bluegill PC1, and the time to reach preferred length
had a high negative loading on PC1 (Table 2).
Bluegill populations with higher relative abun-
dance, size structure, and growth scored higher on
PC1. Bluegill mean Wr had a high negative loading
on PC2 (Table 2), suggesting this axis was an index
of condition. Yellow perch PC1 had high com-
ponent loadings of CPUE-P and RSD-P, whereas
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TABLE 3.—Loadings for the first three principal com-
ponent (PC) axes of the physicochemical principal com-
ponents analysis for Nebraska sandhill lakes. The eigen-
values and percent variance explained by each axis are
given at the bottom of the table. The morphoedaphic index
5 total dissolved solids/mean lake depth.

Variable PC1 PC2 PC3

Secchi depth
Chlorophyll a
Total phosphorus
Morphoedaphic index
Total alkalinity (mg/L)

0.02
20.43
20.45

0.44
0.50

20.67
0.29
0.11

20.26
0.13

20.26
0.46
0.14
0.52
0.45

Shoreline development index
Lake area (ha)
Eigenvalue
Percent variance explained

0.27
0.30
2.39

32

0.25
0.56
1.55

22

20.38
20.28

1.11
16

TABLE 4.—Loadings for the first three principal com-
ponent (PC) axes of the invertebrate abundance principal
components analysis for Nebraska sandhill lakes. The ei-
genvalues and percent variance explained by each axis are
given at the bottom of the table. Zooplankton abundance
is measured as number/L, macroinvertebrate abundance as
number/m2.

Invertebrate PC1 PC2 PC3

Zooplankta
Bosmina
Chydorus
Cyclops
Daphnia

0.29
0.40
0.46
0.46

20.46
20.42
20.03

0.09

0.26
20.28
20.27
20.37

Macroinvertebrates
Amphipods
Chironomids
Gastropods

20.02
0.21

20.32

0.42
20.16
20.07

20.08
0.74

20.13
Oligochaetes
Pelecypods

Eigenvalue
Percent variance explained

0.39
0.24
1.93

22

0.47
0.42
1.89

21

0.15
0.23
1.25

14

TABLE 5.—Correlations between catch per unit effort (CPUE) of stock-length and longer yellow perch and bluegills
and (1) the relative stock density of preferred-length fish (RSD-P), (2) mean relative weight (Wr), and (3) time to reach
preferred length.

Variable

Bluegill CPUE

r P df

Yellow perch CPUE

r P df

RSD-P
Mean Wr
Time to reach preferred length

20.13
20.26
20.24

0.60
0.25
0.31

18
19
17

0.11
20.13
20.09

0.59
0.52
0.69

23
23
20

mean Wr had a high negative loading on yellow
perch PC2 (Table 2). The time to reach preferred-
length had a high negative loading on PC1 and a
high positive loading on PC2; however, we inter-
preted this variable as a function of PC1 because
this axis explained 33% more variation than PC2
(Table 2). Yellow perch populations with higher
relative abundance, size structure, and growth
were associated with high scores on PC1, whereas
high yellow perch condition was associated with
low PC2 axis scores.

Lakes with higher alkalinity and MEI values
were typically associated with low chlorophyll a
and total phosphorus indices. Our physicochemical
PCA revealed that PC1 had high negative com-
ponent loadings of chlorophyll a and total phos-
phorus and high positive MEI and total alkalinity
loadings (Table 3). Principal component 3 only
explained 16% of the variation and had high load-
ings of variables interpreted in PC1 and PC2 (Table
3).

Lakes with abundant zooplankton (i.e., Daph-
nia, Chydorus, and Cyclops) populations scored
high on invertebrate PC1, whereas lakes with high
macroinvertebrate (i.e., oligochaetes, amphipods,
and pelecypods) abundance scored high on inver-
tebrate PC2 (Table 4). Invertebrate PC1 and PC2
explained 22% and 21% of the variation, respec-

tively. Principal component 3, which only ex-
plained 14% of the variation, was primarily an axis
of chironomid abundance (Table 4).

Inter- and Intraspecific Relationships

Bluegill and yellow perch population charac-
teristics exhibited similar trends. Bluegill PC1 was
positively related to yellow perch PC1 (r 5 0.57,
df 5 11, P 5 0.04), and bluegill PC2 was posi-
tively related to yellow perch PC2 (r 5 0.91, df
5 11, P , 0.0001).

The growth and condition of bluegills and yel-
low perch were not density dependent in Nebraska
sandhill lakes. Mean CPUE of stock-length fish,
an index of overall abundance, was not related to
RSD-P, mean Wr, or the time to reach preferred
length for bluegill or yellow perch (Table 5).

Physicochemical and Vegetation Analyses

Bluegill and yellow perch quality were not
strongly related to aquatic vegetation or to the
physicochemical variables measured. For blue-
gills, PC1 tended to increase with lake coverage
of emergent vegetation (Table 6), but this rela-
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TABLE 6.—Correlations between bluegill and yellow perch principal components (PCs) and vegetation, physicochem-
ical and invertebrate abundance PC axes scores, and catch per unit effort (CPUE) and proportional stock density (PSD)
of largemouth bass (LMB) and northern pike (NOP). Only three lakes contained floating vegetation and were removed
from further analyses. The significance level was set at 0.004 after Bonferroni corrections.

Variable

Bluegill

PC1

r P df

PC2

r P df

Yellow perch

PC1

r P df

PC2

r P df

Vegetation
Emergent
Submergent

Physicochemical PCs
PC1

0.52
20.35

0.33

0.02
0.14

0.17

17
17

17

20.23
0.03

0.21

0.35
0.92

0.38

17
17

17

0.21
0.07

0.28

0.36
0.25

0.23

20
20

20

0.12
20.42

0.01

0.58
0.05

0.95

20
20

20
PC2
PC3

Invertebrate abundance PCs
PC1
PC2

0.43
0.43

0.16
0.01

0.07
0.07

0.52
0.95

17
17

17
17

0.13
0.24

20.63
20.21

0.60
0.32

0.004
0.38

17
17

17
17

0.34
0.23

20.06
0.20

0.14
0.33

0.78
0.37

20
20

20
20

0.44
0.17

20.34
20.19

0.05
0.48

0.12
0.40

20
20

20
20

PC3
LMB CPUE
LMB PSD
NOP CPUE
NOP PSD

20.07
0.45

20.62
0.03
0.06

0.78
0.05
0.006
0.94
0.91

17
17
16
9
4

20.16
0.22
0.004

20.44
20.06

0.52
0.36
0.99
0.17
0.90

17
17
16
9
4

20.16
0.83

20.49
20.26

0.60

0.49
0.0002
0.09
0.42
0.21

20
14
11
10
4

0.13
20.21

0.35
20.005
20.43

0.56
0.44
0.25
0.98
0.40

20
14
11
10
4

tionship was not significant after Bonferroni cor-
rection. However, submergent vegetation was not
related to bluegill or yellow perch PC scores (Table
6). Only three lakes had floating vegetation and
this variable was thus excluded from further anal-
yses.

Predator–Prey Relationships

Largemouth bass populations with high size
structure and low relative abundance in Nebraska
sandhill lakes were associated with a lower quality
of bluegill and yellow perch populations. Bluegill
PC1 was negatively associated with largemouth
bass PSD and tended to increase with largemouth
bass CPUE (Table 6; Figure 1). Yellow perch PC1
increased with the CPUE of largemouth bass and
tended to decrease with largemouth bass PSD (Ta-
ble 6). Northern pike CPUE and PSD were not
related to the PC1 or PC2 of either bluegill or
yellow perch (Table 6). However, low sample size
precluded us from estimating northern pike PSD
in all but six lakes.

Invertebrate Relationships

High bluegill condition was associated with
high Daphnia and Cyclops abundances, but yellow
perch condition and quality were not related to
zooplankton or macroinvertebrate abundances.
Bluegill PC2 was inversely related to invertebrate
PC1 (Table 6; Figure 2). However, no other rela-
tions between bluegill or yellow perch PC scores
and invertebrate PC scores were found (Table 6).

Best Predictors of Panfish Quality

Bluegill and yellow perch quality were strongly
influenced by largemouth bass and invertebrate
abundances. Our best one-variable model for blue-
gill PC1 was BGPC1 5 2.46 2 0.04(largemouth
bass PSD) (r2 5 0.38; df 5 1, 16; P 5 0.006).
High bluegill PC1 scores were associated with low
largemouth bass PSD. Invertebrate PC1 was the
best predictor of bluegill PC2: 0.003–0.44(inver-
tebrate PC1) (r2 5 0.40; df 5 1, 17; P 5 0.004).
High bluegill PC2 scores (indicating low bluegill
condition) were inversely related to invertebrate
PC1, an index of zooplankton abundance. Yellow
perch PC1 was strongly related to largemouth bass
CPUE: yellow perch PC1 521.39 1 0.02 (lar-
gemouth bass CPUE) (r2 5 0.67; df 5 1, 13; P 5
0.0002). High quality of perch populations was
most strongly related to high largemouth bass
abundance. No model was significantly related to
yellow perch PC2, an index of perch condition.

Discussion

Our results suggest that bluegill and yellow
perch growth, condition, and size structure in the
Nebraska sandhill lakes were not density depen-
dent, perhaps because the range of these popula-
tion characteristics was limited. Similarly, Tomcko
(1997) did not find any evidence of density-de-
pendent growth for bluegills in Minnesota lakes.
However, small impoundments with high bluegill
biomass (.112 kg/ha; Novinger and Legler 1978)
typically hosted populations with low size struc-
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FIGURE 1.—Relationships between principal component 1 (PC1) for yellow perch and bluegill and largemouth
bass catch per unit effort (CPUE; number of bass $20 cm collected per hour of electrofishing) and proportional
stock density (PSD) in Nebraska sandhill lakes sampled in 1998 and 1999. Yellow perch populations with high
relative abundance, size structure, condition, and growth scored high on yellow perch PC1, whereas bluegill
populations with high relative abundance, size structure, and growth scored high on bluegill PC1.

ture (PSD , 20) and reduced growth (Weiner and
Hanneman 1982; Guy and Willis 1990). Although
there is experimental evidence that the growth of
yellow perch may be density dependent (Hanson
and Leggett 1985), our results suggest that in-
creased yellow perch abundance was not detri-
mental to yellow perch quality in Nebraska sand-
hill lakes, at least within the range of relative abun-
dance encountered inour study.

Our results indicate that quality bluegill popu-

lations do not preclude the existence of quality
yellow perch populations. In lakes where bluegill
relative abundance, condition, and size structure
were high, yellow perch relative abundance, con-
dition, and size structure were also high. Foraging
behaviors of the two species may be sufficiently
different that interactions are minimal, or the bio-
mass of food resources may have been sufficiently
high to support the growth of both species.

Our correlative relationships between bluegill
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FIGURE 2.—Correlation between bluegill principal
component 2 (PC2) and invertebrate PC1 in Nebraska
sandhill lakes sampled in 1998 and 1999. Lakes that
scored high on bluegill PC2 had bluegill populations
with low condition, whereas lakes that scored high on
invertebrate PC1 had high zooplankton abundance.

condition and zooplankton abundance suggest that
bluegills may consume zooplankton, particularly
Daphnia, Chydorus, and Cyclops. Other studies
have suggested that Daphnia are a common food
source for bluegills (Mittelbach 1988), even for
fish larger than 20 cm (Schneider 1999). In our
study, yellow perch quality and condition were not
related to invertebrate abundance, although these
fish commonly consume macroinvertebrates (Lott
1991; Keast and Fox 1992). If, in fact, our results
indicate food habits, larger bluegills (.15–20 cm)
may consume zooplankton, as suggested by others
(Harris et al. 1999; Schneider 1999). Further anal-
ysis of food habits or bioenergetic modeling is
needed to substantiate our findings.

Our results suggest that bluegill quality was
more strongly associated with emergent vegetation
than submergent vegetation in Nebraska sandhill
lakes. However, yellow perch quality was not re-
lated to either submergent or emergent vegetation
coverage. In contrast to our findings, other studies
suggested that increased submergent vegetation
was associated with increased abundance of blue-
gills (Hinch and Collins 1993) and yellow perch
(Lott 1991; Lucchesi 1991) and reduced bluegill
(Theiling 1990; Trebitz et al. 1997; Olson et al.
1998; Pothoven et al. 1999) and yellow perch (Lott
1991) growth. However, Radomski et al. (1995)
found no difference in bluegill abundance after
vegetation removal in a Minnesota lake. Schneider
(1999) also suggested that increased submergent

vegetation may not be detrimental to Michigan
bluegill populations when harvest is low (1–3%
exploitation) and food supply is adequate, which
may be the situation in Nebraska sandhill lakes.
The positive trend we found between bluegill qual-
ity and emergent vegetation coverage likely is not
cause and effect. Emergent vegetation may provide
adequate prey (Schramm and Jirka 1989) or refuge
from predators. Nonetheless, our correlative re-
sults suggest that sandhill lakes with higher emer-
gent vegetation coverage may be capable of pro-
ducing higher-quality bluegill populations.

Based on our results, largemouth bass appar-
ently play an integral role in structuring the quality
of bluegill and yellow perch populations in Ne-
braska sandhill lakes. High relative abundance of
largemouth bass smaller than 30 cm was associated
with increased bluegill quality in sandhill lakes,
which agrees with other studies that suggested a
high abundance of smaller largemouth bass may
feed on smaller yellow perch (Guy and Willis
1991) and bluegills (Novinger and Legler 1978;
Gabelhouse 1984; Guy and Willis 1990; Otis et al.
1998; Schneider 1999). Yellow perch quality in
our study was influenced more by largemouth bass
abundance than by largemouth bass size structure,
thereby suggesting that a wide range of sizes of
largemouth bass may feed on more fusiform yel-
low perch (Starostka et al. 1996; Walter 2000). The
role of northern pike in sandhill lakes was hard to
identify, because we collected over 20 northern
pike in just eight lakes. Northern pike consume
bluegills and yellow perch (Sammons et al. 1994;
Gurtin et al. 1996) and may reduce the abundance
and size structure of yellow perch (Anderson and
Schupp 1986), but they cannot control overabun-
dant bluegill populations (Beyerle 1971).

Factors not measured in this study may also in-
fluence panfish quality. Because exploitation was
low (,10%), fast-growing panfish were not har-
vested from the population, thus potentially cre-
ating a higher proportion of larger fish. In addition,
winterkill may reduce the abundance of fishes in
these lakes, lessening the effects of competition
and increasing growth and condition. However,
winterkills were not observed in our study lakes
in the last 10 years, and usually only occur once
in 10 years in Nebraska sandhill lakes (McCarraher
1977). However, it is possible that winter mortality
of juvenile panfishes was not easily observed.

Largemouth bass appear to be an influential
predator in these shallow, natural lakes in the Ne-
braska sandhills. As in small Michigan lakes
(Schneider 1999), high submergent vegetation
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coverage (up to 97% in sandhill lakes) was not
detrimental to panfish quality. Low (,10%) ex-
ploitation and adequate food supply, which most
likely occurred in many sandhill lakes, may also
allow development of quality bluegill populations
(Schneider 1999). Therefore, productive lakes
with low harvest of panfish, coupled with high-
density largemouth bass populations, will most
likely produce quality yellow perch and bluegill
populations in Nebraska sandhill lakes.
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