11-2014

Hydrolytically Stable Analogues of Sugar Phosphates and a Miniaturized in Situ Enzymatic Screen

Xiang Fei
University of Nebraska-Lincoln, xfei@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydiss

Part of the Medicinal-Pharmaceutical Chemistry Commons, and the Organic Chemistry Commons

http://digitalcommons.unl.edu/chemistrydiss/50

This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Hydrolytically Stable Analogues of Sugar Phosphates and A Miniaturized In Situ Enzymatic Screen

by

Xiang Fei

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Chemistry

Under the Supervision of Professor David B. Berkowitz

Lincoln, Nebraska

November, 2014
Hydrolytically Stable Analogues of Sugar Phosphates and A Miniaturized In Situ Enzymatic Screen

Xiang Fei, Ph.D.

University of Nebraska, 2014

Advisor: David. B. Berkowitz

The glmS riboswitch undergoes self-cleavage upon binding its metabolic product GlcN6P, thereby providing a negative feedback mechanism limiting translation of the glmS protein when GlcN6P is abundant. As a first step toward the development of novel antimicrobials, we have synthesized a series of GlcN6P analogues bearing phosphatase-inert surrogates in place of the natural phosphate ester functionality. The self-cleavage assay identified two such compounds that display significant riboswitch actuator activity; namely those bearing a 6-phosphonomethyl group or a 6-\(O\)-malonyl ether. These two analogues exhibit a 22-fold and a 27-fold higher catalytic efficiency, respectively, than does glucosamine. Docking experiments were conducted to provide insight into the structural basis for SAR (Structure/Activity Relationship) seen across this battery of GlcN6P analogues and directions for future design of such small molecule actuators.

M6P/IGF2R regulates intracellular sorting of lysosomal enzymes, as well as endocytosis of extracellular ligands. To explore the possibility of multivalent receptor-ligand interactions, we have utilized novel chemistries to synthesize “tailored” bivalent ligands. A “linker diversification” approach has been recently developed. It emanates from a monomer with a terminal azide. Five different chemistries were exploited to connect two monomers together, leading to five structurally and functionally distinct
linkages. The assay showed that when the angles between two linking bonds are acute rather than obtuse, the corresponding ligands present higher binding affinity, suggesting the three dimensional shape of the ligand is crucial for achieving multivalency.

The ISES technique has proven to be a useful technique for catalyst screening. In this procedure, an organic reaction product or byproduct diffuses into an aqueous layer, wherein an enzymatic transformation leads to signal that can be monitored by UV/vis spectroscopy. Herein, we describe proof of principle of a miniaturized ISES assay, in which volumes are significantly reduced by utilizing a quartz micromulticell. This miniaturized ISES platform is used to examine a 4×4 combinatorial library of salen ligands, that is derived from both oxa- and carbacyclic D-fructopyranosyl-1,2-diamines. The Co(III)-salen derived from 3',5'-diiodo-salicylaldehyde and β-D-carbafructopyranosyl-1,2-diamine shows the highest chiral bias. X-ray crystallographic analysis reveals important structural differences between the more selective carbofructopyranosyl-1,2-diamine-derived salens and their oxacyclic counterparts.
Acknowledgements

I am deeply grateful to my advisor, Professor David B. Berkowitz for his strong and enthusiastic mentorship. His constant encouragement and strive for excellence have helped me to grow as a scientist. I would like to thank other members of my committee: Professors Stephen G. DiMagno, Mark A. Griep, James M. Takacs and Richard G. MacDonald for their precious time and thoughtful suggestions, especially Professors Takacs and MacDonald for reading my thesis.

The work presented in this dissertation would have not been possible without the help and collaboration of the following friends: Dr. Kannan R. Karukurichi, Dr. Weijun Shen, Dr. Sangeeta Dey, Dr. Sylvain Broussy, Dr. Pulakesh Maity, David L. Nelson, Kaushik Panigrahi, Dr. Guillaume Malik, Professor Richard G. MacDonald, Dr. Christopher M. Connelly, Megan E. Zavorka, Professor Juliane K. Soukup and Thomas Holmes. I want to convey my gratitude to other members of the Berkowitz group for being wonderful colleagues.

I was very fortunate to have my family around during the time in Lincoln. I want to thank my wife Gonghua, for always being supportive and encouraging along the way. I want to acknowledge my parents, especially my mom for spending a great deal of time with us, and taking care of our sons Ben and Jerry. I also want to thank the boys for all the joys they have brought to the family.
List of Abbreviations

AA Amino Acid
Ac Acyl
ADH Alcohol Dehydrogenase
aq Aqueous
APP A 2-Amino-5-Phosphono-3-Pentenoic Acid
Ar Aryl
Bn Benzyl
Boc tert-Butyloxycarbonyl
Bu Butyl
Calcd. Calculated
CD-MPR Cation Dependent Mannose 6-Phosphate Receptor
CI-MPR Cation Independent Mannose 6-Phosphate Receptor
CM Cross Metathesis
cod Cyclooctadiene
Cy Cyclohexyl
DCE Dichloroethane
DCM Dichloromethane
de Diastereomeric excess
DMAP 4-N,N-Dimethylaminopyridine
DMF N,N-Dimethylformamide
DMSO Dimethyl Sulfoxide
DTBMP 2,6-Di-tert-butyl-4-methylpyridine
FPP Farnesyl Pyrophosphate
ee Enantiomeric Excess
ESI Electron Spray Ionization
Equiv. Equivalents
F6P Fructose 6-Phosphate
G6P Glucose 6-Phosphate
GlcN6P Glucosamine 6-Phosphate
GlcNAc N-Acetyl Glucosamine
GlmS Glucosamine 6-Phosphate Synthase
hGUS Human β-Glucuronidase
HMDS Hexamethyldisilazane
HMPA Hexamethylphosphoramide
HPLC High Performance Liquid Chromatography
HRMS High Resolution Mass Spectrometry
Hz Hertz
IDCP Iodonium Di-sym-Colidine Perchlorate
IGF Insulin Like Growth Factor
J Coupling Constant
KRED Ketoreductase
LDA Lithium diisopropylamide
M6P Mannose 6-Phosphate
M Molarity
MD Molecular Dynamics
Me Methyl
MeOH Methanol
min Minute
MRH Mannose 6-Phosphate Receptor Homology
MS Mass Spectrometry
N Normality
PEG Polyethylene Glycol
PMP Pentamannosyl Phosphate
Pyr Pyridine
rt Room Temperature
SES 2-Trimethylsilylethanesulfonyl
TBAF Tetrabutylammonium fluoride
Tf Trifluoromethanesulfonyl
TGN Trans Golgi Network
THF Tetrahydrofuran
TLC Thin Layer Chromatography
TBS tert-Butyldimethylsilyl
TBDPS tert-Butyldiphenylsilyl
TM Transition Metal
Ts 4-Toluenesulfonyl
Table of Contents

Table of Figures v

Table of Tables x

List of Abbreviations xi

Chapter 1. Overview of Phosphonates in Bioorganic Chemistry

I. Naturally Occurring Phosphonates 1
 A. Fosfomycin/Fosphonomycin 3
 B. 2-Amino-5-Phosphono-3-Pentenoic Acid (APPA) and APPA-Containing Peptides: Plumbemycins and Rhizocticins 4
 C. FR-900098 and Fosmidomycin 5
 D. Latest Discoveries 6

II. Synthetic phosphonates 8
 A. Glyphosate/Roundup 8
 B. Bisphosphonates 9
 C. Acyclic Nucleoside Phosphonates (ANPs) 12

III. Sugar Phosphonate in Bioorganic Chemistry 15

IV. References 21

Chapter 2. Phosphatase-Inert Actuators for the \textit{glmS} Riboswitch

I. Introduction 35
 A. Background of Riboswitches 35
Chapter 3. Hydrolytically-Stable Bivalent Ligands for M6P/IGF2R

I. Introduction

A. Background of M6P/IGF2R

B. Previous Work on Multivalent Ligands for M6P/IGF2R

II. Results and Discussion

A. Monovalent ligands and cross-metathesis approach

B. Ligand Diversification at the Linking Stage

C. Binding Affinity Assay
A. Organic Synthesis 276
B. Miniaturized ISES (In Situ Enzymatic Screening) Experiments 297
C. HKR Reactions Under Flask Conditions 303

IV. References 314

V. NMR Spectra 322
Table of Figures

Chapter 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Structures of naturally-occurring phosphonates</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Irreversible inactivation of Fosfomycin on MurA</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Mechanism of action for the APPA-Containing Peptides</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Inhibition of DOXP reductase by FR-900098 and fosmidomycin</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>The essential enzyme pepM in phosphonate biosynthesis</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>EPSP synthase and its inhibition by glyphosate</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Structures of bisphosphonates</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>N-bisphosphonates inhibit the Mevalonate Pathway by targeting FPPS</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Inhibition of HIV-1 reverse transcriptase by AZT and tenofovir</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Three types of phosphonates vs native phosphates</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Peptides containing non- and difluorophosphonate analogues of phosphotyrosine are PTP1B inhibitors</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Phosphonate analogues are examined as pseudo substrates for Glc6P dehydrogenase</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>A divergent approach to three types of phosphonates</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Regulation of gene expression could occur in any step of its process</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Secondary structure of the Bacillus cereus glmS riboswitch/ribozyme</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Plausible mechanism for the GlcN6P activated RNA cleavage</td>
<td>43</td>
</tr>
</tbody>
</table>
Figure 2.4: A negative feedback mechanism exerted by the glmS riboswitch to regulate glmS gene expression

Figure 2.5: Ligand characterization for the glmS riboswitch

Figure 2.6: Synthesis of phosphonate 6 via triflate

Figure 2.7: Synthesis of the “truncated” (8) and “elongated” phosphonate (12) analogues

Figure 2.8: Synthesis of the malonyl ether, malonate and carboxylate analogues

Figure 2.9: Synthesis of phosphoramidate analogue 23

Figure 2.10: Synthesis of the N-methyl (27) and N,N-dimethyl (29) phosphonate analogues

Figure 2.11: Structures of all the nine GlcN6P analogues

Figure 2.12: Cleavage gels of the five most active analogues

Figure 1.13: Cleavage gels of the less active analogues

Figure 2.14: Projected structure of phosphonate analogue 6 in the active site of glmS riboswitch 2NZ4 (Bacillus anthracis)

Figure 2.15: Overlay of docked structures of malonate and malonyl ether analogues in the active site

Figure 2.16: Two potential prodrug approaches

Figure 2.17: Titration curves for GlcN6P analogues

Chapter 3

Figure 3.1: Structure of the full-size, high-mannose N-glycan

Figure 3.2: MPR pathway for intracellular lysosomal enzyme trafficking

Figure 3.3: The two-step phosphorylation of N-glycans in mammalian cells
Figure 3.4: A. Crystal structure of bovine CD-MPR with M6P bound (2RL8); B. Active site residues (MRH-conserved residues marked in purple)

Figure 3.5: A. Crystal structure of Domain 1-3 of bovine CI-MPR with M6P bound (1SYO); B. Active site residues (MRH-reserved residues marked in purple)

Figure 3.6: Schematic structure of the CI-MPR dimer with a postulated bivalent interaction with M6P-containing ligands

Figure 3.7: Bock’s synthetic glycopeptides as bivalent ligands for IGF2R

Figure 3.8: Hindsgaul’s synthetic biantennary oligosaccharide

Figure 3.9: Monovalent ligands synthesized and tested in Berkowitz-MacDonald collaboration

Figure 3.10: Synthesis of bis-malonate analogue of M6P

Figure 3.11: Synthesis of bis-phosphonate analogue of M6P

Figure 3.12: Synthesis of a set of phosphatase-inert “molecular rulers”

Figure 3.13: One of the low-energy conformers of the 12-C tethered ligands found by a MMFF minimization

Figure 3.14: Synthesis of an azide-terminated mannosyl phosphonate

Figure 3.15: Gin’s iterative procedure for synthesis of pentabutylene glycol

Figure 3.16: Synthesis of three types of tethers

Figure 3.17: “Traceless” Staudinger ligation to make the simple amide linkage

Figure 3.18: Staudinger ligation to make the triphenylphosphine oxide-amide linkage

Figure 3.19: Williams thioacid-azide ligation to make simple amide linkage

Figure 3.20: Ru(II)- and Cu(I)-catalyzed azide-alkyne Huisgen cycloaddition

Figure 3.21: Demko-Sharpless azide-nitrile cycloaddition/SNAr sequence
Figure 3.22: Crystal structure of bovine CD-MPR with phosphoryl pentamannoside bound 156

Figure 3.23: Competitive binding analysis for bivalent ligands BL1 – BL5 186

Chapter 4

Figure 4.1: Classic ligands derived from L-threose 249

Figure 4.2: Some recent examples of carbohydrate derived ligands and catacatalysts 249

Figure 4.3: Salicylaldehydes and diamines used in the salen ligand assembly 251

Figure 4.4: Applications of β-pinene derived Co(III)-salen catalyst 251

Figure 4.5: Novel reactivity discovered by combinatorial screening 253

Figure 4.6: Label assisted mass spectrometry for novel reactivity discovery 254

Figure 4.7: A new bioorthogonal chemistry disclosed by combinatorial immunoassay Screening 255

Figure 4.8: ISES for intramolecular allylic amination reactions 256

Figure 4.9: Asymmetric version of the Ni(0)-catalyzed allylic amination reaction 257

Figure 4.10: A colorimetric ISES for higher throughput screening 258

Figure 4.11: A schematic depiction of the Cassette-ISES 259

Figure 4.12: Synthesis of α- and β-D-oxafructopyranosyl 1,2-diamines 260

Figure 4.13: Synthesis of α- and β-D-carbafructopyranosyl 1,2-diamines 261

Figure 4.14: Synthesis of an oxa- and carbafructose based salen ligand library 262

Figure 4.15: Schimadzu UV-2401 instrument with 16-well quartz micromulticell loaded with biphasic layers 263

Figure 4.16: Schematic depictions of the new miniaturized multicellular ISES 263

Figure 4.17: Three dimensional bar graph of ISES screening results 265
Figure 4.18: A comparison between directed evolution based approach and a combinatorial salen array based approach 269

Figure 4.19: X-ray crystal structures of the Co(II)-salen complexes and a possible influence of dipole-dipole interactions on the ring conformation 270

Figure 4.20: Transition-state model of Co(III)-catalyst derived from 17c in HKR of hexene oxide 272

Figure 4.21: Measurement of step height for the Co(II)-17c complex 273

Figure 4.22: Step heights from the crystal structures of the Co(II)-salen complexes 274

Figure 4.23: A streamlined synthesis of the key ketone intermediate 275

Figure 4.24: Enantioselectivities of the new reporting enzymes 300
Table of Tables

Chapter 1

Table 2.1: Known riboswitches in the nature and their cognate ligands 38-39

Chapter 2

Table 2.2: Kinetic characterization of GlcN6P analogues for \(glmS \) self-cleavage 61

Chapter 3

Table 3.1: Relative CI-MPR binding affinities 141
Table 3.2: Optimization of the azide-sulfonyl cyanide 1,3-dipolar cycloaddition 148
Table 3.3: Molecular features of the linkages and RBAs of the bivalent ligands 151
Table 3.4: Optimization of the displacement reaction of the sulfonyl tetrazoles 152
Table 3.5: Synthesis of PEG-tethered ligands as spatial probes 155

Chapter 4

Table 4.1: Screen of a \(4 \times 4 \) library of salen ligands for the Co(III)-catalyzed HKR 265
Table 4.2: Substrates screening using Co(III)-DNB catalyst derived from salen \textit{17c} 267
Table 4.3: HR-MS characterization of Co(III)-salen catalysts 297
Chapter 1
Overview of Phosphonates in Bioorganic Chemistry

Phosphonic acids, sometimes termed C-P compounds are a type of compound that contain the C-P(O)(OH)2 moiety. The acid, salt and ester forms are generally referred to as phosphonates. Perhaps organic chemists encounter phosphonates more often when using them in the Horner–Wadsworth–Emmons reaction. However, this overview will focus on the phosphonates that are produced either in nature or in laboratories, to imitate biologically relevant phosphates or carboxylates.

I. Naturally Occurring Phosphonates

The first report of a phosphonate in a living system was in 1959, published in Nature by Horiguchi and Kandatsu.1 While examining the amino acid composition of rumen protozoa from sheep, they observed a ninhydrin-positive substance which was later crystallized and determined to be 2-aminoethanephosphonic acid (AEP). This discovery opened a new chapter in the chemical biology of phosphorus metabolism. The unprecedented naturally-occurring C-P bond inspired biochemists in the years that followed to search for new phosphonates and novel enzymes in their biosynthetic pathways. After 55 years of exploration, a wealth of novel structures containing C-P bonds have been unveiled from various natural sources (Fig. 1.1).2 Most of these compounds possess potent biological activities due to their structural similarities with the native carboxylates or phosphates. Herein, a few examples are elaborated to demonstrate the importance and the rising interest of these underexplored compounds in recent years.
Figure 1.1: Structures of naturally-occurring phosphonates
A. Fosfomycin/Fosphonomycin

The discovery of fosfomycin was announced in 1969 by Hendlin and colleagues, under its former name fosphonomycin. This “new antibiotic” from strains of *Streptomyces* combines two unusual features: an epoxide ring and a carbon-phosphorus bond. In 1974, Kahan and colleagues studied the mechanism of action for its antimicrobial activities. They proposed that fosfomycin is an irreversible inhibitor of bacterial cell wall biogenesis. More specifically, analogous to phosphoenolpyruvate (PEP), fosfomycin competes for binding to UDP-N-acetylglucosamine enolpyruvyl transferase (or MurA). MurA catalyzes the first committed step in peptidoglycan biosynthesis, ligating PEP to the 3′-hydroxy group of UDP-N-acetylglucosamine (Fig. 1.2). An active site cysteine residue opens the epoxide ring of fosfomycin, resulting in the irreversible inactivation of the enzyme. Today, in the United States, fosfomycin tromethamine salt is used to treat urinary tract infections under the trade name Monurol®. Recently, the combination of fosfomycin and tobramycin was also used in clinical studies for treatment of cystic fibrosis.
B. 2-Amino-5-Phosphono-3-Pentenoic Acid (APPA) and APPA-Containing Peptides: Plumbemycins and Rhizocticins

In 1977, Park, Hirota and Sakai isolated two peptide antibiotics from *Streptomyces plumbeus*: Plumbemycin A [(L)-Ala-(L)-Asp-(L,Z)-APPA] and Plumbemycin B [(L)-Ala-(L)-Asn-(L,Z)-APPA]. The non-proteinogenic amino acid (L, Z)-APPA was later found at the C-terminus of the antifungal agents, Rhizocticins, as well. It is believed that both plumbemycins and rhizocticins enter the cells through oligopeptide transport systems (Fig. 1.3).

Host oligopeptidases cleave the peptides, releasing the warhead (L,Z)-APPA which inhibits the pyridoxal 5'-phosphate dependent enzyme, threonine synthase (TS). TS catalyzes the last step of threonine biosynthesis, which converts homoserine-O-phosphate to L-threonine. Structurally resembling the substrate homoserine-O-phosphate, (L,Z)-APPA competes for binding to TS, thereby interfering with the biosynthesis of ...
threonine, ultimately leading to the inhibition of cell growth.13 It is noted that the selectivity of these antimicrobials is determined by the proteinogenic amino acids attached to the (L,Z)-APPA. The specific sequences of these peptides can be differentiated by oligopeptide transporters from varied organisms.14 This is a nice prodrug strategy, demonstrated by Nature, that exploits a short peptide to deliver an active agent and selectively target a particular organism. In addition to the naturally-occurring Z-APPA, synthetic E-APPA has been studied, as well, mostly as a reversible inhibitor of cystathionine γ-synthase (synthesizes cystathionine from cysteine and homoserine phosphate).15

C. FR-900098 and Fosmidomycin

\[\text{Pyruvate} + \text{G3P} \rightarrow \text{DOXP} \]

\[\text{DOXP synthase} \hspace{1cm} \text{DOXP reductase} \]

\[\text{CO}_2 \]

\[\text{2-C-methyl-D-erythritol 4-phosphate (MEP)} \]

\[\text{NADP}^+ + \text{H}^+ \]

\[\text{IPP} \]

\[\text{DMAPP} \]

Figure 1.4: Inhibition of DOXP reductase by FR-900098 and fosmidomycin
FR-900098 and fosmidomycin were isolated from strains of *Streptomyces rubellomurinus* and *Streptomyces lavendulae*, respectively, by researchers at Fujisawa Pharmaceutical Co.16-17 These compounds inhibit isoprenoid biosynthesis by blocking 1-deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase (Fig. 1.4).18 This enzyme catalyzes the first committed step in the non-mevalonate pathway for biosynthesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), the fundamental building blocks for isoprenoid biosynthesis.19-21 Probably because both IPP and DMAPP are biosynthesized via the mevalonate pathway in animals and humans, FR900098 and fosmidomycin displays limited toxicity for mammalian cells. In addition to their antibacterial activities, FR900098 and fosmidomycin also display potent antimalarial activity, owing to the unexpected presence of the non-mevalonate pathway in *Plasmodium falciparum*, the most common causative agent of malaria. Indeed, fosmidomycin and its clindamycin combination have already shown great promise in early human trials for treating malaria, including showing activity against drug-resistant strains.22-24

D. Latest Discoveries

![Figure 1.5. The essential enzyme pepM in phosphonate biosynthesis](Image)
The majority of phosphonate natural products were isolated in the 20th century. However, new phosphonates continue to be discovered thanks to newly developed detection technologies and recent advances in genome mining. In the last two years, a number of novel phosphonates have been uncovered from various organisms. Phosacetamycin is N-acetylated Z-APPA that inhibits growth of both bacteria and fungi.25 Furthermore, Phosphoiody A bears a polyacetylene chain that is terminated with an unprecedented vinyl iodide.26 Phosphoiody A exhibited significant agonistic activity toward human peroxisome proliferator-activated receptor delta (hPPAR\(\delta\)). It displayed an EC\textsubscript{50} of 23.7 nM for hPPAR\(\delta\) activation and over 200-fold selectivity compared with other subtypes (hPPAR\(\alpha\) and hPPAR\(\gamma\)).

Recently, Metcalf \textit{et al} conducted a large-scale genome mining for the presence of \textit{pepM},27 which encodes the essential enzyme phosphoenolpyruvate phosphonomutase found in most phosphonate biosynthetic pathways (Fig. 1.5). From one of the \textit{pepM} positive strains, \textit{Streptomyces regensis} strain WC-3744, a unique cyanohydrin-containing phosphonate, cyanophos, was isolated.28 Considering the rarity of nitrile compounds in Nature,29 the discovery of this phosphonate is particularly exciting, and it certainly expands the structural diversity of known naturally occurring phosphonates.

In summary, recent years have seen a renewed interest in the study of naturally occurring phosphonates. Nevertheless, natural C-P compounds remain understudied metabolites. The enzymes involved in their biosynthetic pathways represent even more intriguing subjects for biochemical studies. Given the great potential associated with these compounds, more effort and resources will be devoted to this topic.
II. Synthetic phosphonates

Synthetic phosphonates have played important roles in the pharmaceutical and agrochemical industries. It is not an exaggeration to say that these molecules have changed our world. In this overview, three examples are discussed in detail to demonstrate the great impact that these compounds have brought to our lives.

A. Glyphosate/Roundup

Under the tradename “Roundup”, glyphosate is a broad-spectrum herbicide that was discovered by Monsanto in the 1970s. It kills weeds by blocking the shikimate pathway of aromatic amino acid biosynthesis. Glyphosate targets 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19), which converts shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) into EPSP via a ternary enzyme-substrate complex. Analogous to the transient PEP oxonium ion, glyphosate occupies the PEP binding site to form a more tightly bound ternary complex with S3P which slowly decrease the enzyme activity (Fig. 1.6). The formation of an EPSP synthase-S3P-glyphosate complex has been confirmed by X-ray crystallography. In addition, kinetic studies have shown that glyphosate inhibits EPSP synthase in an uncompetitive manner. Hence, glyphosate is a textbook example of uncompetitive inhibitors that bind not to the free enzyme, but rather, to the enzyme-substrate complex.

After its introduction to the market in 1974, glyphosate was quickly adopted by farmers due to its broad spectrum of activity and relatively low toxicity compared with other herbicides. It has grown even more popular since Monsanto induced genetically modified crops (termed “Roundup Ready System”) that resist the herbicide. In 2007,
glyphosate became the most used herbicide in the United States agricultural industry, with 180 to 185 million pounds applied that year. Nevertheless, recent years have seen rising concerns over the effect of glyphosate on the environment and human health. A 2014 article published in *Food Chemistry* implies that Roundup Ready soybeans have a high residual level of accumulated glyphosate, that could have “potential consequences for human and animal health”.

Figure 1.6: EPSP synthase and its inhibition by glyphosate

B. Bisphosphonates

Bisphosphonates are hydrolytically stable analogs of pyrophosphate (Fig. 1.7). The first reported synthesis of a bisphosphonate dates back to 1865 by German chemist Menschutkin. However, in the following century, bisphosphonates were only developed
for industrial uses, mainly in the textile, fertilizer and oil industries. In 1968, following the discovery that inorganic pyrophosphate inhibits both precipitation and dissolution of calcium phosphate, analogous bisphosphonates were used in the studies of calcium metabolism. This represents the first biological study of bisphosphonates. One year later, the collaboration between the Fleisch group (University of Berne, Davos, Switzerland) and David Francis (Procter & Gamble, Ohio, US) led to two seminal papers, published back to back in *Science*, which demonstrated for the first time that bisphosphonates are powerful inhibitors for both tissue calcification and bone resorption. It is clear that, as is the case for the native pyrophosphate, bisphosphonates inhibit the formation of calcium phosphate crystals through calcium-chelating abilities, thereby preventing the calcification of soft tissues. However, the mechanisms are more complicated for their use to prevent loss of bone mass.

The originally conceived theory that bisphosphonates inhibit dissolution of calcium phosphate appears unlikely in vivo. Instead, most bisphosphonates are believed to decrease the numbers of osteoclasts (cells that break down bone tissue) by promoting their apoptosis. Some non-N-containing bisphosphonates replace the terminal pyrophosphate of ATP through intracellular metabolism, leading to toxic ATP analogues which ultimately prompt osteoclasts apoptosis. In contrast, most N-containing bisphosphonates bind to and inhibit farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway (Fig 1.8). The disruption of FPP biosynthesis will block prenylation of proteins, including GTP-binding proteins, Ras, Rho and Rac. Interfering with their cellular function could result in increased cellular death by apoptosis. Hence, by mechanism of action, bisphosphonates can be divided into two different classes.
Bisphosphonates have very high affinities for bone tissues and can be rapidly absorbed onto the bone surface. Thus, they are very specific for bone diseases. Currently there are about 9 bisphosphonates used worldwide to treat osteoporosis, osteitis deformans (Paget’s disease), bone metastasis and other conditions that feature bone fragility.

Figure 1.7: Structures of bisphosphonates
C. Acyclic Nucleoside Phosphonates (ANPs)

Since its first clinic observation in 1981, human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) has caused an estimated 39
million deaths worldwide.50 The retrovirus mainly infects the human immune system, reversely transcribing its RNA genome into double-stranded DNA in the host cells.51

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1_9.png}
\caption{Inhibition of HIV-1 reverse transcriptase by AZT and tenofovir}
\end{figure}
Antiviral agents that target reverse transcriptases (RTs) have become crucial in management of the retroviral infections. 3’-Azido-3’-deoxythymidine (AZT, Zidovudine) was the first FDA-approved drug for HIV treatment.52 AZT is a nucleoside analogue that needs to be converted to AZT-triphosphate (AZT-TP) that then acts as a chain terminator in RT-catalyzed DNA synthesis. The first phosphorylation of AZT, or other nucleoside analogues, has been identified as the bottleneck of the deactivation process. Addressing this, De Clercq and Holy have developed a number of acyclic nucleoside phosphonates (ANPs) that only need two phosphorylation steps to be activated to the chain-terminating metabolites (Fig. 1.9).53-55 And then the ANP diphosphates are incorporated into the DAN chain, either by RNA reverse transcriptase or DNA polymerase. This mechanism is supported by a meticulous study with cidofovir diphosphate using gel electrophoresis.56

Thus far, three of these nucleotide analogue/reverse transcriptase inhibitors (NtRTIs) have entered the pharmaceutical market. Tenofovir, in its oral prodrug form tenofovir disoproxil fumarate (TDF or PMPA), has been approved for treatment of HIV infection under the trade name Viread. Cidofovir (Vistide, which targets viral DNA polymerase) is administrated intravenously to treat CMV retinitis in AIDS patients. Adefovir has been approved in its prodrug form, adefovir dipivoxil (Hepsera), to treat chronic hepatitis B virus (HBV) infections.

In addition to these well-established classes, there are other phosphonates that have reached pre-clinical or clinical studies. For example, Perzinfotel (EAA-090), a potent NMDA antagonist, has been investigated for treatment of stroke; however, it was shown to lack an analgesic effect. Taken together, the phosphonate motif has been an
important group in modern drug discovery, and it will continue to serve as a non-
hydrolyzable bioisotere for numerous phosphate and carboxylate metabolites.

III. Sugar Phosphonates in Bioorganic Chemistry

Carbohydrate phosphates play critical roles in cell survival and proliferation. As
one of the most common metabolic intermediates, glucose 6-phosphate (G6P) lies in two
major metabolic pathways, namely glycolysis and the pentose phosphate pathway.57 The
former converts G6P to pyruvate and releases free energy in the form of adenosine
triphosphate (ATP). The latter converts G6P to ribose 5-phosphate (R5P) and erythrose
4-phosphate (E4P) which are utilized in biosynthesis of nucleic acids and aromatic amino
acids, respectively. In addition, fructose 6-phosphate (F6P), mannose 6-phosphate (M6P),
glucosamine 6-phosphate (GlcN6P) all emanate from G6P and are all essential
intermediates in carbohydrate metabolism, influencing various cellular processes.

Like other phosphonates, replacing enzyme-lable O-P bonds with stable C-P
bonds in carbohydrate scaffolds, generates sugar phosphonates. These compounds are
resistant to phosphatase cleavage and, as such, exhibit a sort of “constitutive
phosphorylation” phenotype and as such be able to block or artificially stimulate a
metabolic pathway of interest, resulting in a desired cellular response. The first synthesis
of sugar phosphonates dates back to the 1950s. Burger et al. synthesized a nonisosteric
(one carbon unit shorter) phosphonate analogue of G6P via the Arbuzov reaction.58 Later,
the Syntex group claimed the synthesis of the isosteric phosphonate analogues of G6P,
R5P, and M6P, exploiting a stabilized Wittig reagent.59 However, these protocols had
limited applications due to the inconvenient process and harsh conditions. Despite their
great potential in biosystems, sugar phosphonates have been incompletely investigated
and underutilized in biochemical investigations.

In 1994, our group reported a direct displacement of sugar triflates with diethyl
lithiomethylphosphonate, providing an expedient entry into valuable, sought after sugar
phosphonates. From the corresponding alcohols, the primary triflates can be easily
synthesized, purified and stored under argon. At – 78 °C in THF, the triflates are rapidly
displaced by the phosphonate anion in an SN2 manner. Reactions are typically complete
within 10 min following substrate addition. This reaction proved to be widely applicable
toward various triflates, offering a general approach to the isosteric phosphonate
analogues of sugar phosphates.

Figure 1.10. Three types of phosphonates vs native phosphates

Most importantly, this protocol is quite compatible with a variety of different C-
nucleophiles, especially the α-fluorinated phosphonate anions. As a matter of fact,
the triflate displacement was originally applied with diethyl (α,α-
difluoromethy)phosphonate anion, to give the acclaimed difluorinated phosphonate
analogues of sugar phosphates. In the 1980s, Blackburn pointed out that while
phosphonates sterically resemble phosphates, the replacement of an O-P bond with a C-P bond will largely change the polarity of the group. This could be a crucial factor in the ability of phosphonates to bind to proteins as the deleted oxygen may have been involved in significant dipole-dipole interactions in the protein active site. In such cases, α-halogenation, particularly α-fluorination, could potentially compensate for the removal of the oxygen electronnegative atom, and in this way provide a more effective surrogates for the native phosphate (Fig. 1.10).

Mostly promoted by Blackburn and McKenna, the -CF₂ moiety has been employed as an isopolar replacement of the bridging oxygen. Indeed, in a number of notable cases, α, α-difluorinated phosphonates have been observed to be superior analogues to their non-fluorinated counterparts. Perhaps the most impressive case was a series of hexapeptides, developed by Burke and coworkers, utilizing non-hydrolyzable analogues of phosphotyrosine to inhibit protein phosphotyrosine phosphatase PTP1B. The Burke group chose to use a hexapeptide (Ac-Asp-Ala-Asp-Glu-pTyr-Leu-C(O)NH₂) that represents the sequence at the EGFR (epidermal growth factor receptor) phosphorylation site, an excellent substrate for rat PTP1. The peptide
containing the difluorophosphonotyrosine in place of pTyr exhibited 2000-fold greater inhibition than the non-fluorinated congener (Fig. 1.11).

Nonetheless, an extensive SAR study from our group showed that the -CH$_2$-analogue of G6P is a better substrate for G6P dehydrogenase (G6PDH) than the difluorinated counterpart.

More importantly, the two diastereomeric α-monofluorinated phosphonates have also been synthesized through the addition of a phosphite anion to the appropriate aldehyde, followed by deoxyfluorination. Interestingly, out of the four synthetic substrates examined, (7S)-glucose-CHF-phosphonate displayed the best substrate activity with $k_{cat}/K_m = 922$ mM$^{-1}$S$^{-1}$, 11-fold higher than its (7R)-diastereomer (Fig. 1.12). Together with other cases, this study suggests that any of the non-, mono- and difluoro-phosphonates could have the best fit for an active site. The activity of these analogues is determined by assaying binding to the targeted macromolecule. And, as can be seen from the discussion above, this is clearly an experimental science, i.e. for a given

Figure 1.12: Phosphonate analogues are examined as pseudosubstrates for Glc6P dehydrogenase

A: $X = H$, $Y = H$, $k_{cat}/K_m = -457$ mM$^{-1}$s$^{-1}$; B: $X = F$, $Y = F$, $k_{cat}/K_m = -184$ mM$^{-1}$s$^{-1}$; C: $X = F$, $Y = H$, $k_{cat}/K_m = -86$ mM$^{-1}$s$^{-1}$; D: $X = H$, $Y = F$, $k_{cat}/K_m = -922$ mM$^{-1}$s$^{-1}$
active site, it is generally best to synthesize all phosphonate analogues and examine these for binding to the target macromolecule.

A year after our 2000 *JOC* article describing the importance of monofluorinated phosphonates based upon their tunability for binding to G6PDH, our group reported a triflate displacement approach to the monofluorinated phosphonates. This is realized by using a McCarthy reagent as the nucleophile, followed by reductive removal of the phenylsulfonyl group. Emanating from a common precursor, one can thus access all three types of phosphonate in a divergent, late stage value-added manner (Fig. 1.13). This feature renders the triflate displacement one of the more useful methods for the synthesis of biologically relevant phosphonates. Applying this strategy, we have carried out several case studies and discovered a variety of interesting phosphonates, mostly as analogues of sugar phosphates. For instance, the nonfluorinated phosphonate analogue of M6P is shown to be excellent monodentate ligand for the M6P receptor, while the difluorinated congener showed significantly lower binding affinity. The \(\alpha,\alpha\)-difluorinated phosphonate analogue of fructofuranose 6-phosphate has been seen to be a slow-binding inhibitor of glucosamine 6-phosphate synthase. Furthermore, the Berkowitz group was the first to synthesize the \(\alpha,\alpha\)-difluorophosphonate analogues of serine-\(O\)-phosphate and threonine-\(O\)-phosphate. The former has since been extensively utilized in chemical biology to understand the role of protein phosphorylation at specific loci.

Chapters two and three of this thesis will discuss the use of the triflate displacement chemistry to probe two distinct biological systems, targeting both a protein (M6P/IGF2R) and an RNA target (the *glmS* riboswitch). In these sections, detailed
syntheses of the relevant phosphonate analogues are presented and their corresponding biochemical characterization is also described.

Figure 1.13: A divergent approach to three types of phosphonates
IV. References

 Hahn, D.; Yang, I.; Lee, J.; Mun, B.; Ekins, M.; Nam, S. J.; Kang, H.,
 Phosphoiodyns A and B, unique phosphorus-containing iodinated
 polyacetylenes from a Korean sponge Placospongia sp. Org. Lett. 2013, 15
 (1), 100-3.
27. Ju, K. S.; Doroghazi, J. R.; Metcalf, W. W., Genomics-enabled discovery
 of phosphonate natural products and their biosynthetic pathways. J. Ind.
 Metcalf, W. W., Cyanohydrin phosphonate natural product from
29. Fleming, F. F., Nitrile-containing natural products. Natural Product
30. Engel, R., Phosphonates as analogs of natural phosphates. Chemical
31. Franz, J. E. N-Organo-N-phosphonomethylglycine-N-oxides and
 phytotoxicant compositions containing them. 1977-836338 4131448,
 19770926., 1978.
32. Bentley, R., The shikimate pathway--a metabolic tree with many branches.
33. Steinruecken, H. C.; Amrhein, N., The herbicide glyphosate is a potent
 inhibitor of 5-enolpyruvylshikimic acid 3-phosphate synthase.

46. Luckman, S. P.; Coxon, F. P.; Ebetino, F. H.; Russell, R. G.; Rogers, M. J., Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-

50. World Health Organization, HIV/AIDS.

86. unpublished results.

Chapter 2
Phosphatase-Inert Actuators for the *glmS* Riboswitch

I. Introduction

A. Background of Riboswitches

At any given time, a typical human or bacterial cell only expresses a fraction of its genes (~3% to 5%). “The fundamental problem of chemical physiology and of embryology is to understand why tissues cells do not all express, all the time, all the
potentialities in their genome,” commented Jacob and Monod. Indeed, gene expression is controlled by an extremely sophisticated system that coordinates numerous tasks to respond to developmental needs and environmental stimuli. Essentially, any step of the expression process can be recruited to modulate levels of gene products in a cell (Fig. 2.1). The most well-characterized mechanism is the protein-based modulation of transcription initiation. Numerous transcription factors have been uncovered since the initial discovery of the lactose repressor (Lacl), which interacts with the lac operon to ultimately control the production levels of lactose-metabolism enzymes. In addition to their interactions with DNA, protein factors can bind to mRNA to regulate either transcription termination (e.g. the PyrR protein) or translation (e.g., TRAP protein and CUGBP1). Because proteins can adopt different conformations to respond to cellular and environmental cues, they can carry out a variety of regulatory activities. In contrast, nucleic acids were considered to be merely responsible for storing and transferring genetic information.

Discoveries made in recent decades have proven that RNA plays a far more sophisticated role than originally believed. Notable examples include the discoveries of small interfering RNA (siRNA) and micro RNA (miRNA) which are central to RNA interference (RNAi). These small non-coding RNAs exert posttranscriptional gene control, either through protein-associated RNA cleavage (siRNA) or sequence specific RNA binding (miRNA). RNAi mechanism has been found in many eukaryotic cells including plants and animals. In 2006, the Nobel Prize in Physiology or Medicine was awarded to Fire and Mello for their discovery of RNA interference.
Within the last 12 years, a new gene-control mechanism has emerged in which mRNA self-regulates its own translation, with no obligate needs for protein factors. Termed riboswitches, these 5’-untranslated regions (UTRs) sense specific secondary metabolites. Upon binding RNA, these small molecules typically induce allosteric changes in the conserved structures, which ultimately leads to the termination of gene expression. Prior to the discovery of the existence of riboswitches in nature, the regulation of some essential genes in bacterial metabolism remained enigmatic. For example, thiamin (Vitamin B1) is a crucial coenzyme for bacterial cell growth. However, when bacteria are in thiamin-adequate media, they will exploit exogenous thiamin rather than produce their own. Therefore, there must be a regulatory factor that senses the concentration of the product and controls the expression of the biosynthetic genes. This led to the postulate that a thiamin pyrophosphate (TPP) sensing protein was involved in the modulation of thiamin biosynthetic genes. However, such a regulatory protein has not been discovered in nature thus far.

Alternatively, in 2001, Miranda-Rios and Soberon disclosed that the conserved structure (thi box) of the mRNAs encoding thiamin biosynthetic enzymes is indispensable for thi gene expression, implying the presence of a RNA-dependent gene regulating system. In 2002, Breaker et al. confirmed that the mRNAs (thiM and thiC) indeed regulate thi gene expression via an allosteric mechanism. Namely, the 5’-UTRs of thiM and thiC bind thiamin or its pyrophosphate derivative, ultimately leading to the reduction of gene expression. The resultant/resulting complex is shown to take on a conformation than is distinct from that of the unbound RNA structure, which is proposed
<table>
<thead>
<tr>
<th>Riboswitch</th>
<th>Functional System</th>
<th>Cognate ligand</th>
<th>K_d</th>
<th>Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPP riboswitch
(THI-box)</td>
<td>Thiamin biosynthesis; transport of thiamin and related compounds</td>
<td></td>
<td>8-600 nM</td>
<td>2002</td>
</tr>
<tr>
<td>FMN riboswitch
(RFN-element)</td>
<td>Riboflavin biosynthesis and transport</td>
<td></td>
<td>\sim5 nM</td>
<td>2002</td>
</tr>
<tr>
<td>SAH riboswitch</td>
<td>SAH recycling system for SAM biosynthesis</td>
<td></td>
<td>\sim20 nM</td>
<td>2008</td>
</tr>
<tr>
<td>Purine riboswitch
(G-box or XprR regulon)</td>
<td>Purine metabolism and transport</td>
<td></td>
<td>\sim5 nM</td>
<td>2003</td>
</tr>
<tr>
<td>PreQ1 riboswitches</td>
<td>Pre-queuosine metabolism and transport</td>
<td></td>
<td>\sim2.5 nM</td>
<td>2007</td>
</tr>
<tr>
<td>ATP riboswitch
(ydaO leader)</td>
<td>ATP metabolism and transport</td>
<td></td>
<td>0.6 nM</td>
<td>2012</td>
</tr>
</tbody>
</table>
Table 2.1 (Continued).

<table>
<thead>
<tr>
<th>Riboswitch Type</th>
<th>Function</th>
<th>IC50</th>
<th>Reference Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic di-GMP riboswitches</td>
<td>c-di-GMP involved singal transduction</td>
<td>Class I: 16 nM Class II: 2.2 nM</td>
<td>2008</td>
</tr>
<tr>
<td>Lysine riboswitch</td>
<td>Lysine biosynthesis, transport and catabolism</td>
<td>1 μM</td>
<td>2003</td>
</tr>
<tr>
<td>Glycine riboswitch</td>
<td>Glycine metabolism</td>
<td>5 nM-30 μM</td>
<td>2004</td>
</tr>
<tr>
<td>Glutamine riboswitch</td>
<td>Glutamine and nitrogen metabolism</td>
<td>150-575 μM</td>
<td>2011</td>
</tr>
<tr>
<td>glmS riboswitch</td>
<td>GlcN6P metabolism</td>
<td>k_{cat}/K_{m}: 1.1-100 min^{-1}</td>
<td>2004</td>
</tr>
<tr>
<td>THF riboswitch</td>
<td>tetrahydrofolate metabolism and transport</td>
<td>~8 μM</td>
<td>2010</td>
</tr>
<tr>
<td>Cobalamin riboswitch (B<sub>12</sub> element)</td>
<td>Cobalamin biosynthesis; transport of cobalamin and related compounds; cobalt transport; cobalamin-independent isozymes of cobalamin-dependent enzymes</td>
<td>300 nM</td>
<td>2002</td>
</tr>
</tbody>
</table>
as the mechanism underlying the translation inhibition. In the same year, the Breaker group unveiled two more riboswitches that sense flavin mononucleotide (FMN, Vitamin B2) and cobalamin (Vitamin B12), respectively. Since then, this mRNA self-regulating mechanism has been found to be widely used in prokaryotic cells (Table 2.1). To date, there are approximately two dozen riboswitches that have been experimentally validated to sense 17 different metabolites, one secondary messenger (cyclic di-GMP) and one divalent cation (Mg$^{2+}$).

B. Background of the glmS riboswitch

In 2004, a unique riboswitch was disclosed by the Breaker group by exploiting bioinformatics in bacterial genomes. Riboswitches have conserved sequence and secondary structures, typically located in the noncoding or intergenic regions (IGRs). Using the database known as the Breaker Laboratory Intergenic Sequence Server (BLISS), they examined the IGRs of 91 microbial genomes, that led to a variety of conserved RNA motifs. The glmS element was found to be highly conserved in 18 gram-positive bacteria (Fig 2.2). It resides upstream of the glmS gene which codes for the enzyme glucosamine 6-phosphate synthase or synthetase (glmS). GlmS lies at the beginning of the cell wall biosynthesis. It converts fructose 6-phosphate to glucosamine 6-phosphate, exploiting glutamine as the amine source. Along the biochemical pathway, several metabolites could serve as the signaling molecule for the putative glmS riboswitch.

To identify effective ligands for riboswitches, an “in line probing” assay was previously developed. This assay relies on the structure-dependent RNA self-cleavage. Single strand RNA is relatively unstable and can be cleaved spontaneously over time.
The rate of the cleavage is found to be closely related to the secondary and tertiary structure. The spontaneous cleavage only occurs at a substantial rate when the

Figure 2.2: Secondary structure of the Bacillus cereus glmS riboswitch/ribozyme. The highly conserved core sequence of the glmS ribozyme is shown in red (P2.1 and P2.2), while requisite structural elements (P1 and P2) and peripheral structural elements (P3-P4) are also displayed with nucleotide detail. The arrowhead denotes the site of self-cleavage.
nucleophilic 2’-oxygen, phosphorus, and the leaving 5’-oxygen are in the proper position. Thus, regions with stable base-paired structures rarely undergo cleavage, while the nucleotides in some tertiary structures are particularly vulnerable to adjacent nucleophilic attack. Therefore, by incubating a messenger RNA in the presence or absence of potential ligands and examining the change in cleavage patterns, one can identify small molecule effectors as well as their binding regions on the RNA.

Prior to the discovery of GlcN6P as a riboswitch ligand, the “in line probing” assay had successfully recognized cobalamin, thiamin, FMN, SAM, glycine and lysine for binding their corresponding riboswitches. Consequently, Breaker et al. subjected a 246-nucleotide glmS mRNA from Bacillus subtilis to the assay with various metabolite candidates. Gel electrophoresis revealed that the mRNA was mostly cleaved within 1 min in the presence of 200 μM GlcN6P, while the same cleavage fragment in the absence of GlcN6P was almost negligible. Such an observation experimentally confirms the existence of the glmS riboswitch in bacteria, and divulges that GlcN6P serves as a handle, exerting a genetic switch to regulate glmS gene expression.

More interestingly, single-site cleavage is 1000-fold faster than the spontaneous cleavage of a typical unconstrained RNA linkage, and 10-fold faster than any known constrained RNA structure that favors the phosphodiester transesterification. This made Breaker and others wonder whether this “spontaneous cleavage” is really spontaneous or actually catalytic. The extensive kinetic characterization and x-ray crystal structures have now led to the conclusion that the glmS RNA is indeed a novel class of ribozyme. In the presence of GlcN6P, it accelerates its self-cleavage by 10^6-8 fold. This feature makes the glmS riboswitch/ribozyme unique in both categories. As a riboswitch, it
undergoes a self-cleavage rather than a conformational change to regulate gene expression. As a catalytic RNA, it is the first known natural ribozyme that requires a small molecule cofactor for the catalysis. Together with the other 13 classes of naturally-occurring ribozymes, the \textit{glmS} ribozyme supports the “RNA world” theory which hypothesizes that life begins from self-replicating RNA, rather than the DNA-RNA-protein system in current biology.

![Figure 2.3: Plausible mechanism for the GlcN6P activated RNA cleavage](image)

There has been debate about the role of GlcN6P in the mechanism of \textit{glmS} self-cleavage. Previously, it was proposed that GlcN6P only acts as a general acid which protonates the leaving oxygen of the phosphate group. This was supported by the crystal structure that shows a nearby guanine (G33) posed to deprotonate the 2’-OH of the attacking nucleotide A-1. Furthermore, a G33A mutation deactivates the \textit{glmS} self-cleavage, which validates that the guanine is essential for the catalysis. However, in 2011, Fedor et al. conducted a pH-fluorescence profiling using a fluorescent guanosine analogue, 8-azaguanosine. The microscopic pKa of the active site guanine was measured
to be around 8.9, which suggests the guanine (N1) should be protonated under the assay pH (~7.3)41.

Furthermore, it has been demonstrated that the cleavage rate has a dependence on the pK_a of the amino group of GlcN6P37. The Brønsted β-value for GlcN6P was recently determined to be 0.7 in Fedor’s group, suggesting a general base role in the catalysis36. GlcN6P analogues that lack the base function of the 2-amino group also failed to catalyze the cleavage42. Therefore, the mechanistic most consistent with all available data appears to be on in which GlcN6P serves as a general base and a general acid in the activation of the \textit{glmS} self-cleavage. As shown in Fig. 2.3, in this view, the GlcN6P-2-amino group deprotonates the 2’-OH of A-1 through a proton hopping mechanism. The 2’-oxygen attacks the phosphodiester linkage, forming the 2’-3’ cyclic phosphodiester. The 2-amino group protonates the leaving oxygen of G1, facilitating the cleavage. This proposed mechanism is supported by Raman difference crystallography studies43 and computational simulations44. These studies suggest that the \textit{glmS} active site tunes down the GlcN6P (-NH$_2$) pK_a to align with the optimal reaction pH.

C. \textit{GlmS} riboswitch as an antimicrobial target

In addition to being a great study subject, the \textit{glmS} riboswitch also represents a potential new target for antimicrobial drug development. Bacterial resistance is emerging at an alarming rate. A 2014 WHO report reveals that “this serious threat is no longer a prediction for the future, it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country.”45 However, most academic groups and companies are working on known scaffolds and known targets46. To
sustainably battle bacterial pathogens, especially the multidrug-resistant “superbugs”, new targets in the bacterial life cycle are in great demand. Riboswitches have emerged as attractive alternatives for the development of new antibiotics. These metabolite-sensing RNAs regulate expression of genes that are essential in bacterial metabolism. In addition, most riboswitches are present in prokaryotic cells. No natural riboswitch has been detected in mammalian cells to date. This reduces the potential toxicity issues that are affecting many antibiotic candidates.

Figure 2.4: A negative feedback mechanism exerted by the glmS riboswitch to regulate glmS gene expression
In addition, the \textit{glmS} riboswitch is found in a number of pathogenic bacteria, including high profile ones such as \textit{S. aureus}, \textit{Clostridium difficile}, and \textit{B. anthracis}.49 In the life cycle of these bacteria, proper control of \textit{glmS} gene expression is critical for the production of GlcN6P, an essential metabolic precursor for bacterial cell wall synthesis.50 As GlcN6P accumulates in the cell, it facilitates the self-cleavage of \textit{glmS} RNA, unleashing a new 5’-end as a marker for Ribonuclease J1 (RNase J1).51 Further degradation destroys the coding region of \textit{glmS} RNA, decreasing the production of GlcN6P synthase and therefore the product of GlcN6P in the cell. Thus, a small molecule that artificially actuates the \textit{glmS} riboswitch could lead to significant reduction of \textit{glmS} gene expression, consequently disrupting the cell wall biosynthesis (Fig. 2.4). This idea has prompted several efforts to develop artificial actuators for the \textit{glmS} riboswitch.

In a 2004 \textit{Nature} paper, the Breaker group demonstrated that the \textit{glmS} RNA strongly favors GlcN6P against even closely related analogues.33 This was later reinforced by several other SAR characterizations from Breaker and other groups.36-37, 42 From these studies, along with x-ray crystal structures, a series of key molecular components were proposed for GlcN6P-actuator activity: i) the 6-phosphate is the anchoring element that binds one of two Mg2+ ions in the active site; ii) the 4-hydroxyl group is considered as an indispensable hydrogen-bond donor for the binding; iii) the fact that \textit{glmS} RNA binds only the α-anomer GlcN6P suggests that the anomic -OH is also involved in molecular recognition; iv) the free 2-amino group has proven to be essential for the actuation, and in the Soukup model, this amino group serves the role of a general base and a general acid (in the ammonium form) for the catalytic RNA-cleavage.
In 2006, Mayer and Famulok developed a “high throughput compatible” assay to identify artificial actuators of the $glmS$ riboswitch. They derivatized the 5’-end of an 81-nucleotide $glmS$ RNA with a fluorescent label. Utilizing fluorescence polarization (FP),
they were able to estimate binding affinity between the nucleic acid and the small molecules. The modified RNA responded well to GlcN6P, as the intensity of FP showed strict dependence on GlcN6P’s concentration. However, to their disappointment, the screening of an initial 88-membered library, and later over 5000 compounds did not yield any compounds that could actuate the glmS riboswitch.

In 2011, Mayer et al. went back to the structure-based approach. They synthesized and tested 9 analogues of GlcN6P. Interestingly, the replacement of the ring oxygen with -CH2- only resulted in a modest loss of activity. At a concentration of 200 μM, the carba-GlcN6P promotes the RNA self-cleavage with a reported rate constant of 0.153 min⁻¹, comparable to that of 0.177 min⁻¹ from the natural metabolite. Other modifications of the sugar phosphate, however, were much less tolerated in the glmS-riboswitch active site. It is noted that this carbocyclic glucosamine 6-phosphate was later included in another SAR characterization. In this study, a different group also synthesized a pair of nonisosteric α-hydroxyl phosphonate analogues. Nonetheless, these shortened phosphonate analogues showed no activity for the cleavage assay. Recently, Posakony and Ferré-D’Amaré synthesized a series of GlcN6P and GlcN analogues as well; however, the activities of these were not disclosed in the report.

II. Results and Discussion

A. Synthesis of GlcN6P Analogues

As a group that excels in synthesizing phosphonate analogues, we embarked on the glmS project in collaboration with Prof. Julianne Soukup from Creighton University. Perhaps, the most obvious such analogue to target was the isosteric phosphonate
surrogate for GlcN6P. However, phosphonate analogues of aminosugar 6-phosphates had not been reported prior to this work. A synthetic strategy remained to be established. To adopt our triflate displacement methodology, we needed to design and synthesize a viable glucosamine 6-\(O\)-triflate. And one significant challenge was to find a proper protecting group, that would be compatible for both the triflate installation step and the displacement step. The initial effort using an acetyl group met with little success in the triflate installation stage, while the trifluoroacetyl group proved to be incompatible with the displacement conditions. One the other hand, sulfonyl protecting groups were well tolerated under such conditions, with the (2-trimethylsilyl)ethanesulfonyl (SES) group being optimal.

The key step in our synthetic route involves an iodonium-mediated sulfonamidoglycosylation of glycals. This chemistry was discovered in 1990s by Griffith and Danishefsky, and has been broadly employed to assemble glucosamine-containing oligosaccharides.56-57 This particular iodonium salt, iodonium di(sym-collidine) perchlorate (IDCP) was shown to be critical for the success of the initial alkene iodination reaction. Therefore, staring from the glucal 1, we first introduced the sulfonylamino functionality to the 1-position using freshly prepared IDCP. Upon treatment with an alcohol, in the presence of a silver salt and base, the amino group “rolls over” to the 2-position of the sugar, via a presumed N-sulfonyl aziridine intermediate, that is opened on the anomeric side by the alkoxide present. Following the successful application of this N-rollover reaction with benzyloxy-anion opening of the putative sulfonyl aziridine intermediate, the sulfonyl nitrogen was further protected via N-benzylation. Fluoride deprotection of the TBDPS group then gave the free alcohol 3.
which proved to be a convenient stage at which to store significant quantities of material, as a key intermediate.

The reaction between 3 and triflic anhydride provided the glucosamine 6-\(O\)-triflate in over 90% yield. This triflate intermediate displayed only modest stability under argon. Its DCM solution (concentration < 1 g/L) was stored in a -40 °C freezer for 3 days, with no significant degradation using NMR analysis. However, when being dried under vacuum, the compound turned to a brown color within 1 h at rt. A TLC analysis showed that multiple degradation products were generated from the triflate. Consequently, compound 4 was normally freshly prepared and immediately subjected to the displacement reaction. The displacement of 6-\(O\)-triflate with excess di-\(O\)-benzyl phosphonomethyl lithium gave the phosphonate product 5 in up to 62% yield. Additives such as HMPA were explored in effort to increase the reaction yield, however, no appreciable improvement was observed. Following the SES deprotection with CsF, the global deprotection of six benzyl groups proceeded smoothly in 86% yield. The fully

Figure 2.6: Synthesis of phosphonate 6 via triflate
deprotected phosphonate was then purified by trituration with methanol, to a purity of over 95% (estimated from NMR analysis). Lyophilization finally afforded the desired phosphonate surrogate of GlcN6P 6 as a white foam (Fig. 2.6).

Motivated by this synthetic achievement, we set out to exploit this route for synthesis of a series of GlcN6P analogues. First, we decided to explore tether length in the phosphonate-based analogues. Phosphite anions are known as better nucleophiles than phosphonoalkyl anions. The C-P bond can be constructed via substituting a variety of electrophiles with phosphite anions. Herein, we reacted the key triflate intermediate 4 with dibenzyl phosphite anion to provide the one-carbon “truncated” phosphonate 7 in 80% yield. Standard deprotection procedures were then followed to give analogue 8. This strategy was subsequently adopted to synthesize the “elongated” phosphonate analogue. The requisite alcohol 10 was prepared from the displacement of 4 with a malonate anion,
followed by a mono-decarboxylation/reduction sequence. Nevertheless, the extended triflate, built on the alcohol 10, was highly unstable even at low temperature (-40 °C). Therefore, the corresponding iodide was employed as an alternative electrophile for the displacement reaction with dibenzyl phosphite anion. After removal of SES and benzyl groups, the phosphonate compound 12 was obtained as an “elongated” phosphonate analogue.

Additionally, we set out to explore other phosphate isosteres that have been used in bioorganic chemistry. In particular, we were inspired by the use of the malonate motif in phosphate mimics. For instance, the Frost group had synthesized a set of 3-deoxy-D-
arabino-heptulosonic acid 7-phosphate (DAHP) analogues that competitively inhibit 3-dehydroquinate (DHQ) synthase. Malonate, α-hydroxyl malonate and malonyl ether functional groups were utilized to replace the phosphate in binding to that enzyme. These carbocyclic inhibitors displayed excellent inhibition, with $K_i = 0.7, 0.3, 7 \mu M$ respectively, compared with a $K_m = 3.6 \mu M$ for DAHP. Recently, a malonate analogue of mannose 6-phosphate, which was first synthesized in our group for the M6P receptor, was found to be a strong inhibitor of *S. cerevisiae* M6P isomerase ($IC_{50} = 18.1 \mu M, K_i = 10.5 \mu M$).

Hence, malonate and malonyl ether analogues of GlcN6P were considered reasonable candidates for *glmS* riboswitch binding/self-cleavage. The malonate functionality was installed by displacement of the triflate 4 with dibenzyl malonate anion, in 82% yield. However, in the SES deprotection step, a major byproduct was obtained, namely the monocarboxylate resulting from Krapcho de-alkoxycarboxylation. Subsequently, both products were further deprotected to afford malonate analogue 18 and carboxylate analogue 19. In the meantime, the malonyl ether analogue 14 was also synthesized via a Rh(II)-mediated insertion into the O-H bond at the 6-position of the sugar by the Rh(II)-carbenoid species derived from dibenzyl diazonimate. Standard deprotection procedures were employed for all three carboxylate-based phosphate mimics (Fig 2.8).

Next, the phosphoramidate analogue was targeted as a novel mimic for GlcN6P. The triflate 4 was again employed in a S_N2 reaction with TMSN$_3$. Sequential SES-removal and Staudinger reduction then resulted in the 2,6-diamino-2-deoxy glucoside 21.
This diamine was then subjected to the reaction with dibenzyl chlorophosphate. Pleasingly, the \(N \)-phosphorylation exclusively proceeded on the primary amino group. Finally, the global Bn-deprotection gave the sought-after glucosamine 6-phosphoramidate 23 (Fig. 2.9).

![Synthesis of phosphoramidate analogue 23](image)

Figure 2.9: Synthesis of phosphoramidate analogue 23

The 2-amino group plays a significant role in catalysis. Modulation of its pK\(_a\) and spatial hindrance are expected to potentially influence the RNA self-cleavage reaction, potentially also providing insight into the mechanism of this reaction. Consistent with this picture, the \(N \)-acetyl GlcN6P had already been shown to be inactive toward \(glmS \) riboswitch actuation. \(N,N,N \)-trimethylation also completely deactivates the cofactor. In contrast, \(N \)-methylation of GlcN6P only led to a 16-fold loss of activity in terms of observed rate constant (\(k_{obs} \)).\(^{42}\) This is consistent with the postulate that the 2-amino group serves as a general base in catalyzing the self-cleavage reaction. In this case, we slightly modify the synthetic route to analogue 6, and synthesized two \(N \)-methylated phosphonate analogues of GlcN6P. After the “roll-over” reaction, the silyl ether 2 was methylated using MeI and NaH in DMF, followed by the TBDPS deprotection. The alcohol intermediate was then conveniently transformed into the phosphonate 25, following standard triflate displacement procedures. Interestingly, a significant
improvement of yield was observed for the displacement of the N-methyl glucosamine 6-O-triflate (75%), compared with the N-benzyl glucosamine 6-O-triflate (62%). This is probably because the N-methyl intermediate is more stable than the N-benzyl compound. As a result, the former is less likely to undergo side reactions such as hydrolysis or elimination reactions. Following SES removal, compound 26 was either hydrogenated to give the N-mono-methylated phosphonate 27, or methylated again to yield the N,N-dimethyl analogue 29, after debenzylation (Fig. 2.10).

In summary, nine analogues of GlcN6P have been synthesized (Fig 2.11). All but one of the syntheses proceed through displacement of a protected amino sugar triflate intermediate, attesting to the value of this synthetic strategy.
The self-cleavage assay was conducted in the Soukup Laboratory at Creighton University. A 154-nucleotide *Bacillus cereus* glmS riboswitch was utilized in the assay. The RNA was prepared through *in vitro* transcription from the amplified glmS DNA using T7 RNA polymerase. 32P-Labelled UTP (the α phosphate) was utilized in this process to radiolabel the RNA, which was then purified by polyacrylamide gel electrophoresis. 37 During this research, I was able to participate by conducting some of the self-cleavage assays. The glmS RNA was incubated with different analogues, and aliquots were taken to measure the intensity of the cleaved and the uncleaved fragments. From the percentage of the cleaved fragments, apparent rate constants could be determined. All nine analogues were tested for their ability to support glmS self-cleavage.

Figure 2.11: Structures of all the nine GlcN6P analogues

- GlcN6P
- GlcN
- 6
- 8
- 12
- 23
- 14
- 18
- 19
- 27
- 29

B. Self-Cleavage Assays with the *glmS* Riboswitch
Compounds 12 and 19 were tested at 1 mM owing to their limited quantities, while the remaining seven compounds were assayed at 10 mM concentration. Glucosamine (GlcN) was chosen as the control in these assays, as it was shown to facilitate the glmS riboswitch self-cleavage at rates that can be readily measured under such conditions. Although GlcN6P is the native cofactor for the glmS ribozyme and should be the direct compound of reference here, it is very difficult to measure its cleavage rate accurately. It is claimed that the reactions are extremely fast, even in the presence of low GlcN6P concentration. The reactions need to be quenched within seconds after initiation. Currently, there is ambiguity in the literature as to the value of k_{obs} for GlcN6P, with reported values ranging from 1.1 to 100 min$^{-1}$.33, 36-37

Time-point cleavage gels are presented in Figure 2.12 and Figure 2.13. Experimentally determined pseudo-first-order rate constants are presented in Table 2.2. Of the nine GlcN6P analogues synthesized, five displayed substantial cleavage rates; namely the isosteric phosphonate 6, its N-methyl 27, and N,N-dimethyl 29 congeners, as well as malonyl ether analogue 14 and the phosphoramidate 23 (Fig. 2.12). In contrast, the two nonisosteric phosphonate analogues, 8 and 12, showed very modest activation of glmS riboswitch self-cleavage, suggesting that the position of the phosphonate or phosphate in the RNA-active site is crucial for binding and catalysis. Deletion or insertion of one methylene (-CH$_2$-) unit alters the distance between the phosphonate-presumed to coordinate to an active site Mg$^{2+}$ ion- and the catalytically important amine functionality, thereby greatly decreasing actuator activity. As mentioned above, Ye et al. also reported on studies of two truncated α-hydroxyl phosphonate analogues of GlcN6P in 2010. These two compounds structurally resemble analogue 8, and α-hydroxylation.
failed to increase their potencies. Additionally, the mono-anionic carboxylate analogue 19 is nearly inactive in the cleavage assay. This supports the proposal that di-carboxylate functionalities are superior to mono-carboxylates for Mg-binding. Perhaps related to this observation, it was also previously shown that glucosamine 6-sulfate is not an actuator for this ribozyme. To our surprise, the malonate analogue 18 exhibited a weak glmS actuation, similar to that of compound 19. Compared with malonyl ether analogue 14, the deletion of the 6-oxygen significantly reduces activity in the self-cleavage assay (Fig. 2.13). Subsequently, the five active analogues and 18 were further characterized to determine their apparent second-order rate constants (k_{cat}/K_m).

In these kinetic studies, the apparent pseudo-first order rate constants (k_{obs}) were calculated by fitting the percentage cleavage versus time to equation (1):

$$\frac{f_{cleav}-f_0}{f_{total}} = k_{obs}t$$

(1)

Note that k_{obs} values were measured at different concentrations for each analogues. Under the presumed “k_{cat}/K_m conditions”, the k_{obs} should have a linear relationship with the concentration. Commonly observed as the linear part of a Michaelis-Menten plot, the empirical “k_{cat}/K_m region” represents a range where the substrate concentration is < 20% K_m. However, in this case, K_m is not determined for these analogues. Nonetheless, within the assay concentration range (up to 100 mM), the plot of k_{obs} vs concentration remained fairly linear for most analogues. Therefore, the second order rate constants were derived from the following equation (2):

$$k_{obs} = \frac{k_{cat}}{K_m} [\text{cofactor}]$$

(2)
Figure 2.12: Cleavage gels of the five most active analogues
Pleasingly, the phosphonate analogue 6 and the malonyl ether 14 proved to be excellent actuators for the *glmS* riboswitch. Compared with GlcN, 6 and 14 displayed a 22-fold and 27-fold greater catalytic efficiency, respectively. The previously promising phosphoramidate 23, however, trailed in the second order kinetic analysis, with a k_{cat}/K_m of 0.01 mM$^{-1}$min$^{-1}$. It has been reported that the P-N bond of phosphoramidate is susceptible
to hydrolysis. Nonetheless, a stability test of 22 showed no apparent degradation in D2O at rt for days. Although it is possible that the presence of RNA or Mg2+ phosphoramide cleavage may underlie some of the perceived decrease in riboswitch actuation, the phosphoramide functionality may simply be a poor surrogate in this case study. As for the N-methylated phosphonates 27 and 29, neither is as effective as analogue 6 in glmS activation, suggesting limited steric tolerance in this RNA active site. However, it should be noted that the dimethyl phosphonate 29 is 2-3 times more active than the less sterically hindered 27. In our hands, titration studies, yield pKa values of 8.2 and 7.8 for these two analogues, respectively (Table 2.2). As seen in Table 2.2 and Fig. 2.17, each titration curve has two inflection points, indicating two pKa values, corresponding to the second pKa of the diacid functionalities and the amine group. We presume that the first one is

Table 2.2: Kinetic characterization and pKa's of GlcN6P analogues for glmS self-cleavage

<table>
<thead>
<tr>
<th></th>
<th>(k_{obs} \text{ (min}^{-1})</th>
<th>(k_{cat}/K_m) (\text{ (mM}^{-1}\text{min}^{-1}))</th>
<th>RCE</th>
<th>pKa1 (-OH)</th>
<th>pKa2 (-NH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlcN</td>
<td>0.174 ±0.025</td>
<td>0.0178</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>0.924 ±0.10</td>
<td>0.394</td>
<td>22.1</td>
<td>7.3</td>
<td>7.9</td>
</tr>
<tr>
<td>14</td>
<td>1.006 ± 0.21</td>
<td>0.488</td>
<td>27.4</td>
<td>3.9</td>
<td>8.1</td>
</tr>
<tr>
<td>23</td>
<td>0.101±0.013</td>
<td>0.0101</td>
<td>0.567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.027 ± 0.011</td>
<td>0.0035</td>
<td>0.197</td>
<td>7.6</td>
<td>8.2</td>
</tr>
<tr>
<td>29</td>
<td>0.0423 ± 0.010</td>
<td>0.0100</td>
<td>0.562</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>GlcN6P</td>
<td>1.1-100 (refs 33,36,37)</td>
<td>-</td>
<td>-</td>
<td>6.257</td>
<td>8.257</td>
</tr>
</tbody>
</table>

\(^a\) 10 mM actuator, pH 7.3, 25 °C; rates are indicated ± standard deviation
\(^b\) 1.0-0.01 mM actuator, pH 7.3, 25 °C
\(^c\) Relative Catalytic Efficiency (RCE) = \(k_{cat}/K_m\) relative to GlcN.
induced by phosphate surrogates and the second one is by the amino group. This suggests that it is optimal if the pK\textsubscript{a} of the 2-amino group is close to the pH of the cleavage assay (~7.3), so that this amino group can serve as both a general acid and a general base catalyst for RNA cleavage, as postulated above.

C. Molecular Modeling and pK\textsubscript{a} Determination by Titration

Although compound 6 represents one of best analogues to date, it is still ~1/7 as active as GlcN6P. For future ligand design, we set out to assess the interactions between the phosphonate and the glmS riboswitch. Currently, there are 18 x-ray crystal structures of the glmS riboswitch from two different organisms: *Thermoanaerobacter tengcongensis* and *Bacillus anthracis*.65-69 Six structures are in the pre-cleavage stage with GlcN6P bound (2Z74; 2Z75; 3B4B; 3B4C; 3G8T; 2NZ4). All of these riboswitches are mutated in the active site. Hence they can form a stable complex with bound actuator and are unable to undergo self-cleavage.

One riboswitch structure from *B.anthracis* with pdb code 2NZ466 was utilized in the molecular docking experiments. This RNA construct displays 98% identity with the *B. cereus* riboswitch employed in the self-cleavage assays here. As seen in Fig. 2.14, the active site adenosine (A-1) was modified by methylation of the 2’-hydroxyl group. Therefore, this RNA structure is inert toward GlcN6P-actuated self-cleavage. The coordinates of GlcN6P were removed from the complex structure, and the dianionic form of phosphonate analogue 6 was docked (Autodock 4). Compareing with the GlcN6P co-crystal structure, compound 5 fits well in the active site in our best docked structure. Namely, the phosphonate binds strongly with one Mg2+ atom and the 2-amino group is
appropriately positioned in the catalytic pocket. In the native 3D structure, we did not observe any significant interactions between the bridging oxygen and the RNA, nor did we notice any deleterious effect from substituting methylene for this oxygen.

As discussed above, although phosphonates are generally isosteric to phosphates, they are not considered to be isoacidic analogues. The second pK_a of a phosphonate monoester is usually around 7.5, which is one unit higher than that of a phosphate. This effect could result in a different distribution of phosphonate ionic species, compared with that of phosphates. Therefore, to better assess the ionization state of these analogues, the most interesting analogues were titrated to give an estimated pK_a for the second proton dissociation. Indeed, the second pK_a of phosphonate analogue 6 was determined to be \sim7.4 from titration curves. Therefore, at the assay pH (\sim7.3), only \sim50% of the phosphonate is in di-anionic form. On the other hand, the second pK_a of GlcN6P is
reported to be ~6.2, which means >90% of the phosphate will be fully deprotonated at the same pH. From the assay results of the carboxylate and sulfate analogues, we believe that only dianions can bind to the RNA efficiently through magnesium ion chelation. Therefore, the diminished activity of 5, relative to the native GlcN6, may be in part due to its elevated pKₐ.

Interestingly, malonyl ether analogue 14 is ~300-fold more active than the malonate analogue 18. Titration of these bis-carboxylates revealed that the second pKₐ of 14 is ~3.9 and that of 18 is ~5.3. Theoretically, the difference between their ionization states is not significant at pH 6.2. The dianionic form is likely to be dominant for both phosphate-surrogate functionalities under the assay conditions. Thus, each compound is docked into the x-ray crystal structures as a dianion and the results are very interestingly (Fig.2.15). The malonyl ether analogue is properly placed in the active site. However, contrasting with to the natural metabolite GlcN6P or the phosphonate analogue 6, the dianionic bis-carboxylate appears well-suited to chelate both magnesium ions in the catalytic site. The malonate analogue 18 showed a similar bis-chelation pattern in the docking experiment. However, the docking result suggests that the 2-amino group is unable to reach the pocket where the cleavage occurs. Instead, the amino group sticks to the nearby P2.1 region, strongly interacting with the A42-U43 linkage. As a result, analogue 18 may well bind to the riboswitch, but lacks the ability to actuate the self-cleavage. On the other hand, due to its extended length, malonyl ether 14 binds to the anchoring Mg²⁺'s, while still able to deploy the amino group into the active site. Of course, these models can, in principle, be tested by obtaining x-ray structures of the analogue-bound riboswitches.
III. Future directions

The *glmS* riboswitch represents an exciting subject for bioorganic chemistry. The fluorinated analogues are intriguing compounds for future SAR studies. The best actuator could then, in principal, be made into a prodrug form to improve its cell permeability (Fig...
2.16. Disoproxil (bis-isoproxycarbonyloxy methyl ester) is an esterase-sensitive functional group and has been used in the prodrug form of tenofovir (Viread®). Additionally, acyl imidazolides represent a novel group that were proposed in prodrugging non-steroidal anti-inflammatory drugs (NSAIDs), though the hydrolytic stability of such analogues need to be addressed for cellular studies. These and/or other prodrug forms could be prepared for the best analogues and tested for anti-bacterial activities.

IV. Experimental Section

A. Organic Synthesis

General Methods

Reactions were conducted under argon atmosphere using oven-dried glassware. Methylene chloride was distilled from CaH₂. THF was distilled from sodium benzophenone ketyl. MeOH was distilled from magnesium-iodide. Other reagents were obtained from commercial sources and used without further purification. TLC was
carried out on Silica Gel 60 F254 (Merck, layer thickness 0.2 mm). Flash chromatography was performed using Merck silica gel 60 (230-400 mesh). ¹H NMR spectra were recorded on a Bruker-DRX-Avance- 500 MHz, 400 MHz and 300 MHz instrument with chemical shifts reported relative to residual CHCl₃ (7.25 ppm). Proton-decoupled ¹³C NMR spectra were acquired on a Bruker-DRX-Avance 400 MHz and 600 MHz instrument with chemical shifts reported relative to CDCl₃ (77.0 ppm). ³¹P NMR spectra were obtained on the 400 MHz instrument with chemical shifts reported relative to 85% phosphoric acid (0 ppm). Mass spectra were acquired at the Nebraska Center for Mass Spectrometry (University of Nebraska-Lincoln).

6-O-(tert-Butyldiphenylsilyl)-D-glucal (45). To a solution of D-glucal (5 g, 34.2 mmol), imidazole (2.56 g, 37.6 mmol) in DMF (300 mL), was added tert-butyl(chloro)diphenylsilane (9.78 mL, 37.6 mmol) dropwise through syringe. The reaction mixture was stirred at room temperature for 24h, and then quenched by addition of saturated NaHCO₃. The mixture was extracted with DCM (3 x 50 mL). The organic phase was combined, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (20% EtOAc -hexanes) to yield 45 (12.9 g, 98%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.73 (m, 4 H), 7.40 – 7.49 (m, 6 H), 6.34 (dd, J = 1.6, 6 Hz, 1 H), 4.74 (dd, J = 2.4, 6 Hz, 1 H), 4.30 (br s, 1 H), 4.03 (dd, J = 4, 11.6 Hz, 1 H), 3.99 (dd, J = 4, 11.2 Hz, 1 H), 3.92 (ddd, J = 2.4, 6.8, 9.6 Hz, 1 H), 3.84 (td, J = 4, 9.6 Hz, 1 H), 3.09 (d, J = 2.8 Hz, 1 H), 2.55 (d, J = 4 Hz, 1 H), 1.10 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 135.7, 135.6, 132.9, 132.7, 129.99, 129.95, 127.89, 127.83,
102.4, 71.7, 69.7, 63.8, 26.8, 19.3; HRMS (FAB m/z) calcd for C_{22}H_{28}O_{4}SiLi (M+Li^+) 391.1917, obsd 391.1906.

3,4-Di-O-benzyl-6-O-(tert-Butyldiphenylsilyl)-D-glucal (1). To a solution of 45 (6.3 g, 16.1 mmol) in DMF (100 mL) was added NaH (708 mg, 17.7 mmol) portionwise at 0 °C. After stirring for 30 min, BnBr (2.1 mL, 17.7 mmol) was added through syringe. The reaction mixture was slowly raised to room temperature and stirred overnight. Saturated NH₄Cl solution was added to quench the reaction. The mixture was extracted with DCM (3 x 50 mL). The organic phases were combined and sequentially washed with NH₄Cl, water, brine. The organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (10% Et₂O-hexanes) to yield 1 (7.6 g, 80%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.75 (m, 4 H), 7.27 – 7.50 (m, 14 H), 7.22 – 7.28 (m, 2 H), 6.29 (d, J = 6.4 Hz, 1 H), 4.73 (d, J = 11.6 Hz, 1 H), 4.65 (s, 2 H), 4.56 (d, J = 11.2 Hz, 1H), 4.50 (dd, J = 4.4, 6.4 Hz, 1 H), 4.42 (t, J = 4.4 Hz, 1 H), 4.20 (dt, J = 2.8, 6 Hz, 1 H), 3.97 (dd, J = 6, 10.4 Hz, 1 H), 3.81 (dd, J = 5.2, 6.4 Hz, 1 H), 3.79 (dd, J = 2.8, 10.8 Hz, 1 H), 1.11 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 138.1, 138.0, 136.0, 135.9, 134.1, 133.5, 129.8, 128.44, 128.38, 127.9, 127.79, 127.74, 127.71, 127.66, 102.5, 76.3, 73.5, 73.2, 68.6, 67.8, 27.0, 19.2; HRMS (ESI m/z) calcd for C_{36}H_{40}O_{4}SiNa (M+Na^+) 587.2594, obsd 587.2585.

3,4-Di-O-benzyl-6-O-(tert-butylidiphenylsilyl)-2-deoxy-2-iodo-α-D-mannopyranosyl-2-(trimethylsilyl)ethanesulfonamide (46). To a suspension of glucal 1 (3.68 g, 6.54 mmol), 2-
(trimethylsilyl)ethanesulfonamide (4.74 g, 26.2 mmol) and powdered 4 Å molecular sieves (4 g) in CH₂Cl₂ (30 mL) at 0 °C was added I(sym-collidine)₂ClO₄ (12.3 g, 26.2 mmol) in CH₂Cl₂ (10 mL). Following stirring for 30 min, the mixture was filtered and diluted with CH₂Cl₂ (100 mL). The organic layers were sequentially washed with Na₂S₂O₃ (30 mL), saturated CuSO₄ (5 x 20 mL), Na₂S₂O₃ (20 mL), and saturated NaCl (30 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (10% EtOAc -hexanes) to yield 46 (3.6 g, 64%) as a white foam:

\[
\begin{align*}
\text{δ} & \quad 7.67 - 7.71 (m, 4 H), 7.24 - 7.46 (m, 16 H), 5.62 (d, J = 8.4 Hz, 1 H), 5.50 (dd, J = 4.8, 8.8 Hz, 1 H), 4.80 (d, J = 11.2 Hz, 1 H), 4.69 (d, J = 11.6 Hz, 1 H), 4.63 (d, 11.2 Hz, 1 H), 4.59 (t, J = 4.4 Hz, 1 H), 4.57 (d, J = 11.6 Hz, 1 H), 4.13 (t, J = 6.4 Hz, 1 H), 4.02 (dd, J = 4, 10.8 Hz, 1 H), 3.86 (dd, J = 4.4, 11.2 Hz, 1 H), 3.82 (td, J = 4, 6 Hz, 1 H), 3.36 (dd, J = 3.6, 6.8 Hz, 1 H), 2.83 - 2.97 (m, 2 H), 1.10 (s, 9 H), 0.84 - 1.01 (m, 2 H), -0.12 (s, 9 H); 1³C NMR (100 MHz, CDCl₃) \text{δ} 137.8, 137.1, 135.8, 135.6, 133.3, 132.8, 129.79, 129.75, 128.52, 128.50, 128.2, 128.02, 127.97, 127.8, 127.7, 82.2, 77.7, 77.2, 75.2, 74.2, 73.8, 71.9, 61.8, 51.1, 30.9, 26.9, 19.3, 10.1, -2.1; HRMS (ESI m/z) calcd for C₄₁H₅₄O₆NSSi₂INa(M+Na⁺) 894.2153, obsd 894.2149.
\end{align*}
\]

Benzyl 3,4-bis-O-benzyl-6-O-(tert-butyldiphenylsilyl)-2-deoxy-2-trimethylsilylethylsulfonyl-amino-β-D-glucopyranoside (2). To a solution of iodosulfonamide 46 (2.1 g, 2.35 mmol) and benzyl alcohol (365 μL, 3.5 mmol) in THF (20 mL) at -78 °C was added LiHMDS (5.2 mL, 1M in THF, 5.2 mmol) dropwise. After stirring for 10 min, a solution of AgOTf (900mg, 3.5 mmol) in THF (5 mL) was added to the reaction mixture. The
reaction flask was covered with foil and allowed to warm to room temperature. The mixture was then stirred overnight followed by addition of solid NH₄Cl (several equivalents). The mixture was stirred for 10 minutes and filtered through a pad of Celite. The filtrate was concentrated and further purified by flash column chromatography (20% EtOAc -hexanes) to afford 2 (1.6 g, 80%) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.75 (m, 4 H), 7.17 – 7.44 (m, 21 H), 4.92 (d, J = 12 Hz, 1 H), 4.91 (d, J = 10.8 Hz, 1 H), 4.86 (d, J = 9.6 Hz, 2 H), 4.70 (d, J = 10.8 Hz, 1 H), 4.61 (d, J = 11.6 Hz, 1 H), 4.33 (d, J = 7.6 Hz, 1 H), 4.18 (d, J = 7.6 Hz, 1 H), 3.94 (d, J = 2.8 Hz, 2 H), 3.87 (t, J = 8.8 Hz, 1 H), 3.46 – 3.60 (m, 2 H), 3.35 (td, J = 3.2, 9.2 Hz, 1 H), 2.90 – 3.09 (m, 2 H), 1.08 (s, 9 H), 0.96 – 1.05 (m, 2 H), -0.11 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.7, 136.7, 135.9, 135.6, 133.5, 132.9, 129.72, 129.71, 128.61, 128.58, 128.50, 128.12, 128.06, 127.99, 127.8, 127.8, 127.6, 99.8, 82.0, 77.9, 76.1, 74.86, 74.78, 69.9, 62.6, 58.8, 50.8, 26.8, 19.3, 10.2, -2.17; HRMS (FAB m/z) calcd for C₄₈H₆₂O₇NSSi₂ (M+H⁺) 852.3786, obsd. 852.3770.

N-benzyl-2-(trimethylsilyl)-N-((2R,3R,4R,5S,6R)-2,4,5-tris(benzyloxy)-6-(((tert-butylidiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-3-yl)ethanesulfonamide (47). To a solution of 2 (1.2 g, 1.41 mmol) and BnBr (168 µL, 1.41 mmol) in DMF (20 mL) was added NaH (62 mg, 60% suspension in mineral oil) at 0 °C. The reaction was allowed to rise to room temperature slowly. After stirring overnight, the reaction was diluted by CH₂Cl₂ and quench with saturated NH₄Cl. The organic layers were sequentially washed with water and brine, then dried over MgSO₄,
filtered and evaporated. The crude product was purified by flash column chromatography (10% EtOAc -hexanes) to afford 47 (1.13 g, 86%) as a colorless oil: 1H NMR (400 MHz, DMSO-d$_6$, 90 °C) δ 7.65-7.71 (m, 4 H), 7.22-7.48 (m, 24 H), 7.13-7.19 (m, 2 H), 4.84 (d, J = 8.4 Hz, 1 H), 4.83 (d, J = 11.6 Hz, 1 H), 4.77 (s, 2 H), 4.71 (d, J = 11.2 Hz, 1H), 4.61 (d, J = 11.2 Hz, 1 H), 4.53 (d, J = 15.6 Hz, 1 H), 4.50 (d, J = 11.6 Hz, 1 H), 4.46 (d, J = 11.6 Hz, 1 H), 3.91-4.08 (m, 3 H), 3.75 (t, J = 8.8 Hz, 1 H), 3.67 (t, J = 9.6 Hz, 1 H), 3.54 (ddd, J = 2.0, 4.8, 9.6 Hz, 1 H), 2.65-2.83 (m, 2 H), 1.06 (s, 9 H), 0.821-0.945 (m, 2 H), -0.169 (s, 9 H); 13C NMR (100 MHz, C$_6$D$_6$, 75 °C) δ 139.2, 138.7, 137.9, 137.6, 135.9, 135.7, 134.9, 134.1, 133.7, 129.6, 129.3, 128.4, 128.3, 128.2, 127.8, 127.6, 127.5, 127.3, 127.2, 100.0, 80.3, 76.5, 74.5, 70.2, 63.6, 52.8, 51.3, 26.9, 26.5, 19.3, 10.1, -2.49; HRMS (FAB m/z) calcd for C$_{55}$H$_{68}$NO$_7$SSi$_2$ (M+H$^+$) 942.4177, obsd. 942.4298.

N-benzyl-2-(trimethylsilyl)-N-((2R,3R,4R,5S,6R)-2,4,5-tris(benzyloxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)ethanesulfonamide (3). To a solution of 47 (629 mg, 0.67 mmol) in THF (7 mL) was added TBAF (0.67 mL, 1 M solution in THF) dropwise at 0 °C. The mixture was stirred at 0 °C for 16 h. Saturated NH$_4$Cl was added to quench the reaction. The aqueous layer was extracted with Et$_2$O (3 x 10 mL). The organic layer was dried over MgSO$_4$, filtered, evaporated. The residue was purified by flash column chromatography (20% EtOAc -hexanes) to afford 3 (358 mg, 76%) as a colorless oil: 1H NMR (400 MHz, DMSO-d$_6$, 90 °C) δ 7.42-7.48 (m, 2 H), 7.22-7.41 (m, 18 H), 4.86 (d, J = 11.6 Hz, 1 H), 4.71-4.82 (m, 3 H), 4.67 (s, 2 H), 4.47 (d, J = 6.8 Hz, 1 H), 4.45 (d, J = 12 Hz, 1 H), 4.41 (t, J = 5.2 Hz, 1 H), 3.99 (t, J = 9.2 Hz, 1 H), 3.73-3.80 (m, 1 H), 3.71
(d, J = 8.8 Hz, 1 H), 3.65 (t, J = 5.2 Hz, 1 H), 3.60 (t, J = 8.4 Hz, 1 H), 3.39 (ddd, J = 2.4, 4.8, 9.6 Hz, 1 H), 2.67-2.83 (m, 2 H), 0.857-0.900 (m, 2 H), -0.165 (m, 9 H); 13C NMR (100 MHz, DMSO-d6, 90 °C) δ 139.1, 138.9, 137.91, 137.8, 129.7, 128.65, 128.59, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.85, 127.78, 127.6, 99.4, 80.2, 76.3, 73.9, 73.5, 70.2, 61.1, 50.2, 10.2, -1.74; HRMS (FAB m/z) calcd for C$_{39}$H$_{49}$NO$_7$SSi$_2$Na (M+Na$^+$) 726.2897, obsd. 726.2902.

Dibenzyl (2-((2R,3R,4R,5R,6R)-5-(N-benzyl-2--trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)ethyl)phosphonate (5). To a solution of 3 (112 mg, 0.16 mmol) and 2,6-di-tert-butyl-4-methylpyridine (98 mg, 0.48 mmol) in CH$_2$Cl$_2$ (2 mL), was slowly added trifluoromethanesulfonic anhydride (54 µL, 0.32 mmol) at -40 °C and stirring continued for 0.5 h at that temperature. The reaction mixture was then concentrated in vacuo and directly applied to column chromatography (8% EtOAc - hexanes) to afford the triflate 4 (120 mg, 90%) as a pale yellow oil: HRMS (ESI m/z) calcd for C$_{40}$H$_{48}$O$_9$NF$_3$S$_2$SiNa (M+Na$^+$) 858.2390, obsd. 858.2386.

Then the triflate 4 (120 mg, 0.144 mmol) was dissolved in THF (2 mL) with dibenzyl methylphosphonate (151 mg, 0.576 mmol) and cooled to -78 °C. To the solution was added slowly n-BuLi (0.36 mL, 1.6 M solution in hexanes). After stirring for 10 min at -78 °C, the reaction was quenched with saturated aqueous NH$_4$Cl. Then Et$_2$O (20 mL) was added to dilute the solution. The organic layers were sequentially washed with NH$_4$Cl, water and brine, and then dried over MgSO$_4$. Filtration and evaporation gave crude
product, which was purified by flash column chromatography (20-40% EtOAc-hexanes) to afford 5 (85 mg, 62%) as a colorless oil: 1H NMR (400 MHz, DMSO-d$_6$, 90 °C) δ

7.41-7.46 (m, 2 H), 7.17-7.40 (m, 28 H), 5.04 (d, $J = 12.4$ Hz, 1 H), 5.01 (d, $J = 12.8$ Hz, 1 H), 4.98 (d, $J = 12.8$ Hz, 1 H), 4.96 (d, $J = 12$ Hz, 1 H), 4.72-4.83 (m, 4 H), 4.69 (d, $J = 11.2$ Hz, 1 H), 4.57 (d, $J = 4.57$ Hz, 1 H), 4.50 (d, $J = 15.6$ Hz, 1 H), 4.44 (d, $J = 12$ Hz, 1 H), 4.43 (d, $J = 15.2$ Hz, 1 H), 3.95 (t, $J = 8.8$ Hz, 1 H), 3.68 (t, $J = 8.8$ Hz, 1 H), 3.41 (dt, $J = 2.8$, 9.2 Hz, 1 H), 3.33 (t, $J = 12.8$ Hz, 1 H), 2.63-2.84 (m, 2 H), 2.02-2.16 (m, 1 H), 1.81-2.02 (m, 2 H), 1.66-1.82 (m, 1 H), 0.839-0.948 (m, 2 H), -0.169 (s, 9 H); 13C NMR (100 MHz, DMSO-d$_6$, 90 °C) δ 139.0, 138.6, 137.9, 137.8, 137.3 (d, $J_{cp} = 6$ Hz), 129.7, 128.8, 128.6, 128.49, 128.46, 128.1, 128.0, 127.9, 127.8, 127.7, 99.6, 83.3, 74.1, 74.0 (d, $J_{cp} = 15$ Hz), 73.4, 70.6, 67.0 (d, $J_{cp} = 7.5$ Hz), 66.97 (d, $J_{cp} = 7.5$ Hz), 50.3, 25.1 (d, $J_{cp} = 5$ Hz), 21.6 (d, $J_{cp} = 139.5$ Hz), 10.2, -1.75; 31P NMR (162 MHz, DMSO-d$_6$, 90 °C) δ 32.60; HRMS (ESI m/z) calcd for C$_{54}$H$_{64}$NO$_9$PSS$_2$Na (M+Na$^+$) 984.3706, obsd. 984.3746.

Dibenzyl (2-((2R,3R,4R,5R,6R)-5-(benzylamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)ethyl)phosphonate (48). To a solution of 5 (162 mg, 0.168 mmol) in DMF (3 mL) was added CsF (179 mg, 1.18 mmol) in one portion. The mixture was heated to 90 °C and stirred for 16 h. Saturated aqueous NH$_4$Cl was added to quench the reaction. The mixture was extracted with ethyl acetate. The organic layers were dried over MgSO$_4$, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (30-50% EtOAc-hexanes) to
give **48** (90 mg, 68%) as a white solid: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.22-7.39\) (m, 28 H), 7.16-7.19 (m, 2 H), 5.08 (d, \(J = 12\) Hz, 1 H), 5.06 (d, \(J = 12\) Hz, 1 H), 5.00 (d, \(J = 11.6\) Hz, 1 H), 4.98 (d, \(J = 12\) Hz, 1 H), 4.90 (d, \(J = 11.6\) Hz, 1 H), 4.86 (d, \(J = 12\) Hz, 1 H), 4.81 (d, \(J = 10.8\) Hz, 1 H), 4.69 (d, \(J = 11.2\) Hz, 1 H), 4.59 (t, \(J = 10.8\) Hz, 2 H), 4.33 (d, \(J = 8\) Hz, 1 H), 4.01 (d, \(J = 13.2\) Hz, 1 H), 3.82 (d, \(J = 13.2\) Hz, 1 H), 3.44 (t, \(J = 8.4\) Hz, 1 H), 3.22-3.34 (m, 2 H), 2.72 (dd, \(J = 8, 10.8\) Hz, 1 H), 2.15-2.29 (m, 1 H), 1.98-2.14 (d, \(J = 10.8\) Hz, 1 H), 1.71-1.92 (m, 2 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 140.6, 138.0, 137.7, 137.4, 136.44\) (d, \(J_{cp} = 6\) Hz), 136.43 (d, \(J_{cp} = 6\) Hz), 128.6, 128.5, 128.45, 128.40, 128.35, 128.27, 128.0, 127.9, 127.8, 126.8, 103.8, 83.5, 82.5, 75.1, 74.4 (d, \(J_{cp} = 16\) Hz), 71.2, 67.14 (d, \(J_{cp} = 6\) Hz), 67.11 (d, \(J_{cp} = 6\) Hz), 62.8, 53.7, 24.8 (d, \(J_{cp} = 4\) Hz), 22.1 (d, \(J_{cp} = 142\) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta 33.27\); HRMS (ESI m/z) calcd for C\(_{49}\)H\(_{52}\)NO\(_7\)PNa (M+Na\(^+\)) 820.3379, obsd 820.3378.

Glucosamine 6-phosphonate (6). A solution of **48** (46 mg, 0.058 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)$_2$/C (18 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH. Suspend the filter cake in 2 mL H$_2$O and stir for 5 min, and then filtrate again through a pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield **6** (12 mg, 87%) as a colorless foam: \(^1\)H NMR (400 MHz, D$_2$O) \(\delta 5.30\) (d, \(J = 3.6\) Hz, 0.5 H), 4.77 (d, \(J = 8.4\) Hz, 0.5 H), 3.70-3.80 (m, 1 H), 3.50 (dd, \(J = 1.6, 8.8\) Hz, 0.5 H), 3.35 (dt, \(J = 2.4, 10\) Hz, 0.5 H), 3.23 (t, \(J = 9.2\) Hz, 1 H), 3.17 (dd, \(J = 4, 10.8\) Hz, 0.5 H), 2.85 (dd,
$J = 2, 8.4 \text{ Hz}, 0.5 \text{ H}), 1.96-2.00 (\text{m, 1 H}), 1.52-1.72 (\text{m, 2 H}), 1.37-1.46 (\text{m, 1 H}); ^{13}\text{C NMR (100 MHz, D}_2\text{O) }\delta 99.2, 89.2, 75.9 (d, J_{cp} = 16 \text{ Hz}), 73.04, 73.05, 72.4, 71.4 (d, J_{cp} = 17 \text{ Hz}), 69.8, 57.0, 54.5, 25.1 (d, J_{cp} = 4 \text{ Hz}), 24.9 (d, J_{cp} = 3 \text{ Hz}), 23.5 (d, J_{cp} = 133 \text{ Hz}), 23.6 (d, J_{cp} = 135 \text{ Hz}); ^{31}\text{P NMR (162 MHz, D}_2\text{O) }\delta 24.91, 24.77; \text{ HRMS (ESI m/z) calcd for C}_{17}\text{H}_{16}\text{NO}_{7}\text{PNa (M+Na\textsuperscript+)} 280.0562, \text{ obsd 280.0567.}

N-methyl-2-(trimethylsilyl)-N-((2R,3R,4R,5S,6R)-2,4,5-tris(benzyloxy)-6-(((tert-butyldiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-3-yl)ethanesulfonamide (49). To a solution of 2 (200 mg, 0.212 mmol) in DMF (2 mL) was added NaH (10 mg, 60% suspension in mineral oil, 0.233 mmol) at 0 °C. The mixture was stirred for 0.5 h at 0 °C. Then MeI (15 μL, 0.233 mmol) was added to the solution. The reaction was allowed to rise to room temperature slowly. After stirring overnight, the reaction was diluted by CH₂Cl₂ and quench with saturated NH₄Cl. The organic layers were sequentially washed with water and brine, then dried over MgSO₄, filtered and evaporated. The crude product was purified by flash column chromatography (30% EtOAc-hexanes) to afford 49 (168 mg, 92%) as a colorless oil: $^1\text{H NMR (400 MHz, DMSO-d}_6, 90 \text{ °C) }\delta 7.13-7.81 (\text{m, 25 H}), 4.85 (d, J = 11.6 \text{ Hz, 2 H}), 4.78 (d, J = 8.8 \text{ Hz, 1 H}), 4.78 (d, J = 10.8 \text{ Hz, 1 H}), 4.74 (d, J = 11.2 \text{ Hz, 1 H}), 4.68 (d, J = 12 \text{ Hz, 1 H}), 4.62 (d, J = 11.6 \text{ Hz, 1 H}), 4.01 (dd, J = 2, 11.6 \text{ Hz, 1 H}), 3.90-3.97 (m, 2 H), 3.72 (dd, J = 8.4, 10 Hz, 1 H), 3.67 (dd, J = 8.4, 9.6 Hz, 1 H), 3.58 (ddd, J = 1.2, 4.4, 9.6 Hz, 1 H), 3.05 (s, 3 H), 2.89-2.96 (m, 2 H), 1.07 (s, 9 H), 0.85-0.99 (m, 2 H), -0.09 (s, 9 H); $^{13}\text{C NMR (100 MHz, DMSO-d}_6, 90 \text{ °C) }\delta 139.0, 138.8, 137.7, 135.7, 135.5, 135.0, 133.9, 133.7, 130.1,
N-methyl-2-(trimethylsilyl)-N-((2R,3R,4R,5S,6R)-2,4,5-
tris(benzyloxy)-6-(hydroxymethyl)
tetrahydro-2H-pyran-3-yl)ethanesulfonamide (24). TBAF
(0.19 mL, 1 M solution in THF) was added to a solution of 49 (168 mg, 0.194 mmol) in
THF (2 mL) at 0 °C. The mixture was raised to room temperature and stirred for 12 h.
Then saturated NH₄Cl was added and the mixture was extracted with Et₂O. The
combined organic layers were dried over MgSO₄, filtered and concentrated in vacuum.
The crude product was purified by flash column chromatography (40% EtOAc-hexanes)
to yield 24 (113 mg, 93%) as a white solid: ¹H NMR (400 MHz, DMSO-d6, 90 °C) δ
7.22-7.42 (m, 15 H), 4.86 (d, J = 9.6 Hz, 1 H), 4.83 (d, J = 8.4 Hz, 1 H), 4.66-4.76 (m, 5
H), 4.39 (t, J = 5.2 Hz, 1 H), 3.88 (dd, J = 8.4, 10.4 Hz, 1 H), 3.78 (ddd, J = 1.2, 4.0, 12.0
Hz, 1 H), 3.67 (dd, J = 8.4, 10.4 Hz, 1 H), 3.64 (t, J = 6.4 Hz, 1 H), 3.59 (t, J = 8.4 Hz, 1
H), 3.42 (ddd, J = 2, 4.8, 9.2 Hz, 1 H), 2.86-2.92 (m, 2 H), 2.97 (br s, 1 H), 2.82 (s, 3 H),
0.841-0.956 (m, 2 H), -0.095 (s, 9 H); ¹³C NMR (100 MHz, DMSO-d6, 90 °C) δ 139.1,
137.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 98.3, 79.5, 79.1, 76.4,
74.1, 73.7, 70.5, 62.3, 61.2, 47.5, 31.1, 30.3, 10.2, -1.65; HRMS (ESI m/z) calcd for
C₃₅H₄₅NO₇SSiNa (M+Na⁺) 650.2584, obsd. 650.2587.
Dibenzyl (2-((2R,3R,4R,5R,6R)-3,4,6-tris(benzyloxy)-5-(N-methyl-2-(trimethylsilyl)ethyl)sulfonamido)tetrahydro-2H-pyran-2-yl)ethyl)phosphonate (25). To a solution of 24 (188 mg, 0.3 mmol) and 2,6-di-tert-butyl-4-methylpyridine (184 mg, 0.9 mmol) in CH₂Cl₂ (3 mL), was slowly added trifluoromethanesulfonic anhydride (101 μL, 0.6 mmol) at -40 °C and stirring continued for 0.5 h at that temperature. The reaction mixture was then concentrated in vacuo and directly applied to column chromatography (10-20% EtOAc-hexanes) to afford the corresponding triflate (186 mg, 82%) as a pale yellow oil: HRMS (ESI m/z) calcd for C₃₄H₄₄O₉NF₃S₂SiNa (M+Na⁺) 759.2179, obsd. 782.2056.

Then the triflate (186 mg, 0.246 mmol) was dissolved in THF (3 mL) with dibenzyl methylphosphonate (258 mg, 0.984 mmol) and cooled to -78 °C. To the solution was added slowly n-BuLi (0.62 mL, 1.6 M solution in hexanes, 0.984 mmol). After stirring for 15 min at -78 °C, the reaction was quenched with saturated aqueous NH₄Cl. Then Et₂O (50 mL) was added to dilute the solution. The organic layers were sequentially washed with NH₄Cl, water and brine, and then dried over MgSO₄, filtered and concentrated in vacuum to give crude product, which was purified by flash column chromatography (30-40% EtOAc-hexanes) to afford 25 as a colorless oil: ¹H NMR (400 MHz, DMSO-d₆, 90 °C) δ 7.15-7.65 (m, 25 H), 5.06 (dd, J = 1.6, 8.4 Hz, 1 H), 5.03 (dd, J = 2, 8.4 Hz, 1 H), 5.00 (dd, J = 2.4, 8 Hz, 1 H), 4.97 (dd, J = 2.4, 8 Hz, 1 H), 4.84 (d, J = 11.2 Hz, 1 H), 4.78 (d, J = 7.2 Hz, 1 H), 4.75 (d, J = 6.8 Hz, 1 H), 4.71 (d, J = 10.8 Hz,
Dibenzyl (2-((2R,3R,4R,5R,6R)-3,4,6-tris(benzyloxy)-5-(methylamino)tetrahydro-2H-pyran-2-yl)ethyl)phosphonate (26). To a solution of 25 (107 mg, 0.12 mmol) in DMF (2 mL) was added CsF (127 mg, 0.84 mmol) in one portion. The mixture was heated to 90 °C and stirred for 12 h. Saturated aqueous NH₄Cl was added to quench the reaction. The mixture was extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (50% EtOAc-hexanes) to give 26 (62 mg, 72%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.42 (m, 25 H), 5.08 (d, J = 11.6 Hz, 1 H), 5.05 (d, J = 11.6 Hz, 1 H), 5.00 (d, J = 12 Hz, 1 H), 4.98 (d, J = 11.6 Hz, 1 H), 4.94 (d, J = 11.6 Hz, 1 H), 4.84 (d, J = 7.2 Hz, 1 H), 4.81 (d, J = 6.4 Hz, 1 H), 4.70 (d, J = 11.6 Hz, 1 H), 4.62 (d, J = 10.8 Hz, 1 H), 4.56 (d, J = 11.6 Hz, 1 H), 4.26 (d, J = 8.0 Hz, 1 H), 3.41 (dd, J = 8.4, 10 Hz, 1 H), 3.31 (t, J = 9.2 Hz, 1 H), 3.25 (dt, J = 2.8,
9.2 Hz, 1 H), 2.51 (dd, \(J = 8, 10 \) Hz, 1 H), 2.42 (s, 3 H), 2.15-2.27 (m, 1 H), 1.94-2.11 (m, 1 H), 1.70-1.99 (m, 2 H), 1.65 (s, 1 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 138.2, 137.7, 137.4, 136.43 (d, \(J_{cp} = 6 \) Hz), 136.42 (d, \(J_{cp} = 6 \) Hz), 128.6, 128.5, 128.42, 128.40, 128.00, 127.98, 127.94, 127.84, 127.81, 103.3, 83.3, 82.5, 77.3, 75.1, 74.9, 74.3 (d, \(J_{cp} = 16 \) Hz), 71.1, 67.14 (d, \(J_{cp} = 7 \) Hz), 67.11 (d, \(J_{cp} = 7 \) Hz), 65.1, 24.8 (d, \(J_{cp} = 4 \) Hz), 22.1 (d, \(J_{cp} = 141 \) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \) 33.11; HRMS (ESI \(m/z \)) calcd for C\(_{43}\)H\(_{48}\)NO\(_7\)PNa (M+Na\(^+\)) 744.3066, obsd 744.3081.

N-Methyl glucosamine 6-phosphonate (27). A solution of 26 (36 mg, 0.05 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)\(_2\)/C (15 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH. Suspend the filter cake in 2 mL H\(_2\)O and stir for 5 min, and then filtrate again through a pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield 27 (11 mg, 82%) as a colorless foam: \(^1\)H NMR (400 MHz, D\(_2\)O) \(\delta \) 5.45 (d, \(J = 3.2 \) Hz, 0.7 H), 4.94 (d, \(J = 8.4 \) Hz, 0.3 H), 3.62-3.84 (m, 1.7 H), 3.36 (t, \(J = 7.6 \) Hz, 0.3 H), 3.20-3.27 (m, 1 H), 3.15 (dd, \(J = 3.2, 10.4 \) Hz, 0.7 H), 2.72-2.94 (m, 0.3 H), 2.76 (s, 0.9 H), 2.72 (s, 2.1 H), 1.90-2.09 (m, 1 H), 1.48-1.77 (m, 3 H); \(^{13}\)C NMR (100 MHz, D\(_2\)O) \(\delta \) 91.8, 87.4, 75.5 (d, \(J_{cp} = 16 \) Hz), 73.4, 73.1, 70.8 (d, \(J_{cp} = 17 \) Hz), 70.3, 69.5, 63.0, 61.3, 30.95, 30.86, 24.7 (d, \(J_{cp} = 3 \) Hz), 24.5 (d, \(J_{cp} = 3 \) Hz), 22.90 (d, \(J_{cp} = 134 \) Hz), 22.89 (d, \(J_{cp} = 134 \) Hz); \(^{31}\)P NMR (162 MHz, D\(_2\)O) \(\delta \) 25.25, 25.06; HRMS (ESI \(m/z \)) calcd for C\(_8\)H\(_{19}\)NO\(_7\)P (M+H\(^+\)) 272.0899, obsd 272.0891.
Dibenzyl (2-((2R,3R,4R,5R,6R)-3,4,6-tris(benzyloxy)-5-(dimethylamino)tetrahydro-2H-pyran-2-yl)ethyl)phosphonate (28). To a solution of 26 (75 mg, 0.1 mmol) in THF (1 mL) was added n-BuLi (71 μL, 1.6 M solution in hexanes, 0.11 mmol) dropwise at -78 °C. The mixture was stirred at that temperature for 30 min, followed by addition of MeI (7 μL, 0.11 mmol). The solution was then raised to 0 °C and stirred for 3 h when TLC indicated the completion of the reaction. The reaction was quenched with saturated NH₄Cl and extracted with Et₂O. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (30% EtOAc-hexanes) to give 28 (68 mg, 93%) as a pale yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.42 (m, 25 H), 5.09 (dd, J = 3.2, 9.2 Hz, 1 H), 5.06 (dd, J = 2.8, 8.8 Hz, 1 H), 5.01 (dd, J = 1.2, 8 Hz, 1 H), 4.98 (dd, J = 1.2, 8.4 Hz, 1 H), 4.97 (d, J = 11.2 Hz, 1 H), 4.87 (d, J = 10.8 Hz, 1 H), 4.84 (d, J = 11.6 Hz, 1 H), 4.75 (d, J = 10.4 Hz, 1 H), 4.59 (d, J = 10.8 Hz, 1 H), 4.54 (d, J = 11.6 Hz, 1 H), 4.43 (d, J = 8.8 Hz, 1 H), 3.54 (dd, J = 8, 10 Hz, 1 H), 3.16-3.25 (m, 2 H), 2.67 (dd, J = 8.4, 10 Hz, 1 H), 2.46 (s, 6 H), 2.15-2.28 (m, 1 H), 1.98-2.11 (m, 1 H), 1.82-1.92 (m, 1 H), 1.66-1.81 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 138.2, 137.3, 136.45 (d, Jcp = 6 Hz), 136.43 (d, Jcp = 6 Hz), 128.6, 128.42, 128.40, 128.35, 128.32, 128.2, 128.1, 128.01, 127.97, 127.94, 127.8, 127.7, 127.5, 100.1, 82.3, 80.7, 77.3, 75.1, 75.0, 73.9 (d, Jcp = 15 Hz), 70.5, 69.4, 67.1 (d, Jcp = 6 Hz), 41.7, 25.1 (d, Jcp = 4 Hz), 22.0 (d, Jcp = 141 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 33.32; HRMS (ESI m/z) calcd for C₄₄H₅₀NO₇PNa (M+Na⁺) 758.3223, obsd 758.3226.
N, N-Dimethyl glucosamine 6-phosphonate (29). A solution of 28 (62 mg, 0.084 mmol) in MeOH (3 mL) was stirred in the presence of 40% Pd(OH)$_2$/C (25 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and evaporate the solvent to yield 29 (21 mg, 89%) as a colorless foam: 1H NMR (400 MHz, D$_2$O) δ 5.50 (d, $J = 2.8$ Hz, 0.4 H), 5.02 (d, $J = 8.4$ Hz), 3.97 (t, $J = 9.2$ Hz, 0.4 H), 3.73-3.82 (m, 1 H), 3.22-2.39 (m, 2 H), 3.04 (dd, $J = 1.6$, 8.8 Hz, 0.6 H), 2.95 (s, 2.4 H), 2.93 (s, 3.6 H), 1.97-2.04 (m, 1 H), 1.42-1.79 (m, 3 H); 13C NMR (100 MHz, D$_2$O) δ 91.2, 88.3, 75.6 (d, $J_{cp} = 16$ Hz), 73.9, 73.8, 70.9 (d, $J_{cp} = 17$ Hz), 69.4, 68.8, 67.5, 65.8, 42.2 (br), 41.2 (br), 40.6 (br), 24.9 (d, $J_{cp} = 3$ Hz), 24.7 (d, $J_{cp} = 3$ Hz), 23.2 (d, $J_{cp} = 134$ Hz), 22.7 (d, $J_{cp} = 133$ Hz); 31P NMR (162 MHz, D$_2$O) δ 25.60, 25.40; HRMS (ESI m/z) calcd for C$_9$H$_{21}$NO$_7$P (M+H$^+$) 286.1056, obsd 286.1061.

Dibenzyl 2-(((2R,3S,4R,5R,6R)-5-(N-benzyl-2-(trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methoxy)malonate (13). To a stirred solution of 3 (100 mg, 0.14 mmol) and rhodium acetate dimer (6 mg, 0.014 mmol) in benzene (1 mL), under reflux, was added, dropwise, a solution of dibenzyl diazomalonate (44 mg, 0.14 mmol) in benzene (1 mL). After complete addition, the reaction mixture was refluxed for 16 h. Volatiles were removed under reduced pressure and the crude residue purified by flash
chromatography (20% EtOAc-hexane) to give 13 (102 mg, 73%) as a white solid: \(^1\)H NMR (400 MHz, DMSO-d6, 90 °C) \(\delta\) 7.20-7.55 (m, 30 H), 5.23 (d, \(J = 12.8\) Hz, 1 H), 5.21 (d, \(J = 12.4\) Hz, 1 H), 5.17 (d, \(J = 12.4\) Hz, 1 H), 5.16 (d, \(J = 12.4\) Hz, 1 H), 4.96 (s, 1 H), 4.76-4.87 (m, 4 H), 4.64 (s, 2 H), 4.42-4.56 (m, 3 H), 4.00 (t, 8.8 Hz, 1 H), 3.93 (d, \(J = 3.2\) Hz, 2 H), 3.72 (t, \(J = 8.4\) Hz, 1 H), 3.68 (t, \(J = 9.6\) Hz, 1 H), 3.59 (td, \(J = 3.2, 10\) Hz, 1 H), 2.64-2.83 (m, 2 H), 0.84-0.94 (m, 2 H), -0.17 (m, 9 H); \(^{13}\)C NMR (100 MHz, DMSO-d6, 90 °C) \(\delta\) 166.6, 166.5, 139.0, 138.7, 137.9, 137.7, 135.82, 135.76, 129.7, 128.8, 128.65, 128.61, 128.58, 128.50, 128.23, 128.20, 128.05, 128.00, 127.96, 127.89, 127.81, 127.7, 99.4, 80.0, 79.8, 74.8, 74.0, 73.6, 70.5, 70.4, 67.3, 67.2, 50.3, 10.2, -1.75; HRMS (ESI \(m/z\)) calcd for C\(_{56}\)H\(_{63}\)NO\(_{11}\)SSiNa (M+Na\(^+\)) 1008.3789, obsd 1008.3747.

Dibenzyl 2-(((2R,3S,4R,5R,6R)-5-(benzylamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methoxy)malonate (50). A suspension of 13 (162 mg, 0.16 mmol) and CsF (125 mg, 0.82 mmol) in DMF (2 mL) was heated at 90 °C for 16 h. The reaction was then cooled down and quenched with aqueous NH\(_4\)Cl. The mixture was extracted with EtOAc. The combined organic phase was dried, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (20-40% EtOAc-hexanes) to give 50 (93 mg, 71%) as a white solid: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.13 – 7.15 (m, 2 H), 7.21 – 7.32 (m, 28 H), 5.20 (d, \(J = 12\) Hz, 1 H), 5.17 (s, 2 H), 5.11 (d, \(J = 12\) Hz, 1 H), 4.87 (d, \(J = 11.6\) Hz, 1 H), 4.86 (s, 1 H), 4.82 (d, \(J = 11.6\) Hz, 1 H), 4.77 (d, \(J = 10.8\) Hz, 1 H), 4.69 (d, \(J = 10.8\) Hz, 1 H), 4.65 (d, \(J = 11.6\) Hz, 1 H), 4.55 (d, \(J = 12\) Hz, 1 H), 4.35 (d, \(J = 7.6\) Hz, 1 H), 3.99 (t, \(J = 2.8\) Hz,
1 H), 3.97 (t, $J = 2$ Hz, 1 H), 3.91 (dd, $J = 1.6$, 12.4 Hz, 1 H), 3.79 (d, $J = 12.8$ Hz, 1 H), 3.74 (d, $J = 9.2$ Hz, 1 H), 3.47 (dd, $J = 1.6$, 4.4, 9.2 Hz, 1 H), 3.45 (t, $J = 9.2$ Hz, 1 H), 2.70 (dd, $J = 7.6$, 10 Hz, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 166.5, 166.4, 140.5, 138.1, 138.0, 137.4, 135.0, 134.9, 128.59, 128.57, 128.48, 128.40, 128.36, 128.30, 128.1, 127.95, 127.90, 127.84, 127.76, 126.8, 103.9, 88.3, 80.1, 78.2, 75.4, 74.8, 74.7, 71.1, 70.3, 67.56, 67.49, 62.3, 53.48, 53.45; HRMS (FAB m/z) calcd for C$_{51}$H$_{52}$O$_9$N (M+H$^+$) 822.3642, obsd 822.3640.

Glucosamine 6-malonyl ether (14). A suspension of 50 (56 mg, 0.068 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)$_2$/C (23 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH. Suspend the filter cake in 2 mL H$_2$O and stir for 5 min, and then filtrate again through a pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield 14 (13 mg, 72%) as a colorless foam: 1H NMR (500 MHz, D$_2$O) δ 5.42 (d, $J = 2.8$ Hz, 0.6 H), 4.92 (d, $J = 6.8$ Hz, 0.4 H), 4.65 (s, 0.4 H), 4.64 (s, 0.6 H), 4.04 (td, $J = 2.4$, 8 Hz, 0.6 H), 3.95 (dd, $J = 1.2$, 9.2 Hz, 0.4 H), 3.86-3.91 (m, 2 H), 3.82 (dd, $J = 4.8$, 9.2 Hz, 0.4 H), 3.62-3.69 (m, 0.6 H), 3.60 (t, $J = 7.6$ Hz, 0.6 H), 3.55 (t, $J = 7.6$ Hz, 0.4 H), 3.29 (dd, $J = 2.8$, 8.4 Hz, 0.6 H), 3.01 (dd, $J = 6.8$, 8.4 Hz, 0.4 H); 13C NMR (100 MHz, D$_2$O) δ 171.4, 171.3, 92.8, 89.1, 75.1, 71.8, 70.7, 69.6, 69.4, 69.3, 56.6, 54.2; HRMS (ESI m/z) calcd for C$_9$H$_{15}$NO$_9$Na (M+Na$^+$) 304.0645, obsd 304.0658.
Dibenzyl 2-(((2R,3R,4R,5R,6R)-5-(N-benzyl-2-(trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methyl)malonate (15). To a solution of the triflate 4 (122 mg, 0.156 mmol) and dibenzyl malonate (177 mg, 0.624 mmol) in THF (2 mL) was added LiHMDS (0.624 mL, 1 M solution in THF, 0.624 mmol) at -78 °C. The solution was then slowly warmed to room temperature and stirred overnight. Aqueous NH₄Cl was added to quench the reaction. The mixture was extracted with Et₂O (2 x 20 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography (20% EtOAc-hexanes) to afford 15 (124 mg, 82%) as a colorless oil: ¹H NMR (400 MHz, DMSO-d₆, 90 °C) δ 7.21-7.48 (m, 30 H), 5.16 (s, 2 H), 5.16 (d, J = 12.4 Hz, 1 H), 5.08 (d, J = 12.4 Hz, 1 H), 4.68-4.79 (m, 5 H), 4.63 (d, J = 11.2, 1 H), 4.50 (d, J = 15.6 Hz, 1 H), 4.43 (d, J = 15.6 Hz, 1 H), 4.33 (d, J = 11.6 Hz, 1 H), 3.97 (br, 1 H), 3.79 (dd, J = 5.2, 9.2 Hz, 1 H), 3.70 (br, 1 H), 3.39-3.47 (m, 2 H), 2.61-2.79 (m, 2 H), 2.47 (dd, J = 2.4, 9.2 Hz, 1 H), 2.05-2.13 (m, 2 H), -0.19 (s, 9 H), ¹³C NMR (100 MHz, DMSO-d₆, 90 °C) δ 168.9, 168.8, 139.0, 138.5, 137.8, 136.10, 136.08, 129.7, 128.82, 128.78, 128.64, 128.62, 128.60, 128.5, 128.4, 128.3, 128.08, 128.05, 127.95, 127.93, 127.8, 127.7, 99.6, 83.5, 74.1, 73.5, 72.5, 70.4, 67.1, 67.0, 50.3, 48.8, 31.2, 10.2, -1.77; HRMS (ESI m/z) calcd for C₅₆H₆₃O₁₀NSSiNa (M+Na⁺) 992.3840, obsd 992.3856.

Dibenzyl 2-(((2R,3R,4R,5R,6R)-5-(benzylamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methyl)malonate (16) To a solution of 15 (224 mg, 0.23 mmol) in DMF
(3 mL) was added CsF (175 mg, 1.15 mmol) in one portion. The suspension was heated to 90 °C and stirred at that temperature for 16 h. Then the reaction was quenched with aqueous ammonium chloride and extracted with ethyl acetate. The combined organic phase was dried over MgSO4, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (20-30% EtOAc-hexanes) to give 16 (80 mg, 44%) as a white solid: \(^1H \) NMR (400 MHz, CDCl3) \(\delta \) 6.95 – 7.33 (m, 30 H), 5.16 (s, 2 H), 5.16 (d, \(J = 12.4 \) Hz, 1 H), 5.11 (d, \(J = 12.4 \) Hz, 1 H), 4.87 (d, \(J = 11.2 \) Hz, 1 H), 4.83 (d, \(J = 10.8 \) Hz, 1 H), 4.81 (d, \(J = 12 \) Hz, 1 H), 4.68 (d, \(J = 10.8 \) Hz, 1 H), 4.67 (d, \(J = 11.2 \) Hz, 1 H), 4.49 (d, \(J = 12 \) Hz, 1 H), 4.23 (d, \(J = 8 \) Hz, 1 H), 3.98 (d, \(J = 12.8 \) Hz, 1 H), 3.79 (d, \(J = 12.8 \) Hz, 1 H), 3.77 (dd, \(J = 5.2, 10 \) Hz, 1 H), 3.40 (t, \(J = 8.4 \) Hz, 1 H), 3.34 (t, \(J = 8.8 \) Hz, 1 H), 3.28 (dt, \(J = 2.4, 10 \) Hz, 1 H), 2.70 (dd, \(J = 8, 9.2 \) Hz, 1 H), 2.61 (ddd, \(J = 2.4, 10, 14 \) Hz, 1 H), 2.05 – 2.14 (m, 1 H); \(^{13}C \) NMR (100 MHz, CDCl3) \(\delta \) 169.0, 168.8, 140.6, 138.0, 137.7, 137.5, 135.3, 128.63, 128.57, 128.54, 128.45, 128.40, 128.37, 128.29, 128.2, 128.01, 127.99, 127.94, 127.91, 127.7, 126.9, 103.8, 83.3, 82.7, 75.1, 72.4, 71.0, 67.2, 62.6, 53.4, 48.6, 31.1; HRMS (FAB m/z) calcd for C_{51}H_{52}O_{8}N (M+H\(^+\)) 806.3693, obsd 806.3713.

Glucosamine 6-malonate (18). A suspension of 16 (39 mg, 0.048 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)\(_2\)/C (15 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH.
Suspend the filter cake in 2 mL H$_2$O and stir for 5 min, and then filtrate again through a pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield 18 (10 mg, 78%) as a colorless foam: 1H NMR (400 MHz, D$_2$O) δ 5.27 (d, $J = 3.6$ Hz, 0.45 H), 4.76 (d, $J = 8.4$ Hz, 0.55 H), 3.66-3.76 (m, 1 H), 3.57 (dd, $J = 8.4$, 10.4 Hz, 0.45 H), 3.15-3.30 (m, 2.1 H), 2.89 (dd, $J = 8.4$, 10.4 Hz, 0.45 H), 2.20-2.37 (m, 1 H), 1.68-1.84 (m, 1 H); 13C NMR (100 MHz, D$_2$O) δ 178.4, 178.2, 92.8, 88.9, 74.3, 73.75, 73.73, 71.9, 69.6, 69.5, 56.9, 54.4, 31.8, 31.7, 31.6, 31.5; HRMS (ESI m/z) calcd for C$_9$H$_{16}$NO$_8$ (M+H$^+$) 266.0876, obsd 266.0978.

Benzyl 3-((2R,3R,4R,5R,6R)-5-(N-benzyl-2-(trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)propanoate (17).

Further elution (40-50% EtOAc-hexanes) to give 17 (67 mg, 35%) as a white solid: 1H NMR (400 MHz, DMSO-d$_6$, 90 °C) δ 7.22-7.46 (m, 25 H), 5.12 (d, $J = 12.4$ Hz, 1 H), 5.08 (d, $J = 12.8$ Hz, 1 H), 4.70-4.77 (m, 5 H), 4.62 (d, $J = 11.6$ Hz, 1 H), 4.51 (d, $J = 15.2$ Hz, 1 H), 4.44 (d, $J = 7.6$ Hz, 1 H), 4.41 (d, $J = 3.6$ Hz, 1 H), 3.96 (t, $J = 8.8$ Hz, 1 H), 3.69 (t, $J = 8.8$ Hz, 1 H), 3.35-3.43 (m, 2 H), 2.63-2.85 (m, 2 H), 2.48 (dd, $J = 2.8$, 10 Hz, 2 H), 2.11-2.20 (m, 1 H), 1.73-1.82 (m, 1 H), 0.82-0.96 (m, 2 H), -0.17 (s, 9 H); 13C NMR (100 MHz, DMSO-d$_6$, 90 °C) δ 172.8, 139.1, 138.7, 137.89, 137.84, 136.9, 129.7, 128.8, 128.64, 128.6, 128.6, 128.5, 128.3, 128.2, 128.07, 128.04, 127.94, 127.91, 127.8, 127.6, 99.6, 83.6, 74.1, 73.7, 73.5, 70.5, 65.9, 50.3, 30.2, 27.3, 10.2, -1.75; HRMS (ESI m/z) calcd for C$_{48}$H$_{57}$O$_8$NSSiNa (M+Na$^+$) 858.3472, obsd 858.3477.
Benzyl 3-((2R,3R,4R,5R,6R)-5-(benzylamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)propanoate (51). To a solution of 17 (41 mg, 0.05 mmol) in DMF (1 mL) was added CsF (53 mg, 0.35 mmol) in one portion. The suspension was heated to 90 °C and stirred overnight. Then the reaction was quenched with aqueous ammonium chloride and extracted with ethyl acetate. The combined organic phase was dried over MgSO₄, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (50% EtOAc-hexanes) to give 51 (26 mg, 78%), as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.42 (m, 25 H), 5.17 (d, J = 12.4 Hz, 1 H), 5.14 (d, J = 12.4 Hz, 1 H), 4.92 (d, J = 10 Hz, 1 H), 4.90 (d, J = 7.2 Hz, 1 H), 4.87 (d, J = 7.2 Hz, 1 H), 4.72 (d, J = 4 Hz, 1 H), 4.69 (d, J = 3.6 Hz, 1 H), 4.61 (d, J = 15.6 Hz, 1 H), 4.36 (d, J = 8 Hz, 1 H), 4.03 (d, J = 13.2 Hz, 1 H), 3.84 (d, J = 12.8 Hz, 1 H), 3.48 (t, J = 8.8 Hz, 1 H), 3.37 (t, J = 9.2 Hz, 1 H), 3.32 (td, J = 2.4, 9.2 Hz, 1 H), 2.75 (dd, J = 8, 9.6 Hz, 1 H), 2.46-2.63 (m, 2 H), 2.27-2.37 (m, 1 H), 1.80-1.89 (m, 1 H), 1.66 (br, 1 H), ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 140.5, 138.0, 137.8, 137.4, 136.0, 128.64, 128.61, 128.56, 128.5, 128.4, 128.33, 128.27, 128.0, 127.8, 126.9, 103.8, 83.5, 82.8, 75.1, 73.9, 71.1, 66.3, 62.7, 53.5, 30.4, 27.1; HRMS (ESI m/z) calcd for C₄₃H₄₆O₆N (M+H⁺) 672.3325, obsd 672.3319.

Glucosamine 6-carboxylate (19). A solution of 51 (26 mg, 0.038 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)₂/C (10 mg) and trace amount of TFA (1 drop), under
balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and evaporate the solvent to yield **19** (5 mg, 63%) as a colorless foam: 1H NMR (400 MHz, D$_2$O) δ 5.22 (d, $J = 4$ Hz, 0.45 H), 4.66 (d, $J = 8.4$ Hz, 0.55 H), 3.61-3.75 (m, 1 H), 3.41 (dd, $J = 9.2$, 10 Hz, 0.45 H), 3.24 (dt, $J = 2$, 9.6 Hz, 0.55 H), 3.14 (t, $J = 9.2$ Hz, 1 H), 3.08 (dd, $J = 3.6$, 10.4 Hz, 0.55 H), 2.75 (dd, $J = 8.8$, 10.2 Hz, 0.45 H), 2.07-2.28 (m, 2 H), 1.92-2.06 (m, 1 H), 1.47-1.61 (m, 1 H); HRMS (ESI m/z) calcd for C$_9$H$_{16}$NO$_8$ (M+Na$^+$) 266.0876, obsd 266.0978.; HRMS (EI m/z) calcd for C$_8$H$_{15}$NO$_6$Na (M+Na$^+$) 244.0797, obsd 266.0802.

![Dibenzyl (((2S,3S,4R,5R,6R)-5-(N-benzyl-2-(trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methyl)phosphonate (7).](image)

To a solution of the triflate **4** (219 mg, 0.28 mmol) and dibenzyl phosphite (187 µL, 0.84 mmol) in THF (3 mL) was added LiHMDS (0.84 mL, 1 M solution in THF, 0.84 mmol) at -78 °C. The solution was then slowly warmed to room temperature and stirred overnight. Aqueous NH$_4$Cl was added to quench the reaction. The mixture was extracted with Et$_2$O (2 x 20 mL). The combined organic layers were dried over MgSO$_4$, filtered and concentrated in vacuum. The residue was purified by flash column chromatography (20-30% EtOAc-hexanes) to afford **7** (212 mg, 80%) as a colorless oil: 1H NMR (400 MHz, DMSO-d6, 90 °C) δ 7.18-7.58 (m, 30 H), 4.95-5.08 (m, 4 H), 4.71-4.83 (m, 5 H), 4.64 (d, $J = 11.7$ Hz, 1 H), 4.52 (d, $J = 15.5$ Hz, 1 H), 4.42 (d, $J = 15.5$ Hz, 1 H), 4.29 (d, $J = 11.7$ Hz, 1 H), 3.99 (t, $J = 9.6$ Hz, 1 H), 3.68-3.82 (m, 2 H), 3.51 (t, $J = 8.8$ Hz, 1 H), 2.60-2.82 (m, 2 H), 2.12-2.38 (m, 2 H),
0.80-0.96 (m, 2 H), -0.19 (s, 9 H); 13C NMR (100 MHz, DMSO-d$_6$, 90 °C) δ 138.9, 138.6, 137.8, 137.5, 137.2, 137.11 (d, $J_{cp} = 7$ Hz), 137.10 (d, $J_{cp} = 7$ Hz), 129.7, 128.8, 128.7, 128.6, 128.5, 128.4, 128.10, 128.06, 127.97, 127.91, 127.8, 127.7, 99.2, 83.6 (d, $J = 14$ Hz), 74.2, 73.5, 70.58, 70.52, 70.2, 67.02 (d, $J_{cp} = 6$ Hz), 66.97 (d, $J_{cp} = 5$ Hz), 50.3, 28.7 (d, $J = 140$ Hz), 10.2, -1.77; 31P NMR (162 MHz, DMSO-d$_6$, 90 °C) δ 28.88; HRMS (ESI m/z) calcd for C$_{53}$H$_{62}$O$_9$NSiPSNa (M+Na$^+$) 970.3550, obsd 970.3526

Dibenzyl (((2S,3S,4R,5R,6R)-5-(benzylamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methyl)phosphonate (52). To a solution of 7 (78 mg, 0.082 mmol) in DMF (1 mL) was added CsF (87 mg, 0.57 mmol) in one portion. The reaction was heated to 90 °C and stirred at that temperature for 16 h. Then aqueous ammonium chloride was added and the mixture was extracted with ethyl acetate. The organic phase was combined, dried over MgSO$_4$, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (40-50% EtOAc/hexanes) to give 52 (49 mg, 77%) as a white solid: 1H NMR (400 MHz, CDCl$_3$) δ 7.14–7.35 (m, 30 H), 4.99 – 5.08 (m, 4 H), 4.87 (d, $J = 11.6$ Hz, 1 H), 4.78 (d, $J = 11.6$ Hz, 1 H), 4.70 (d, $J = 11.6$ Hz, 1 H), 4.62 (d, $J = 11.2$ Hz, 1 H), 4.49 (d, $J = 11.6$ Hz, 1 H), 4.38 (d, $J = 8$ Hz, 1 H), 3.99 (d, $J = 12.8$ Hz, 1 H), 3.80 (d, $J = 12.8$ Hz, 1 H), 3.67-3.77 (m, 1 H), 3.46 (t, $J = 8.8$ Hz, 1 H), 3.41 (dd, $J = 8.8$, 16.4 Hz, 1 H), 2.77 (dd, $J = 8$, 9.6 Hz, 1 H), 2.36 (ddd, $J = 2$, 15.2, 19.6 Hz, 1 H), 2.01 (app dt, $J = 10$, 15.6 Hz, 1 H), 1.68 (br, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 140.6, 137.9, 137.7, 137.3, 136.39 (d, $J_{cp} = 6$ Hz), 136.33 (d, $J_{cp} = 6$ Hz), 128.61, 128.58, 128.4, 128.3, 128.03, 127.99, 127.92, 127.7,
126.8, 103.5, 83.54 (d, $J_{cp} = 2$ Hz), 82.5 (d, $J_{cp} = 14$ Hz), 75.1, 74.9, 70.8, 70.5 (d, $J_{cp} = 7$ Hz), 67.24 (d, $J_{cp} = 6$ Hz), 67.08 (d, $J_{cp} = 6$ Hz), 62.7, 53.4, 28.7 (d, $J_{cp} = 142$ Hz); 31P NMR (162 MHz, CDCl$_3$) δ 29.60; HRMS (ESI m/z) calcd for C$_{49}$H$_{50}$O$_7$NPNa (M^{+}Na$^+$) 806.3223, obsd 806.3243.

Glucosamine 5-phosphonate (8). A solution of 52 (42 mg, 0.054 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)$_2$/C (12 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH. Suspend the filter cake in 2 mL H$_2$O and stir for 5 min, and then filtrate again through a pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield 8 (12 mg, 88%) as a colorless foam: 1H NMR (400 MHz, D$_2$O) δ 5.34 (d, $J = 3.2$ Hz, 0.5 H), 4.86 (d, $J = 8$ Hz, 0.5 H), 4.06 (ddt, $J = 3.6$, 9.6, 9.6 Hz, 0.5 H), 3.82 (dd, $J = 9.2$, 10.4 Hz, 0.5 H), 3.56-3.65 (m, 1 H), 3.26 (t, $J = 8.8$ Hz, 0.5 H), 3.24 (t, $J = 9.2$ Hz, 1 H), 3.23 (dd, $J = 3.2$, 9.6 Hz, 0.5 H), 2.94 (dd, $J = 8.8$, 10.8 Hz, 0.5 H), 2.02-2.16 (m, 1 H), 1.69-1.81 (m, 1 H); 13C NMR (100 MHz, D$_2$O) δ 92.8, 89.0, 74.6 (d, $J_{cp} = 12$ Hz), 74.5 (d, $J_{cp} = 11$ Hz), 72.7 (d, $J_{cp} = 4$ Hz), 71.9, 69.5, 67.9 (d, $J_{cp} = 5$ Hz), 56.7, 54.3, 31.2 (d, $J_{cp} = 133$ Hz), 30.8 (d, $J_{cp} = 133$ Hz); 31P NMR (162 MHz, D$_2$O) δ 20.7, 20.0; HRMS (EI m/z) calcd for C$_{61}$H$_{14}$O$_7$NPNa (M+Na$^+$) 266.0406, obsd 266.0414.

Diethyl 2-(((2R,3R,4R,5R,6R)-5-(N-benzyl-2-(trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methyl)malonate (9): To a solution of the
triflate 4 (205 mg, 0.25 mmol) and diethyl malonate (152 μL, 1 mmol) in THF (2 mL) was added LiHMDS (1 mL, 1 M solution in THF, 1 mmol) at -78 °C. The solution was then slowly warmed to room temperature and stirred overnight. Aqueous NH₄Cl was added to quench the reaction. The mixture was extracted with Et₂O (2 x 20 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography (20% EtOAc-hexanes) to afford 9 (194 mg, 92%) as a colorless oil: ¹H NMR (400 MHz, DMSO-d₆, 90 °C) δ 7.22-7.65 (m, 20 H), 4.73-4.82 (m, 5 H), 4.66 (d, J = 11.6 Hz, 1 H), 4.53 (d, J = 15.6 Hz, 1 H), 4.47 (d, J = 16.4 Hz, 1 H), 4.43 (d, J = 12 Hz, 1 H), 4.06-4.24 (m, 4 H), 4.02 (br, 1 H), 3.74 (t, J = 8 Hz, 1 H), 3.64 (dd, J = 5.2, 8.8 Hz, 1 H), 3.44 (dd, J = 2, 5.2 Hz, 2 H), 2.67-2.84 (m, 2 H), 2.46 (ddd, J = 1.6, 9.2, 14 Hz, 1 H), 2.01-2.09 (m, 1 H), 1.21 (td, J = 7.2, 10.4 Hz, 6 H), 0.86-0.96 (m, 2 H), -0.16 (s, 9 H); ¹³C NMR (100 MHz, DMSO-d₆, 90 °C) δ 169.2, 169.0, 139.0, 138.6, 137.85, 137.81, 129.7, 128.7, 128.6, 128.5, 128.0, 127.9, 127.8, 127.7, 99.6, 83.6, 74.2, 73.5, 72.6, 70.4, 61.33, 61.31, 50.3, 48.8, 31.2, 14.3, 14.2, 10.2, -1.79; HRMS (ESI m/z) calcd for C₄₆H₅₉O₁₀NSSiNa (M+Na⁺) 868.3527, obsd 868.3514.

To a solution of 9 (135 mg, 0.16 mmol) in DMSO (2 mL) was added LiCl (51 mg, 1.2 mmol) in one potion. The suspension was refluxed at 200 °C for
8 h. Then the reaction was cooled down to room temperature and quenched with aqueous NH₄Cl. The mixture was extracted with Et₂O (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography (10% EtOAc-hexanes) to afford **53** (118 mg, 96%) as a colorless oil: **¹H NMR** (400 MHz, DMSO-d₆, 90 °C) δ 7.23-7.52 (m, 20 H), 4.72-4.80 (m, 5 H), 4.63 (d, J = 11.6 Hz, 1 H), 4.52 (d, J = 15.6 Hz, 1 H), 4.45 (10.8 Hz, 1 H), 4.44 (d, 16 Hz, 1 H), 4.04-4.12 (m, 2 H), 3.97 (t, J = 8.8 Hz, 1 H), 3.70 (t, J = 8.8 Hz, 1 H), 3.34-3.42 (m, 2 H), 2.65-2.82 (m, 2 H), 2.42 (t, 8.4 Hz, 1 H), 2.09-2.18 (m, 1 H), 1.70-1.79 (m, 1 H), 1.19 (t, J = 7.2 Hz, 1 H), 0.85-0.92 (m, 2 H), -0.17 (9 H); **¹³C NMR** (100 MHz, DMSO-d₆, 90 °C) δ 172.9, 139.1, 138.7, 137.89, 137.87, 129.7, 128.7, 128.5, 128.1, 128.04, 128.00, 127.95, 127.94, 127.8, 127.7, 99.5, 83.6, 74.1, 73.7, 73.4, 70.4, 60.1, 50.3, 30.3, 27.3, 14.5, 10.2, -1.75; HRMS (ESI m/z) calcd for C₄₃H₅₅O₈NSSiNa (M+Na⁺) 796.3315, obsd 796.3320.

N-benzyl-2-(trimethylsilyl)-N-((2R,3R,4R,5R,6R)-2,4,5-tris(benzyl)-6-(3-hydroxypropyl)tetrahydro-2H-pyran-3-yl)ethanesulfonamide (10). To a stirred suspension of LiAlH₄ (17 mg, 0.44 mmol) in dry THF (2 mL) was added dropwise a solution of **53** (173 mg, 0.22 mmol) in dry THF at 0 °C under nitrogen. The reaction mixture was warmed to room temperature and stirred for 2 h. After successively adding water, 15% NaOH and water at 0 °C, the mixture was diluted with EtOAc. The aqueous layer was extracted by EtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated. Purification by flash column chromatography (30% EtOAc-
hexanes) gave 10 (153 mg, 95%) as a colorless oil: 1H NMR (400 MHz, DMSO-d6, 90 °C) δ 7.23-7.52 (m, 20 H), 4.82 (d, $J = 11.6$ Hz, 1 H), 4.77 (d, $J = 12.8$ Hz, 1 H), 4.76 (s, 2 H), 4.72 (d, $J = 11.6$ Hz, 1 H), 4.65 (d, $J = 11.6$ Hz, 1 H), 4.53 (d, $J = 15.2$ Hz, 1 H), 4.49 (d, $J = 8.8$ Hz, 1 H), 4.45 (d, $J = 12.8$ Hz, 1 H), 3.97 (t, $J = 8.8$ Hz, 1 H), 3.71 (t, $J = 8.8$ Hz, 1 H), 3.48 (t, $J = 6.4$ Hz, 2 H), 3.39 (dt, $J = 2.8$, 9.2 Hz, 1 H), 3.35 (t, $J = 9.2$ Hz, 1 H), 2.67-2.83 (m, 2 H), 1.87-1.96 (m, 1 H), 1.67-1.75 (m, 1 H), 1.49-1.63 (m, 2 H), 0.83-0.95 (m, 2 H), -0.16 (s, 9 H); 13C NMR (100 MHz, DMSO-d6, 90 °C) δ 139.1, 138.8, 137.9, 129.7, 128.67, 128.59, 128.58, 128.46, 128.1, 128.03, 127.99, 127.93, 127.86, 127.80, 127.6, 99.4, 84.0, 74.7, 74.1, 73.5, 70.4, 61.4, 50.3, 28.9, 28.4, 10.2, 10.1, -1.75; HRMS (ESI m/z) calcd for C$_{41}$H$_{53}$O$_7$NSSiNa (M+Na$^+$) 754.3210, obsd 754.3212.

[Dibenzyl (3-((2R,3R,4R,5R,6R)-5-(N-benzyl-2-(trimethylsilyl)ethylsulfonamido)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)propyl)phosphonate (11). To a solution of 10 (75 mg, 0.1 mmol) in THF (1 mL) was added triphenylphosphine (53 mg, 0.2 mmol), imidazole (15 mg, 0.223 mmol), and iodine (51 mg, 0.2 mmol). The mixture was stirred at room temperature overnight and then diluted with Et$_2$O. The organic layer was sequentially washed with saturated Na$_2$S$_2$O$_3$, water and brine, followed by drying and concentration in vacuum. The residue was purified by flash column chromatography (10% EtOAc-hexanes) to afford the iodide (72 mg, 85%) as a colorless oil: 1H NMR (300 MHz, DMSO-d6, 90 °C) δ 7.21-7.62 (m, 20 H), 4.68-4.91 (m, 5 H), 4.62 (d, $J = 9$ Hz, 1 H), 4.41-4.55 (m, 3 H), 3.95 (t, $J = 9$ Hz, 1 H), 3.69 (t, $J = 9$ Hz), 3.37 (t, $J = 9$ Hz, 2 H), 3.29
(t, J = 6 Hz, 1 Hz), 3.06 (br, 1 H), 2.63-2.84 (m, 2 H), 1.80-2.04 (m, 3 H), 1.47-1.65 (m, 1 H), 0.86 (t, J = 6 Hz, 2 Hz), -0.18 (s, 9 Hz); ¹³C NMR (300 MHz, DMSO-d₆, 90 °C) δ 139.1, 138.7, 137.87, 137.86, 129.8, 128.7, 128.6, 128.5, 128.10, 128.06, 128.00, 127.9, 127.8, 127.6, 99.5, 83.6, 74.2, 73.7, 73.4, 70.5, 50.3, 32.5, 29.6, 10.2, 8.6, -1.7; HRMS (ESI m/z) calcd for C₄₁H₅₂O₆NSSiINa (M+Na⁺) 864.2227, obsd 864.2224.

To a solution of the iodide (72 mg, 0.08 mmol) and dibenzyl phosphate (56 µL, 0.25 mmol) was added LiHMDS (0.25 mL, 1 M in THF, 0.25 mmol) dropwise at -78 °C, the solution was allowed to warm to room temperature and stirred for 1 h before quenched with aqueous NH₄Cl. The aqueous layer was separated and extracted with Et₂O. Combined organic layers were dried, filtered and concentrated. The phosphonate product 11 was purified by flash column chromatography (30%-% EtOAc-hexanes) as a colorless oil (56 mg, 68%): ¹H NMR (400 MHz, DMSO-d₆, 90 °C) δ 7.21-7.48 (m, 30 H), 5.04 (d, J = 8.8 Hz, 1 H), 5.01 (d, J = 8.4 Hz, 1 H), 4.98 (dd, J = 2, 8 Hz, 1 H), 4.95 (dd, J = 2, 8 Hz, 1 H), 4.79 (d, J = 8.4 Hz, 1 H), 4.76 (d, J = 12 Hz, 1 H), 4.73 (br, 2 H) 4.67 (d, J = 11.6 Hz, 1 H), 4.58 (d, J = 11.2 Hz, 1 H), 4.51 (d, J = 15.2 Hz, 1 H), 4.43 (dd, J = 1.6, 12 Hz, 2 H), 3.94 (t, J = 9.2 Hz, 1 H), 3.68 (t, J = 9.2 Hz, 1 H), 3.35 (dt, J = 2.8, 9.6 Hz, 1 H), 3.30 (t, J = 9.2 Hz, 1 H), 2.63-2.83 (m, 2 H), 1.28-1.92 (m, 6 H), 0.85-0.91 (m, 2 H), 0.17 (s, 9 H); ¹³C NMR (100 MHz, DMSO-d₆, 90 °C) δ 139.1, 138.7, 137.9, 137.8, 137.3 (d, Jcp = 6 Hz), 129.7, 128.8, 128.66, 128.59, 128.57, 128.46, 128.42, 128.1, 128.03, 127.98, 127.95, 127.88, 127.78, 127.6, 99.4, 83.7, 74.1 (d, Jcp = 5 Hz), 73.4, 70.4, 66.87 (d, Jcp = 6 Hz), 66.88 (Jcp = 6 Hz), 50.3, 32.2 (d, Jcp = 15 Hz), 25.5 (Jcp = 137 Hz),
18.6 (d, $J_{cp} = 5$ Hz), 10.2, -1.76; 31P NMR (162 MHz, DMSO-d$_6$, 90 °C) δ 32.65; HRMS (ESI m/z) calcd for C$_{55}$H$_{66}$O$_9$NPSSiNa (M+Na$^+$) 998.3846, obsd 998.3835.

Dibenzyl (3-((2R,3R,4R,5R,6R)-5-(benzylamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)propyl)phosphonate (54). To solution of 11 (98 mg, 0.1 mmol) in DMF (1 mL) was added CsF (107 mg, 0.7 mmol) in one portion. The reaction was heated at 90 °C for 16 h, followed by addition of aqueous ammonium chloride. The mixture was extracted by ethyl acetate and the combined organic layers were dried, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (50% EtOAc/hexanes) to give 54 (59 mg, 72%) as a white solid: 1H NMR (400 MHz, CDCl$_3$) δ 7.14–7.34 (m, 30 H), 5.06 (dd, $J = 1.6$, 8.8 Hz, 1 H), 5.03 (dd, $J = 1.2$, 8.8 Hz, 1 H), 4.97 (dd, $J = 4$, 8 Hz, 1 H), 4.94 (dd, $J = 4$, 7.6 Hz, 1 H), 4.67 (d, $J = 11.2$, 1 H), 4.56 (app t, $J = 9.6$ Hz, 2 H), 4.33 (d, $J = 8$ Hz, 1 H), 4.00 (d, $J = 12.8$ Hz, 1 H), 3.81 (d, $J = 12.8$ Hz, 1 H), 3.44 (t, $J = 9.2$ Hz, 1 H), 3.28 (t, $J = 9.2$ Hz, 1 H), 3.21 (t, $J = 8.8$ Hz, 1 H), 2.70 (dd, $J = 8$, 10 Hz, 1 H), 1.64–1.88 (m, 5 H), 1.48–1.57 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 138.0, 137.8, 137.3, 136.4 (d, $J_{cp} = 6$ Hz), 128.63, 128.61, 128.5, 128.45, 128.39, 128.34, 128.05, 127.99, 127.94, 127.91, 127.88, 127.82, 126.9, 103.5, 83.6, 82.8, 75.1 (d, $J_{cp} = 1$ Hz), 74.4, 71.0, 67.1 (d, $J_{cp} = 6$ Hz), 62.7, 53.5, 32.3 (d, $J_{cp} = 17$ Hz), 26.1 (d, $J_{cp} = 140$ Hz), 18.8 (d, $J_{cp} = 5$ Hz); 31P NMR (162 MHz, CDCl$_3$) δ 33.17; HRMS (ESI m/z) calcd for C$_{50}$H$_{54}$O$_7$NPNa (M+Na$^+$) 834.3536, obsd 834.3524.
Glucosamine 7-phosphonate (12). A solution of 54 (33 mg, 0.04 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)$_2$/C (12 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature.

Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH. Suspend the filter cake in 2 mL H$_2$O and stir for 5 min, and then filtrate again through a pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield 12 (9 mg, 85%) as a colorless foam: 1H NMR (400 MHz, D$_2$O) δ 5.34 (d, $J = 3.6$ Hz, 0.4 H), 4.83 (d, $J = 8.4$ Hz, 0.6 H), 3.79 (dt, $J = 3.2$, 9.2 Hz, 0.6 H), 3.76 (t, $J = 10.4$ Hz, 0.4 H), 3.54 (dd, $J = 9.2$, 10.4 Hz, 0.4 H), 3.38 (t, $J = 9.2$ Hz, 0.6 H), 3.18-3.33 (m, 1.6 H), 2.90 (dd, $J = 8.4$, 10.4 Hz, 0.4 H), 1.80-1.94 (m, 1 H), 1.42-1.77 (m, 5 H); 13C NMR (100 MHz, D$_2$O) δ 93.0, 89.0, 75.2, 73.30, 73.29, 72.3, 70.3, 69.8, 56.9, 54.4, 31.7 (d, $J_{cp} = 17$ Hz), 31.2 (d, $J_{cp} = 17$ Hz), 27.4 (d, $J_{cp} = 133$ Hz), 27.5 (d, $J_{cp} = 133$ Hz), 18.9 (br); 31P NMR (162 MHz, D$_2$O) δ 25.7 (br); HRMS (ESI m/z) calcd for C$_8$H$_{19}$O$_7$NP (M+H$^+$) 272.0899, obsd 272.0904.

N-((2R,3R,4R,5R,6R)-6-(azidomethyl)-2,4,5-tris(benzyloxy)tetrahydro-2H-pyran-3-yl)-N-benzyl-2-(trimethylsilyl)ethanesulfonamide (20). To a solution of the triflate 4 (247 mg, 0.32 mmol) in THF was added TMSN$_3$ (131 μL, 1 mmol) dropwise at room temperature. The solution was stirred for 12 h then quenched with aqueous NH$_4$Cl. The mixture was extracted with ether. Then combined organic layers were dried, filtered and concentrated in vacuum. The crude product was purified by flash column chromatography (10% EtOAc/hexanes) to give 20 (208 mg, 89%) as a colorless oil: 1H
NMR (400 MHz, DMSO-d$_6$, 90 °C) δ 7.23-7.52 (m, 20 H), 4.91 (d, $J = 8.4$ Hz, 1 H), 4.85 (d, $J = 11.6$ Hz, 1 H), 4.79 (d, $J = 11.2$ Hz, 1 H), 4.76 (s, 1 H), 4.72 (d, $J = 11.6$ Hz, 1 H), 4.60 (d, $J = 11.2$ Hz, 1 H), 4.53 (d, $J = 15.6$ Hz, 1 H), 4.49 (d, $J = 11.6$ Hz, 1 H), 4.47 (d, $J = 15.6$ Hz, 1 H), 4.05 (t, $J = 9.2$ Hz, 1 H), 3.75 (t, $J = 9.2$ Hz, 1 H), 3.65-3.70 (m, 1 H), 3.56 (d, $J = 8.4$ Hz, 1 H), 3.45-3.54 (m, 2 H), 2.64-2.81 (m, 2 H), 0.82-0.94 (m, 2 H), -0.17 (m, 9 H); 13C NMR (100 MHz, DMSO-d$_6$, 90 °C) δ 138.9, 138.5, 137.8, 137.6, 129.8, 128.70, 128.65, 128.63, 128.5, 128.2, 128.1, 128.0, 127.8, 127.7, 99.4, 80.9, 74.5, 74.2, 73.6, 70.5, 63.9, 51.8, 50.4, 10.2, -1.76; HRMS (ESI m/z) calcd for C$_{50}$H$_{54}$O$_7$NPNa (M+Na$^+$) 751.2962, obsd 751.2948.

\[
\begin{align*}
\text{(2R,3R,4R,5R,6R)-6-(azidomethyl)-N-benzyl-2,4,5-tris(benzyloxy)tetrahydro-2H-pyran-3-amine (55).} \\
\text{A mixture of 20 (322 mg, 0.44 mmol) and CsF (471 mg, 3.1 mmol) in DMF (5 mL) was stirred for 16 h at 90 °C. The reaction was quenched by adding aqueous NH}_4\text{Cl. The mixture was extracted by DCM. The combined organic layers were dried, filtered and concentrated in vacuum. The residue was purified by flash column chromatography (30% EtOAc/hexanes) to give 55 (198 mg, 80%) as a white solid: } \\
\text{ }^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta; \\
\text{ }^{13}\text{C NMR (100 MHz, CDCl}_3\text{) }\delta \\
\end{align*}
\]

7.13-7.41 (m, 20 H), 4.96 (d, $J = 11.6$ Hz, 1 H), 4.91 (d, $J = 11.6$ Hz, 1 H), 4.87 (d, $J = 11.2$ Hz, 1 H), 4.71 (d, $J = 11.2$ Hz, 1 H), 4.65 (d, $J = 11.6$ Hz, 1 H), 4.60 (d, $J = 11.2$ Hz, 1 H), 4.45 (d, $J = 8$ Hz, 1 H), 4.02 (d, $J = 12.8$ Hz, 1 H), 3.83 (d, $J = 12.8$ Hz, 1 H), 3.46-3.57 (m, 3 H), 3.34-3.43 (m, 2 H), 2.78 (t, $J = 8.8$ Hz, 1 H), 1.69 (br, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 140.5, 137.8, 137.5, 137.2, 128.66, 128.69, 128.5, 128.4, 128.3, 128.2, 128.04, 128.00, 127.9, 126.9,
103.6, 83.5, 79.6, 75.1, 75.04, 75.1, 71.1, 62.6, 53.5, 51.4; HRMS (ESI m/z) calcd for C₃₄H₃₆O₄N₄Na (M+Na⁺) 587.2634, obsd 587.2639.

(2R,3R,4R,5R,6R)-6-(aminomethyl)-N-benzyl-2,4,5-tris(benzyloxy)tetrahydro-2H-pyran-3-amine (21). To a solution of 55 (127 mg, 0.22 mmol) and triphenylphosphine (174 mg, 0.66 mmol) in THF (2 mL) was added H₂O (20 µL, 1.1 mmol). The mixture was stirred at room temperature for 12 h when TLC indicated the completion of reaction. The solution was concentrated under vacuum and the residue was purified by flash column chromatography (30/70/10: EtOAc/hexanes/Et₃N) to give 21 (110 mg, 93%) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.14-7.42 (m, 20 H), 4.94 (d, J = 13.2 Hz, 1 H), 4.93 (d, J = 11.6 Hz, 1 H), 4.87 (d, J = 11.2 Hz, 1 H), 4.73 (d, J = 12 Hz, 1 H), 4.68 (s, 1 H), 4.67 (d, J = 10.8 Hz, 1 H), 4.47 (d, J = 8 Hz, 1 H), 4.04 (d, J = 12.8 Hz, 1 H), 3.86 (d, J = 12.8 Hz, 1 H), 3.48-3.56 (m, 1 H), 3.33 (t, J = 6.8 Hz, 1 H), 3.11 (d, J = 12 Hz, 1 H), 2.78-2.89 (m, 1 H), 2.76 (dd, J = 8, 9.2 Hz, 1 H), 1.50 (br, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 138.1, 137.8, 137.5, 128.62, 128.58, 128.46, 128.37, 128.30, 128.1, 128.0, 127.9, 126.8, 104.1, 83.7, 80.0, 75.1, 74.9, 71.4, 62.8, 53.6; HRMS (ESI m/z) calcd for C₃₄H₃₈O₄N₂Na (M+Na⁺) 561.2729, obsd 561.2721.

Dibenzyl (((2R,3R,4R,5R,6R)-5-(benzlamino)-3,4,6-tris(benzyloxy)tetrahydro-2H-pyran-2-yl)methyl)phosphoramide (22). To a solution of 21 (65 mg, 0.12 mmol) in DCM (1 mL) was added slowly
dibenzylphosphoryl chloride (0.72 mL, 0.5 mol in toluene (freshly prepared from NCS and dibenzyl phosphite), 0.36 mmol). Then Et₃N (167 μL, 1.2 mmol) was added through syringe. The reaction was stirred for 6 h at room temperature and then quenched by aqueous NH₄Cl. The mixture was extracted with DCM and the organic layers were dried, filtered and concentrated in vacuum. The residue was purified by flash column chromatography (40/60/5: EtOAc/hexanes/Et₃N) to give 22 (66 mg, 69%) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.38 (m, 30 H), 5.01-5.06 (m, 4 H), 4.87 (d, J = 11.6 Hz, 1 H), 4.83 (d, J = 11.6 Hz, 1 H), 4.74 (d, J = 10.8 Hz, 1 H), 4.65 (d, J = 11.2 Hz, 1 H), 4.4.59 (d, J = 10.4 Hz, 1 H), 4.59 (d, J = 12.4 Hz, 1 H), 4.34 (d, J = 8 Hz, 1 H), 3.98 (d, J = 12.8 Hz, 1 H), 3.79 (d, J = 12.8 Hz, 1 H), 3.36-3.45 (m, 2 H), 3.21-3.32 (m, 2 H), 2.97-3.35 (m, 2 H), 2.62-2.68 (m, 1 H), 1.66 (br, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 137.9, 137.7, 137.3, 136.3 (d, Jcp = 8 Hz), 128.63, 128.60, 128.56, 128.54, 128.50, 128.39, 128.34, 128.29, 128.1, 128.01, 127.97, 127.92, 127.87, 127.85, 126.9, 104.1, 83.3, 79.4, 75.0, 74.8, 74.51 (d, Jcp = 7 Hz), 71.5, 68.14 (d, Jcp = 5 Hz), 68.10 (d, Jcp = 5 Hz), 62.5, 53.5, 42.2; ³¹P NMR (162 MHz, CDCl₃) δ 9.53; HRMS (ESI m/z) calcd for C₄₈H₅₁O₇N₂PNa (M+Na)⁺ 821.3332, obsd 821.3348.

Glucosamine 6-phosphoramide (23). A solution of 22 (44 mg, 0.055 mmol) in MeOH (2 mL) was stirred in the presence of 40% Pd(OH)₂/C (17 mg) and trace amount of TFA (1 drop), under balloon pressure of hydrogen, for 24 h at room temperature. Filtrate the mixture through a pad of Celite and wash the filter cake with 2 mL MeOH. Suspend the filter cake in 2 mL H₂O and stir for 5 min, and then filtrate again through a
pad of Celite. Concentrate the aqueous solution and dry over high vacuum to yield 23 (11 mg, 80%) as a colorless foam: 1H NMR (400 MHz, D$_2$O) δ 5.37 (d, $J = 3.2$ Hz, 0.7 H), 4.87 (d, $J = 8.4$ Hz, 0.3 H), 3.98 (dt, $J = 2$, 9.2 Hz, 0.7 H), 3.80 (t, $J = 9.6$ Hz, 0.7 H), 3.50-3.71 (m, 1.3 H), 3.26-3.45 (m, 2.3 H), 3.24 (dd, $J = 3.2$, 10.4 Hz, 0.7 H), 2.95 (t, $J = 8.8$ Hz, 0.3 H); 31P NMR (162 MHz, D$_2$O) δ 1.44 (br); HRMS (ESI m/z) calcd for C$_6$H$_{15}$O$_7$N$_2$PNa (M+Na)$^+$ 281.0514, obsd 281.0517.

B. Self-Cleavage Assay

Preparation of RNA. Templates for transcription were prepared by primer extension and PCR amplification using synthetic DNA corresponding to ribozyme sequence. Ribozymes were prepared by *in vitro* transcription using T7 RNA polymerase and 32P-labeled by incorporation of [32P]-UTP. Transcription products were separated by denaturing 10% polyacrylamide gel electrophoresis (PAGE) and ribozymes were eluted in solution containing 50 mM HEPES (pH 7.3 at 22°C) and 200 mM NaCl, precipitated with ethanol, and redissolved in water.

Self-Cleavage Assay. Ribozyme reactions were performed as previously described. Briefly, reactions contained ligand analog as indicated and were performed under standard conditions consisting of incubation at 22°C in solution containing 50 mM HEPES pH 7.3. A saturating concentration of MgCl$_2$ was used in order to avoid a slow folding step and to allow for formation of native glmS RNA structure. The [32P]-UTP-labeled glmS ribozyme (<250 nM) was prefolded in 50 mM HEPES pH 7.5, 0.1 mM EDTA, and 50 mM MgCl$_2$ at 22 °C. Reactions were started by adding coenzyme at
varying concentration (10 mM – 10 µM final concentration) in 50 mM HEPES pH 7.3 buffer. Reactions were terminated by the addition of a gel loading dye containing 10 M urea, 50 mM EDTA, 0.1% bromophenol blue, 0.1% xylene cyanol. Products were separated by denaturing 10% PAGE and analyzed using a PhosphorImager and IMAGEQUANT software (Molecular Dynamics). k_{obs} values for self-cleavage were derived by plotting the natural logarithm of the fraction of uncleaved ribozyme versus time and establishing the negative slope of the resulting line. Stated values represent the average of at least three replicate assays. First-order cleavage rates were obtained at different concentrations of coenzyme in the linear range of a Michaelis–Menten plot (coenzyme concentration ~20% of apparent K_m value) and were fit by linear regression to obtain apparent second-order rate constants k_{cat}/K_m.\(^\text{36}\)

C. pK_a Titration Experiments

Each analogue was prepared in 1 mM (6, 27, 29) or 3 mM (18, 22) solution and titrated with 100 mM NaOH solution. pH was recorded after each addition of 0.1 equivalent of NaOH solution (blue curve). The reciprocal of the change of pH ($1/\Delta\text{pH}$) was plotted to aid identification of the inflection points (Fig. 2.17, red curve).

D. Molecular Docking

The crystal structure of glucosamine-6-phosphate bound to the (2’-OMe)A-1 $glmS$ riboswitch was obtained from the Brookhaven Protein Data Bank (http://www.rcsb.org/pdb) (PDB ID:2NZ4). This $glmS$ riboswitch is obtained from
Bacillus anthracis which is the same source of the riboswitch in our cleavage assay.

Ligands were prepared with Spartan 08 with phosphate-mimicking groups fully deprotonated. Virtual docking experiments were performed using Autodock 4. Each trial was run in a grid map with X x Y x Z dimensions = 40 x 40 x 20 Å centered at C-5 of GlcN6P from the reference structure. The Lamarckian Genetic Algorithm was used as the search method. Each trials consisted of 100 runs, with a maximum of 2,500,000 energy

Figure 2.17: Titration curves for GlcN6P analogues. (A) 6; (B) 27; (C) 29; (D) 14; (E1) 18 with 100 mM NaOH; (E2) 18 with 100 mM HCl.
evaluations. Images were generated in VMD with conformations in the lowest energy cluster.

The Mg-O distances were slightly adjusted to represent typical binding distances in crystal structures. In this crystal structure (2NZ4), the phosphate is ~4 Å away from each magnesium ion. However a typical binding distance between oxygen and magnesium is ~2.5 – 3.0 Å, as observed in 2H0Z (2.44 Å, 3.30 Å); 2Z74 (2.56 Å, 2.63 Å); 2Z75 (2.55 Å, 2.88 Å). Therefore, the structure is subsequently adjusted using Spartan 2008.
V. References

2006138187, 20060609., 2006.
VI. NMR Spectra
1H NMR (400 MHz, D$_2$O)
Chapter 3
Hydrolytically-Stable Bivalent Ligands for CI-MPR

I. Introduction

A. Background of M6P/IGF2R

Lectins are carbohydrate-binding proteins.\(^1\)\(^-\)\(^5\) Different from carbohydrate-specific enzymes and antibodies, they do not possess any enzymatic activities and are not generated from the immune system.\(^6\) The first lectin was discovered in plants; Stillmark reported the isolation of ricin from castor beans in 1888.\(^3\) Since then, numerous lectins have been found in all six kingdoms of life.\(^4\) Through protein-carbohydrate interactions, they regulate many cellular processes such as microbial adhesion, cell-cell recognition and protein sorting. As the interpreters of the sugar code, lectins have drawn growing interest from the biochemical and biophysical research community in the post-genomic era. For example, in 2003, Fisher reported that during the window of receptivity, human fetal trophoblasts express L-selectin while uterine epithelial cells up-regulates sialyl-Lewis\(^X\) (sLe\(^X\)) based ligands.\(^7\) This selectin-sLe\(^X\) recognition was proposed to be critical for pregnancy establishment. Recently, from ultrasensitive mass spectrometric analyses, human sperm-egg binding was also suggested to be mediated through sLe\(^X\) ligands.\(^8\) However, while human oocytes (zona pellucida) were shown to be coated with sLe\(^X\) sequences, human spermatozoa are known to lack the expression of selectins.\(^9\) Therefore, the sLe\(^X\)-binding lectin that crucially controls human fertilization remains mysterious; this represents one of many important lectins that need to be identified.
In the early 1980s, two distinct lectins were recognized as mannose 6-phosphate (M6P) binding proteins. Designated as “P-type” lectins, cation-dependent M6P receptor (CD-MPR) and cation-independent M6P receptor (CI-MPR) bind phosphorylated high-mannose N-glycans (Fig. 3.1).10 By then, these M6P-bearing carbohydrates had been known to mediate the intracellular trafficking of newly synthesized lysosomal enzymes.11 Also called as “acid hydrolases” (owing to the acidic environment of lysosome), these hydrolytic enzymes play an essential role in catabolism of various cellular macromolecules. The deficiency of these enzymes in lysosomes results in the macromolecule accumulation, causing a variety of lysosomal storage diseases, such as I-cell disease (mucolipidosis type II).12-14

![Figure 3.1: Structure of the full-size, high-mannose N-glycan (red hydroxyl groups= possible phosphorylation sites)](image)

Lysosomal enzymes are assembled by the ribosomes that are bound to rough endoplasmic reticulum (RER). To be successfully delivered to the lysosome, the nascent
Figure 3.2: MPR pathway for intracellular lysosomal enzyme trafficking

Figure 3.3: The two-step phosphorylation of N-glycans in mammalian cells
proteins need to be labeled with a M6P marker for recognition by MPRs. Selected asparagine residues are co-translationally glycosylated with the high-mannose glycan (GlcNAc2Man9Glc3), followed by sequential removal of terminal glucoses. The oligosaccharide is then trimmed down for glycoprotein folding and maturation (Fig. 3.2). Phosphorylation of the exposed mannose is a two-step enzymatic process, utilizing UDP-\(N\)-acetylglucosamine (UDP-GlcNAc) as the phosphate source (Fig. 3.3).

First, \(N\)-acetylglucosamine-1-phosphotransferase transfers GlcNAc-1-P to the 6-hydroxyl group of mannose, forming a phosphodiester bond. Then \(N\)-acetylglucosamine-1-phosphodiester \(\alpha\)-\(N\)-acetylglucosaminidase, commonly known as “uncovering enzyme” removes the GlcNAc, unmasking the terminal M6P residue. Subsequently, these phosphorylated glycoproteins will strongly bind to MPRs in the trans-Golgi network (TGN) at a pH of ~6.3. Then the cargo-bound MPRs travel to the late endosome, where pH drops below 6.3. Consequently, MPRs release the acid hydrolases which are ultimately transported to the lysosome for their functions (Fig. 3.3). In the meantime, MPRs do not enter the lysosomes. Instead, they are recycled back to the cell surface or TGN for the next delivery. MPR pathway is conserved in vertebrates, and has been discovered in several invertebrates.

P-lectins are characterized by the presence of one or more mannose 6-phosphate receptor homology (MRH) domains. MRH domains share a similar fold and size. They use four key residues (Gln, Arg, Glu and Tyr) to bind the mannose. Three disulfide bonds are also conserved through MRH domains. Other MRH-containing proteins have been discovered in ER and Golgi compartments, such as human glucosidase II \(\beta\)-subunit, GlcNAc-phosphotransferase \(\gamma\)-subunit, ortholog of fungi Yos9p (OS-9).
and XTP3-B (Erlectin). They bind non-phosphorylated high mannose N-glycans to assess the glycoprotein folding or traffic them through different compartments.

Thus far, three-dimensional structures have been reported for 11 MRH domains. CD-MPR is a 46 kDa type-I transmembrane protein, composed of four functional domains. Its single MRH domain is embedded in its 159-residue extracytoplasmic region. Several crystal structures of ligand-free, M6P-bound or pentamannosyl phosphate (PMP)-bound CD-MPR have been solved. The crystal structures show that the receptor exists as a dimer. Three disulfide bonds are critical for generating the ligand binding conformation. Furthermore, four key residues (Q66, R111, E133, and Y143) are shown to have extensive contacts with the 2-, 3-, and 4-hydroxyl groups of the phosphorylated mannose (Fig. 3.4). This is consistent with the observation that glucose 6-phosphate (2-epimer of M6P) has ~10,000 fold less affinity to CD-MPR, compared with M6P. Another active site residue, Asp103, coordinates the divalent cations to enhance its binding affinity.

In contrast to CD-MPR, CI-MPR is a ~300 kDa transmembrane glycoprotein, with 15 homologous domains in its extracytoplasmic region. Each domain has ~147 amino acids that share a 15-40% identity with CD-MPR. Two high-affinity binding sites for M6P are located in domain 1-3 and domain 9. The three-dimensional structures for 8 out of the 15 MRH domains (domains 1, 2, 3, 5, 11, 12, 13, 14) have been solved. A structure-based sequence alignment shows that domain 1-3 uses the same key residues to bind M6P as does the CD-MPR, however, it lacks the aspartate residue for cation chelation (Fig. 3.5). Recently, a low-affinity M6P binding site was identified in domain 5, which exhibited a preference to the GlcNAc-P-Man phosphodiester.
Figure 3.4: A. Crystal structure of bovine CD-MPR with M6P bound (2RL8); B. Active site residues (MRH-conserved residues marked in purple)
Figure 3.5 : A. Crystal structure of Domain 1-3 of bovine CI-MPR with M6P bound (1SYO); B. Active site residues (MRH-reserved residues marked in purple)
In addition to its role in intracellular protein sorting and trafficking, CI-MPR also plays an important role in the endocytic pathway. A small percentage (~10%) of the CI-MPR is distributed in the cell surface. The cell-surface receptors can bind M6P-containing ligands and deliver them to the endosome via the “secretion-recapture” pathway. For example, some acid hydrolases are secreted into the medium even though they carry a M6P marker. This is particularly significant for some activated macrophages under inflammatory conditions. Surface CI-MPR can bind and internalize these enzymes, to ultimately transport them to lysosome.

Moreover, harnessing its versatile MRH domains, CI-MPR can bind a variety of non-M6P-containing ligands for their endocytosis and degradation in lysosome. Perhaps, most importantly, CI-MPR was found to bind insulin-like growth factor II (IGF-II) via domain 11 in the extracellular region (Fig. 3.6). The IGF system is involved in various signaling pathways that are critical for cell proliferation and malignant transformation. The IGF axis comprises two growth factors (IGF-I and IGF-II), three types of receptor (IGF1R, CI-MPR/IGF2R and IR-A) and a family of IGF binding proteins (IGFBPs). IGF-II promotes cell growth, survival and differentiation, mainly through interactions with IGF1R. It can also stimulate cell mitosis via binding to insulin receptor isoform A (IR-A), which is predominantly expressed in the fetus and cancer cells. Another high-affinity receptor for IGF-II is CI-MPR, which mostly targets IGF-II for degradation, thereby controlling the bioavailability of IGF-II in bloodstream. As a result, CI-MPR is also referred to as M6P/IGF2R or simply IGF2R. CI-MPR exploits its hydrophobic sites in domain 11 to interact with IGF-II, distinct from the binding pattern for M6P. In humans, site-directed studies have shown that F48, R49, S50, A54 and L55
are the key binding residues.70 It is also known that the residues in repeat domain 13 contribute significantly to the high-affinity binding (\(~0.1\text{ nM}\)) (Fig. 3.6).71-72

Figure 3.6: Schematic structure of the Cl-MPR dimer with a postulated bivalent interaction with M6P-containing ligands
Although M6P binds unrelated domains, the presence of a M6P-containing acid hydrolase seems to stimulate the receptor-mediated endocytosis of IGF-II. In 1998, York et al. have shown that in the presence of excess (10 nM) human β-glucuronidase (hGUS), the internalization rate of a iodine-125-labeled IGF-II was accelerated by 3-4 fold. On the other hand, this cooperative effect was not observed for M6P, even at a saturation concentration (10 mM). This leads to the postulation that the multivalent hGUS promotes the oligomerization, most likely dimerization, of the receptor. The consequent conformational change will be transduced to the endoplasmic region, resulting in an accelerated endocytosis of the ligand-receptor complex. Therefore, in a similar fashion a synthetic ligand that cross-bridges two monomeric receptors, could potentially stimulate the endocytosis of circulating IGF-II. The limited bioavailability of IGF-II would ultimately inhibit growth and survival of cancer cells that are dependent on IGF-II signaling. Thus, the \textit{igf2r} gene has been acclaimed as a potential anti-cancer gene, particularly for suppressing breast tumor. Thus, we set out to develop such bivalent ligands for the receptor.

B. Previous Work on Multivalent Ligands for M6P/IGF2R

![Figure 3.7: Bock’s synthetic glycopeptides as bivalent ligands for IGF2R](image)

Figure 3.7: Bock’s synthetic glycopeptides as bivalent ligands for IGF2R
Multivalency has been observed throughout many cellular processes, particularly frequent in lectin-carbohydrate recognition. Monovalent interactions between a carbohydrate and a protein are usually weak. Hence, to achieve a specific cellular response, multivalent oligosaccharide ligands are regularly employed to interact with lectins. By occupying multiple binding sites, these ligands usually possess exponentially high affinities to the receptors. Nonetheless, it is important to distinguish a high-affinity ligand from an “effector.” In addition to its apparent high affinity, an effector also has the desired functions such as clustering receptors. For instance, Bock et al. have synthesized a series of phosphorylated glycopeptides for CI-MPR. One of these bivalent ligands displayed three orders of magnitude higher binding affinity than M6P, leading to the assumption that this is the first small molecule that spans two M6P-binding sites. However, in the 1998 study, this ligand failed to increase the IGF-II endocytosis rate. Indeed, the protecting groups of these peptides seem to have a major influence on the binding affinities. Specifically, when the central lysine residue was not protected instead of being protected with an anthranoyl group, the binding affinity of the peptide decreased by ~220-fold (Fig. 3.7). This implies that the exhibited high affinity is a result from the strong interaction with non-M6P binding sites. The ligand did not really fulfill the true “bivalency”.

In addition to the glycopeptide-based approach, some groups have constructed various oligosaccharide-tethered ligands. Hindsgaul et al. synthesized the pentamannosyl core found in the N-glycans. And they demonstrated that the bis-phosphorylated ligand exhibited ~10-fold higher affinity than the mono-phosphorylated pentasaccharide. It is also noted that mono-phosphorylated pentamannose exhibited 12-fold higher affinity than
M6P, suggesting that the high mannose scaffold may be important to the receptor binding (Fig. 3.8).

![Figure 3.8: Hindsgaul’s synthetic biantennary oligosaccharide](image)

More recently, Chen and co-workers made a triantennary GlcNAc$_2$Man$_5$P$_2$ ligand. Subsequent modification allows this ligand to be covalently attached to human carbonic anhydrase II (HCAII) via a cysteine residue. After labeling with a fluorescent tag, the neoglycoprotein was subjected to IGF2R-mediated cellular uptake, and demonstrated much faster internalization rate compared with the apoprotein. Additionally, a series of mono- and bis-phosphorylated N-glycans were enzymatically prepared from digestion of bovine ribonuclease B (RNase B) and soybean agglutinin. Derivatized with a fluorescent label/tether, they were printed on glass slides and measured for binding to IGF2R.

Despite the success of this biomimetic approach, the preparation of these phosphorylated carbohydrates is usually tedious. The enzymatic synthesis sometimes cannot provide defined glycan structures. Thus, our group set out to explore novel synthetic strategies to rapidly assemble bivalent ligands that contain M6P mimics. And we seek ligands that have three orders of magnitude higher binding affinity than M6P exhibited by hGUS.
II. Results and Discussion

A. Monovalent ligands and cross-metathesis approach

Previously, both Montero and our group have synthesized phosphonate analogues of M6P.92 In addition, our group has synthesized a panel of other hydrolytically stable analogues, and tested them for binding affinities.93 Pleasingly, the replacement of the bridging oxygen with carbon did not have a deleterious effect on the receptor binding. Phosphonate analogue displayed an IC\textsubscript{50} of ~25 μM to the receptor, which is similar to that of M6P (Fig. 3.9). Moreover, the second best ligand, malonate analogue, showed only a 3-fold weaker binding to IGF2R. Subsequently, these two analogues were utilized to build bivalent ligands by cross metathesis chemistry. The allyl mannoside was easily prepared from methyl α-D-mannopyranoside. By triflate displacement chemistry, manolate functionality was installed smoothly. The Ru(II)-mediated cross metathesis, followed by hydrogenation, efficiently tethered two surrogates together through a carbon chain (Fig. 3.10). For the synthesis of ligand 7, the alcohol 2 was subjected to cross

![Image of chemical structures and IC\textsubscript{50} values](image-url)

Figure 3.9: Monovalent ligands synthesized and tested in Berkowitz-MacDonald collaboration

Previously, both Montero and our group have synthesized phosphonate analogues of M6P.92 In addition, our group has synthesized a panel of other hydrolytically stable analogues, and tested them for binding affinities.93 Pleasingly, the replacement of the bridging oxygen with carbon did not have a deleterious effect on the receptor binding. Phosphonate analogue displayed an IC\textsubscript{50} of ~25 μM to the receptor, which is similar to that of M6P (Fig. 3.9). Moreover, the second best ligand, malonate analogue, showed only a 3-fold weaker binding to IGF2R. Subsequently, these two analogues were utilized to build bivalent ligands by cross metathesis chemistry. The allyl mannoside was easily prepared from methyl α-D-mannopyranoside. By triflate displacement chemistry, manolate functionality was installed smoothly. The Ru(II)-mediated cross metathesis, followed by hydrogenation, efficiently tethered two surrogates together through a carbon chain (Fig. 3.10). For the synthesis of ligand 7, the alcohol 2 was subjected to cross
metathesis to yield the diol 6 in 84% yield (E/Z = 4/1). The bis-triflate was then cleanly prepared and displaced by two equivalents of dibenzyl lithiomethylphosphonate in 75% yield. The product was subsequently hydrogenated, to afford the first bivalent ligand that bears two phosphonate analogues (Fig. 3.11). However, both ligands 5 and 7 demonstrated little effect of sought-after bivalency. A quick molecular modeling using Merck Molecular Force Field (MMFF) estimated the distance between two phosphorus atoms to be around 12 Å. This is likely too short to intermolecularly span two M6P.

Figure 3.10: Synthesis of bis-malonate analogue of M6P

Figure 3.11: Synthesis of bis-phosphonate analogue of M6P
binding sites. In 2004, Olson et al. constructed a homology model of the whole receptor, based on the crystal structures of domain 1-3, using topographical information from amino acid sequence of each domain. They estimated that the distance between the M6P-binding sites domain 3 and domain 9 on a single receptor is \(\sim 45 \) Å for a “bent” model.53 And few studies have shed light on the length required for a ligand to bind two sites intermolecularly. Therefore, we decided to make a set of bivalent ligands with longer tethers.94

Benzylation of \(\alpha\)-D-mannopyranoside, followed by treatment with acetic anhydride yielded the di-acetate compound 8. A Vorbrüggen-type glycosylation95 using TMSOTf afforded a set of alkene terminated mannosides. Then Grubbs-I catalyst was utilized in the alkene cross metathesis96 to generate the bis-mannosides. Following the removal of acetate groups, triflate displacement chemistry was efficiently applied to each of the diol substrates. The final alkene hydrogenation/global debenzylation step rendered four bis-phosphonate ligands (9 – 12) with incrementally increased lengths (Fig. 3.12). These compounds represents the first set of “molecular rulers” that has been developed to
probe the bivalent interactions with the receptor. The IC\textsubscript{50} values and relative binding affinities (RBAs) are summarized in Table 3.1, as well as the estimated P-P distances. Statistically, all these compounds exhibited a similar binding affinity to M6P, suggesting they still bind in a monovalent manner. Although compound 12 has about twice the length of the original ligand 7, its RBA showed little improvement. Furthermore, the 12-carbon tether starts to have a detrimental effect on the solubility of these bis-phosphonate ligands in water. Thus, we need to build the bivalent ligands with longer and more hydrophilic tethers. More importantly, we seek diverse structural features in the new generation of ligands, to acquire more information about the bivalent contact between the receptor and the native ligands.

Figure 3.13: One of the low-energy conformers of the 12-C tethered ligands found by a MMFF minimization
B. Ligand Diversification at the Linking Stage

Synthetic ligands have been regularly employed to probe multivalent interactions.81, 83-84 This is because the natural ligands are commonly too complex to apprehend. For instance, hGUS is a homotetrameric glycoprotein. In each monomer, four Asn residues could potentially be glycosylated with a variety of high-mannose N-glycans, ranging from Man\textsubscript{5}GlcNAc\textsubscript{2} to Man\textsubscript{9}GlcNAc\textsubscript{2}.97 Therefore, it is extremely difficult to interpret how hGUS achieves multivalency through interactions with IGF2R. In contrast, small-molecule ligands have defined structures, such as valency and distance. And they are relatively easy to modify for extensive SAR studies. Hence, these “tailored ligands” are important tools to probe multivalent interactions with macromolecules.98 Furthermore, synthetic ligands can block the binding of the natural ligands, thereby inducing desired cellular response.99 In this particular case, however, the goal is to have a synthetic ligand

<table>
<thead>
<tr>
<th>Ligand</th>
<th>IC\textsubscript{50} (nM)</th>
<th>RBAb</th>
<th>M\textsubscript{r}</th>
<th>Lengthc</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6P</td>
<td>11.5 ± 2.51 (4)</td>
<td>1.0</td>
<td>340</td>
<td>NA</td>
</tr>
<tr>
<td>G6P</td>
<td>>10 (4)</td>
<td>NA</td>
<td>282</td>
<td>NA</td>
</tr>
<tr>
<td>9 (6C)</td>
<td>4.76 ± 2.50 (4)</td>
<td>2.63 ± 0.74</td>
<td>666</td>
<td>18.5Å</td>
</tr>
<tr>
<td>10 (8C)</td>
<td>5.03 ± 1.34 (4)</td>
<td>2.39 ± 0.83</td>
<td>694</td>
<td>19.5Å</td>
</tr>
<tr>
<td>11 (10C)</td>
<td>4.44 ± 1.40 (4)</td>
<td>2.65 ± 0.52</td>
<td>722</td>
<td>21.8Å</td>
</tr>
<tr>
<td>12 (12C)</td>
<td>3.65 ± 0.54 (4)</td>
<td>3.13 ± 0.52</td>
<td>750</td>
<td>24.7Å</td>
</tr>
</tbody>
</table>

aIC\textsubscript{50} for competitive displacement of radiolabeled PMP-BSA from the receptor (n = no. of trials); bRBA = relative binding affinity, normalized to free M6P; cLength = P-P distance, as estimated by molecular mechanics minimization (MMFF)
that activates the IGF2R-mediated endocytosis, leading to the inhibition of IGF-II dependent tumor growth. And with our phosphonate analogue as the binding motif, such a bivalent ligand would become a novel anti-cancer drug candidate instantly.

Pioneering studies from Kiessling group have demonstrated the great influence of tethers or valency on the ligand-receptor binding.84, 98, 100-101 However, few groups have looked over the effect of linkages despite a growing list of conjugation chemistries. It appears many multivalent ligands are linked through 1,4-triazoles, utilizing the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC).102 Indeed, this transformation has become so popular that this chemistry has become synonymous with the term “click chemistry”. Although CuAAC is highly efficient, the myopic focus on this chemistry is truly a missed opportunity.103 Namely, with the azide functionality, one can rapidly diversify the linkage with an array of conjugation chemistries.104 In this manner, one can introduce diversity to the important molecular features, such as size, shape and lipophilicity. Therefore, we decided to demonstrate this linker-diversification strategy, by building a new generation of bivalent ligands for IGF2R.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{synthesis.png}
\caption{Synthesis of an azide-terminated mannosyl phosphonate}
\end{figure}
The synthesis of the new set of ligands emanates from \(n \)-pentenyl 2,3,4-tri-O-benzyl-\(\alpha \)-D-mannopyranoside 13. Triflate displacement chemistry was successfully applied, with 66% yield over the two steps, that installed the phosphonate moiety. The terminal double bond was then subjected to ozonolysis, followed by treatment with dimethyl sulfide. Further reduction of the aldehyde yielded the intermediate 15. Tosylation of the terminal -OH, followed by NaN\(_3\) displacement afford the key azido precursor 16, set for a series of conjugation chemistries.

![Figure 3.15: Gin’s iterative procedure for synthesis of pentabutylene glycol](image)

In the meantime, we have selected pentabutylene glycol (PBG) as the tethering part. It represents the type of tethers with ideal length, flexibility and hydrophilicity for our system. PBG was synthesized in gram scale following Gin’s iterative process (Fig.

![Figure 3.16: Synthesis of three types of tethers](image)
2,5-Dimethoxy tetrahydrofuran was treated with 1,4-butanediol and catalytic p-toluenesulfonic acid (TsOH) to generate the diacetal in 75% yield. Reductive opening of the seven-membered ring resulted in tributylene glycol quantitatively. Swern oxidation efficiently converted the terminal alcohols to aldehydes, which were reacted with 1,4-butanediol and TsOH to give the extended diacetal. Further treatment with borane-THF rendered PBG in 91% yield. PBG was further modified to install functional groups that are ready to couple with azides (Fig. 3.16). First the terminal hydroxyl groups were oxidized to carboxylic acids, of which DCC-promoted esterification yielded the phosphine-ester 21 expeditiously. PBG was also converted to the dialdehyde 19, followed by Corey-Fuchs reaction to afford diacetylene 22. Finally, Appel reaction transformed the diol to diiodide 20 in 93% yield. Methyl 2-(diphenylphosphino)-5-hydroxybenzoate was used to displace the iodide, providing a different phosphino-ester, compound 23.

With both coupling components in hand, we set out to examine a set of five conjugation reactions, as a novel strategy to introduce diversity to the ligands. First, the phosphino-esters 21 and 23 were reacted with the azide precursor respectively, to provide two distinct amide linkages. This Staudinger-type conjugation was first developed by the Bertozzi group. Azides can be efficiently reduced by phosphines to afford aza-ylide intermediates. Hydrolysis of these ylides gives amines and phosphine oxide. By cleverly using an adjacent ester, Bertozzi et al. were able to trap the aza-ylide to form a phosphonium amide. Upon hydrolysis, the phosphonium amide broke down to phosphine oxide and an amide bond, which serves as the linkage to a variety of bioconjugates.
Herein, for the “traceless” coupling between 21 and 16, the formed phosphine oxide was released from the reaction to yield the simple amide linked compound 24. On the other hand, for the ligation of 23 and 16, hydrolysis expelled MeOH as the byproduct, while phosphine oxide was conserved as a part of a novel linkage. The latter strategy was successfully utilized to engineer cell surfaces.106,110 Thus it is intriguing to employ this underused linking functionality in our system. Both Staudinger-type ligation proceeded efficiently with over 82% yield (>90% for each coupling). Alternatively, compound 24 could be accessed by Williams ligation which uses thio carboxylic acids to react with azides.111 However, we found the azide 16 to be a challenging substrate for this type of transformation. The reaction between 16 and the bis-thio carboxylic acid rendered the desired product in <20% yield, with a notable decomposition of the azide.

Next, we set out to explore two types of azide-alkyne chemistries. CuAAC has been widely applied in bioorganic chemistry, ranging from ligand assembly to target
Figure 3.17: “Traceless” Staudinger ligation to make the simple amide linkage

Figure 3.18: Staudinger ligation to make the triphenylphosphine oxide-amide linkage

Figure 3.19: Williams thioacid-azide ligation to make simple amide linkage
There are numerous bioconjugates and small-molecule conjugates that bear the 1,4-triazole linkage. Recently, Ru(II)-catalyzed azide-alkyne cycloaddition (RuAAC) has emerged as an exciting alternative. Although this reaction is not as efficient as CuAAC, it provides an interesting 1,5-triazole linking functionality. This regioisomeric linkage could, in principle, forge the molecule in a different trajectory. For example, Liskamp et al. have utilized the triazole group to replace the E-ring of vancomycin, aiming to synthesize the constrained mimics of the antimicrobial agent. The successful execution of the CuAAC and RuAAC reactions lead to two macrocyclic peptides with distinct structural features. However, the synthesis of these vancomycin analogues was not completed and no biochemical studies were presented. Herein, the Huisgen cycloaddition reactions were conducted with both the copper and ruthenium catalysts, to yield the 1,4-triazole linked compound 27 and the 1,5-triazole linked 26, respectively (Fig 3.20). After the global debenzylation., two bivalent phosphonate ligands were afforded. And a direct comparison of the binding affinities of the 1,4- and 1,5-triazole linked ligands is prominent.

Finally, we set out to explore an even less exploited ligation chemistry, namely the 1,3-dipolar cycloaddition reactions of azides and sulfonyl cyanide. Subsequent nucleophilic aromatic substitution (SNAr) of the sulfonyl tetrazoles could ligate various nucleophiles to the tetrazole components. This transformation was first discovered under thermal conditions by Demko and Sharpless. Tosyl cyanide (TsCN), owing to its relative stability and commercial accessibility, is the only sulfonyl cyanide that has been explored in this reaction. A wide range of aliphatic azides gave quantitative yields; however, aromatic azides are generally poor substrates for the cycloaddition. In 2007,
Vilarrasa et al. examined an array of metal catalysts and found Cu₂(OTf)₂ is particularly effective in promoting the reactions.¹¹⁸ Hence, we initially attempted to fulfill the cycloaddition of azide 16 and tosyl cyanide using this catalyst. As seen in Table 3.2, the tetrazole 28 was synthesized in poor to moderate yields under catalysis, with Cu₂(OTf)₂•C₇H₈ complex giving the best result (48% yield). Perhaps more disappointingly, the Cu(I)-catalyzed cycloaddition reactions afforded mediocre selectivities. The 1,4- and 1,5-tetrazole linkages were generated in a ratio of ~ 3:7. And these two regioisomers proved to be difficult to separate. Other metals also failed to give satisfactory results. Notably, Fokin’s Ru(II) catalyst¹¹³ failed to produce any detectable product after 48 h (Table 3.2, entry 5). Hence, we set to examine this reaction under thermal conditions.

Table 3.2: Optimization of the azide-sulfonyl cyanide 1,3-dipolar cycloaddition

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solvent</th>
<th>temp (°C)</th>
<th>time, h</th>
<th>yield (%)</th>
<th>sel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu₂(OTf)₂•C₆H₆</td>
<td>CH₂Cl₂</td>
<td>23</td>
<td>22</td>
<td>31</td>
<td>75/25</td>
</tr>
<tr>
<td>2</td>
<td>Cu₂(OTf)₂•C₇H₈</td>
<td>CH₂Cl₂</td>
<td>23</td>
<td>22</td>
<td>48</td>
<td>70/30</td>
</tr>
<tr>
<td>3</td>
<td>Cu(OTf)₂</td>
<td>CH₂Cl₂</td>
<td>23</td>
<td>22</td>
<td>13</td>
<td>71/29</td>
</tr>
<tr>
<td>4</td>
<td>ZnCl₂</td>
<td>CH₂Cl₂</td>
<td>23</td>
<td>22</td>
<td>15</td>
<td>93/7</td>
</tr>
<tr>
<td>5</td>
<td>Cp*(COD)RuCl</td>
<td>CH₂Cl₂</td>
<td>23</td>
<td>48</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>none</td>
<td>none</td>
<td>95</td>
<td>20</td>
<td>72</td>
<td>>99/1</td>
</tr>
<tr>
<td>7</td>
<td>none</td>
<td>none</td>
<td>95b</td>
<td>1</td>
<td>70</td>
<td>>99/1</td>
</tr>
</tbody>
</table>

* Selectivity of the cycloaddition reaction with ratios of 1,5-tetrazole over 1,4-tetrazole. ¹ This reaction temperature was achieved by microwave irradiation.
To our satisfaction, the functionally dense azide 16 reacted efficiently with TsCN at 95 °C without any solvent. The desired sulfonyl 1,5-tetrazole was synthesized in 72% yield as the only detected isomer (Table 3.2, entry 6). Next, we utilized microwave to promote this thermal reaction to a greater efficiency. Vilarrasa et al. have used microwave irradiation to facilitate the 1,3-dipolar cycloaddition reactions between azides and acetyl cyanides. However, prior to this work, no one has reported the use of microwave to accelerate the cycloaddition of an azide and tosyl cyanide. A synthesizer demo was kindly provided by CEM at that time. The reaction was then heated at 95 °C under microwave irradiation. TLC analysis indicated the completion of the reaction within 1 h. Further purification afforded only the 1,5-tetrazole compound 28 in 70% yield (Table 3.2, entry 7). This represents a significant improvement of the reaction efficiency, compared with the one using the conventional heating source. The sulfonyl tetrazole 28 was then reacted with the nucleophilic PBG alkoxide, providing the 1,5-tetrazole-linked compound 29 in 79% yield (89% for each displacement, Fig. 3.21).

Figure 3.21: Demko-Sharpless azide-nitrile cycloaddition/S_N_Ar sequence
C. Binding Affinity Assay

All the protected bis-phosphonate compounds (24, 25, 26, 27, 29) were subjected to the final global deprotection step, to afford the active ligands (BL1 – BL5) for the binding affinity assay. The assay was conducted in Prof. MacDonald’s lab at the University of Nebraska Medical Center (UNMC). Thanks to Prof. MacDonald and graduate student Megan Zavorka’s patient guidance, I had the opportunity to have a hands-on experience of this displacement assay.

IGF2R was previously prepared and immobilized on the cyanogen bromide-activated Sepharose resin. I^{125}-PMP-BSA, a radiolabelled high-affinity ligand, was utilized to competitively bind to the receptor. Thus, aliquots of receptor resins were incubated with I^{125}-PMP-BSA, in the presence of increasing concentrations of synthetic ligands. The mixture was agitated at 4 °C for 16 h, followed by repetitive washing with buffer. The I^{125}-PMP-BSA-bound resins were then quantified in a Perkin-Elmer WIZARD Automatic Gamma Counter. The data were converted to percent binding values by comparing with the test ligand-free controls. Then these values were plotted against the concentrations of test ligands in semi-log graphs. Nonlinear regression analysis (Prism GraphPad) was applied to estimate the best-fit curve and IC_{50} for each ligand. Relative binding affinities (RBAs) were also calculated for each compound by comparing to the IC_{50} of M6P. Each value in Table 3.3 represents the mean of at least three replicate experiments.

In addition to the binding affinities, a few molecular features of these linking functionalities are also listed in the table, particularly the ones related to the Lipinski’s
rule of five119, namely, (i) number of hydrogen bond donors, (ii) number of hydrogen bond acceptors, (iii) molecular weight, (iv) calculated logP (of the molecules with methyl groups on each side) and (v) angle types of the two linkage bonds.

Table 3.3: Molecular features of the linkages and RBAs of the bivalent ligands

<table>
<thead>
<tr>
<th>ligand</th>
<th>BL1</th>
<th>BL2</th>
<th>BL3</th>
<th>BL4</th>
<th>BL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>linkage</td>
<td>![amide structure]</td>
<td>![amide & triphenyl phosphine oxide structure]</td>
<td>![1,4-triazole structure]</td>
<td>![1,5-triazole structure]</td>
<td>![1,5-tetrazole structure]</td>
</tr>
<tr>
<td>functional group</td>
<td>amide</td>
<td>amide & triphenyl phosphine oxide</td>
<td>1,4-triazole</td>
<td>1,5-triazole</td>
<td>1,5-tetrazole</td>
</tr>
<tr>
<td>RBAa</td>
<td>2.1</td>
<td>0.67</td>
<td>1.3</td>
<td>3.9</td>
<td>2.4</td>
</tr>
<tr>
<td>H-bond donor</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-bond acceptor</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>M.W.</td>
<td>43</td>
<td>319</td>
<td>67</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>clogP</td>
<td>-1.078</td>
<td>1.319</td>
<td>-0.261</td>
<td>-0.261</td>
<td>-0.238</td>
</tr>
<tr>
<td>angle</td>
<td>linear</td>
<td>obtuse</td>
<td>obtuse</td>
<td>acute</td>
<td>acute</td>
</tr>
</tbody>
</table>

a Relative binding affinity was calculated by dividing the IC\textsubscript{50} value for each compound by that of M6P.

As seen in Table 3.3, the linkage shapes seem to have the most prominent effect on the receptor binding. 1,5-Triazole-linked BL4 exhibited a 3-fold higher RBA than the 1,4-triazole linked BL3. Moreover, 1,5-tetrazole linked ligand BL5 displayed the second strongest binding in this series. These two linkages represent the “bent” trajectory that might support the desired conformation for receptor binding. On the other hand, the amide linkage is linear and the amide linked BL1 displayed a mediocre RBA (2.1). For the ligand BL2, the steric hindrance seems paramount for the receptor. While this linking functionality served well in the purpose of cell-surface engineering, the
triphenylphosphine oxide-amide linkage trailed other ligands here, exhibiting the lowest binding affinity (RBA = 0.67). It should be noted that even the best ligand BL4 did not provide the sought-after 3 orders of magnitude higher RBA than M6P. Instead, BL4 only showed a statistically 2-fold higher binding affinity than M6P. This implies that these bidentate ligands fail to concurrently bind two binding sites. There are many possible reasons for this result and a few of them are discussed in detail later.

D. PEG Based Bivalent Ligands

Table 3.4: Optimization of the displacement reaction of the sulfonyl tetrazole

<table>
<thead>
<tr>
<th>entry</th>
<th>base</th>
<th>solvent</th>
<th>additive</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaH</td>
<td>DMF</td>
<td>none</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Ag₂O</td>
<td>DMF</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>PS-TBD</td>
<td>DMF</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>PS-BEMP</td>
<td>DMF</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>KHMDS</td>
<td>THF</td>
<td>none</td>
<td>31ᵃ</td>
</tr>
<tr>
<td>6</td>
<td>NaHMDS</td>
<td>toluene</td>
<td>none</td>
<td>77ᵃ</td>
</tr>
<tr>
<td>7</td>
<td>NaHMDS</td>
<td>toluene</td>
<td>crown ether</td>
<td>72ᵃ</td>
</tr>
<tr>
<td>8</td>
<td>KHMDS</td>
<td>toluene</td>
<td>none</td>
<td>87ᵃ</td>
</tr>
</tbody>
</table>

ᵃ The reaction was carried out using the following procedure: To a solution of tetraethylene glycol (1 equiv.) in toluene (0.2 mmol) was added KHMDS (0.5 M in toluene, 2.1 equiv.) and additive (2.1 equiv.). After stirring at r.t. for 0.5 h, the mixture was cooled to -78°C and added to a solution of 30 (2.1 equiv) in toluene. The reaction was slowly warmed to r.t. and stirred for 8-10 h. After aqueous workup, column chromatographic purification (5% MeOH-EtOAc) yielded compound 31 as a colorless oil.
Out of this study, the newly-improved azide-cyanide cycloaddition/S_NAr ligation chemistry is one of the most interesting results. To further demonstrate the potential of this method in chemical biology, we employed it to synthesize a second generation of ligands with incrementally increasing lengths. Commercially available polyethylene glycols (PEGs) were utilized as proof of principle. Therefore, the tetrazole compound 28 was prepared in large scale under microwave conditions. The substitution reactions proceeded efficiently for the sodium alkoxides with 6,8,10 and 12 PEG units.

However, PEG-4 reacted poorly with 28 using NaH in DMF (45% yield). To improve the yield, we explored the S_NAr under various conditions. The tetrazole compound 30 was utilized as a model substrate and can be accessed readily. Then we tried an array of bases with diverse structures (Table 3.4). Ag_2O and two polystyrene-immobilized bases (PS-TBD, PS-BEMP) met with little success in facilitating the substitution. On the other hand, NaHMDS proved to be an efficient base in this reaction. The tetrazole compound 31 was produced in 77% yield in toluene (Table 3.4, entry 6). However, the yield decreases dramatically in more polar solvents such as THF or diethyl ether. This suggests that the poor solvation of the anion markedly increases its nucleophilicity, thereby accelerating this S_NAr reaction. Additionally, using KHMDS, we were able to improve the yield to 87% (Table 2.4, entry 8), which means ≥93% yield for each coupling. Subsequently, the optimized conditions were applied to the reaction between PEG-4 and 28, which proceeded very efficiently as well. The tetrazoles linked, PEG-4 tethered bis-phosphonate 29 was made in 78% yield. Further deprotection of these compounds afforded a new set of ligands that could potentially measure the spatial distance between two M6P binding sites.
Nonetheless, the binding affinity assay demonstrated little to no difference among these PEG-tether ligands (Table 3.5). These results indicate that even the closest distance between two binding sites is beyond these ligands’ reach. One reason is that PEGs tend to take folded conformations in aqueous medium. This phenomenon was even quantified in the recent review by Gambhir et al.120 In water, the length of a PEG polymer (PEG-n) can be described in terms of the Flory radius (F), which can be calculated using equation (1).

\[F = \frac{3}{\alpha n^5} \] (1)

This equation proved to be practical for larger PEGs (n = 103 - 104). Herein, we applied the equation to have a rough idea of the lengths of these shorter PEG tethers. The F of PEG-12 is calculated to be around 15 Å, which falls short of the predicted distance between two binding sites (~ 30 – 50 Å).49 Therefore, the marriage between PEG tethers and the cycloaddition/SNAr sequence may be more useful in probing shorter distances.

Overall, ten bivalent ligands were synthesized in this study. Although they did not exhibit the sought-after binding affinities, we did gain some insights on the ligand-receptor interactions. For example, the receptor showed a notable preference for the cis-linked ligands, suggesting the rigid conformation of the native ligand is crucial for high affinity binding. Moreover, the triphenylphosphine oxide moiety was not well tolerated in the protein interactions. This indicates steric hindrance does play a role in binding this receptor, even for the monovalent interactions. The reason(s) why these ligands failed to cross-bridge IGF2R is not yet clear. In addition to their shorter lengths, there are a couple of other plausible factors. 1) These ligands are still too flexible compared with naturally-occurring oligosaccharides. The conformational dynamics of the receptor requires the ligands to be orientated in a specific way to chelate. Although we introduced heterocycles
or amide bonds as the rigid linker, the ligand can still take numerous conformations thanks to the PBG or PEG tether. Thus, the entropy penalty could simply be too high for these ligands to concomitantly bind two receptors. 2) The \(\alpha-1,2 \)-linked mannose disaccharide could be critical for high-affinity binding. As we analyze previous ligands for this receptor, it seems the oligosaccharide motif is preserved through high-binding-affinity ligands. More importantly, as seen in the crystal structure of the bovine CD-MPR (PMP-bound), the residues (D43, Y45) inside the M6P binding pocket have significant interactions with the penultimate mannoside (Fig. 3.22).\(^{44} \) Therefore, to achieve high binding affinities and induce receptor dimerization, it may be important to add the second mannose to our ligand design.

Table 3.5: Synthesis of PEG-tethered ligands as spatial probes

<table>
<thead>
<tr>
<th>entry</th>
<th>Ligand</th>
<th>n</th>
<th>(S_{NAr}) (%)(^a)</th>
<th>debenzylation yield (%)</th>
<th>Flory radius (Å)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BL6</td>
<td>4</td>
<td>78</td>
<td>91</td>
<td>9.2</td>
</tr>
<tr>
<td>2</td>
<td>BL7</td>
<td>6</td>
<td>79</td>
<td>89</td>
<td>10.2</td>
</tr>
<tr>
<td>3</td>
<td>BL8</td>
<td>8</td>
<td>84</td>
<td>90</td>
<td>12.2</td>
</tr>
<tr>
<td>4</td>
<td>BL9</td>
<td>10</td>
<td>78</td>
<td>92</td>
<td>13.9</td>
</tr>
<tr>
<td>5</td>
<td>BL10</td>
<td>12</td>
<td>64</td>
<td>92</td>
<td>15.5</td>
</tr>
</tbody>
</table>

\(^a\) For \(n = 4 \), the yield is from the reaction in toluene using KHMDS. All other yields are from reactions in DMF with NaH. \(^b\) Flory radius is calculated from the equation \(F = \alpha n^{3.5} \) (\(\alpha = 3.5 \) Å for PEG).
In conclusion, we have demonstrated a way to generate diversity at the linking stage, even with the functionally dense sugar-phosphonate. One can quickly assemble a library of diverse ligands, by harnessing the versatility of an azido terminus. This is particularly useful in synthesizing peptidomimetic libraries, as all five linkages have amide or amide-mimicking character. Moreover, for the first time, the Sharpless-Demko cycloaddition/SNAr sequence has been applied in probing the distance between two binding sites. Given the popularity of PEG spacers in multivalent ligand assembly, we believe that this strategy will find broad application in chemical biology.

Figure 3.22: Crystal structure of bovine CD-MPR with phosphoryl pentamannoside bound. The image was rendered from IC39. Three of the pentamannose were found in the active site. The MRH domain-preserved residues interact with the terminal M6P (purple color). The penultimate mannose interacts with D43 and Y45. The antepenultimate mannose weakly interacts with Q68 (not shown here).
In the future, we can increase the rigidity of our ligands which may decrease the entropy penalty for the binding event. Oligopeptide and oligosaccharide tethers are confined structures that could be utilized in the ligand assembly. By screening a series of short peptides, we may find a ligand that takes the optimal conformation for binding. Furthermore, we should make the α-1,2-linked mannose disaccharide that is armed with phosphonate functionality and use it as the monomeric precursor to build bivalent or multivalent ligands.
III. Experimental Section

A. Organic Synthesis

Reactions were conducted under argon atmosphere using oven-dried glassware. Methylene chloride was distilled from CaH2. THF was distilled from sodium benzophenone ketyl. MeOH was distilled from magnesium-iodide. Other reagents were obtained from commercial sources and used without further purification. Flash chromatography was performed using Merck silica gel 60 (230-400 mesh). \(^1\)H NMR spectra were recorded on a Bruker-DRX-Avance 500 MHz and 400 MHz instrument with chemical shifts reported relative to residual CHCl3 (7.25 ppm). Proton-decoupled \(^{13}\)C NMR spectra were acquired on a Bruker-DRX-Avance 400 MHz and 600 MHz instrument with chemical shifts reported relative to CDCl3 (77.0 ppm). \(^{31}\)P NMR spectra were obtained on the 400 MHz instrument with chemical shifts reported relative to 85% phosphoric acid (0 ppm). Mass spectra were acquired at the Nebraska Center for Mass Spectrometry (University of Nebraska-Lincoln).

\[n\text{-Pentenyl 2,3,4-tri-O-benzyl-6-O-trifluoromethanesulfonyl-\(\alpha\)-D-mannopyranoside (32).} \]

To a solution of \(n\)-pentenyl 2,3,4-tri-\(O\)-benzyl-\(\alpha\)-D-mannopyranoside (820mg, 1.58 mmol) and 2,6-di-\(tert\)-butyl-4-methylpyridine (1.3g, 6.32 mmol) in CH\(_2\)Cl\(_2\) (16 mL), was slowly added trifluoromethanesulfonic anhydride (794 \(\mu\)L, 4.74mmol) at -40 °C and stirring continued for 0.5 h at that temperature. The reaction mixture was then concentrated \textit{in vacuo} and directly applied to column chromatography (8% EtOAc -
hexanes) to afford 32 (942 mg, 92%) as pale yellow oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.36-7.51 (m, 15H), 5.82-5.94 (m, 1H), 5.13 (dd, J = 1.6, 3.2 Hz, 1H), 5.05-5.11 (m, 1H), 4.91 (d, J = 1.6 Hz, 1H), 4.85 (d, J = 12.4 Hz, 1H), 4.78 (d, J = 12.4 Hz, 1H), 4.74 (d, J = 10.4 Hz, 1H), 4.74 (s, 2H), 4.70 (d, J = 11.2 Hz, 1H), 4.65 (dd, J=1.2, 5.2 Hz, 1H), 4.01-4.08 (m, 1H), 3.94-4.02 (m, 2H), 3.87 (dd, J = 2.4, 2.8 Hz, 1H), 3.74 (td, J = 6.4, 9.6 Hz, 1H), 2.12-2.21 (m, 2H), 1.73 (quint, J = 6.8 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 138.21, 138.19, 137.90, 137.87, 130.6, 129.0, 128.8, 128.6, 128.54, 128.50, 128.4, 128.3, 128.13, 128.07, 127.85, 127.84, 126.2, 126.1, 120.3 (t, $J_{C,F}$= 318 Hz, 1C), 115.1, 113.9, 97.9, 80.1, 75.7, 75.2, 74.6, 73.7, 72.8, 72.2, 70.0, 67.3, 30.3, 28.6; 19F NMR (376 MHz, CDCl$_3$) δ -74.5 (s, 3F).

n-Pentenyl 6-deoxy-6-(dibenzyl)phosphonomethyl-2,3,4-tri-O-benzyl-α-D-mannopyranoside (14). To a solution of triflate 32 (942 mg, 1.45mmol) and dibenzylmethylphosphonate (1.6 g, 5.8 mmol) in THF (15 mL) at -78 °C was added slowly n-BuLi (3.62 mL of a 1.6 M solution in hexane, 5.8 mmol). After stirring for 20 min at -78 °C, the reaction was quenched with saturated aqueous NH$_4$Cl. Et$_2$O (100 mL) was added to dilute the solution. The organic layer was sequentially washed with NH$_4$Cl, water and brine, and then dried over MgSO$_4$. Filtration and evaporation gave crude product, which was purified by flash column chromatography (30-40% EtOAc-hexanes) to afford 14 (810 mg, 72%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.26-7.43 (m, 25H), 5.75-5.85 (m, 1H), 5.09 (d, J = 8.8 Hz, 1H), 5.06 (d, J = 8 Hz, 1H), 4.97-5.04
3-Formylpropyl 6-deoxy-6-
(dibenzyl)phosphonomethyl 2,3,4-tri-O-benzyl-D-
mannopyranoside (33). 14 (2.6 g, 3.35 mmol) was dissolved in
30 mL CH₂Cl₂. The solution was then cooled to -78 °C. A stream of O₃/O₂ was bubbled
into the reaction mixture until the solution turned pale blue. Excess ozone was discharged
by bubbling with N₂. The reaction was stirred at room temperature for 48h following
addition of dimethyl sulfide (~30 equiv.). The residue obtained upon concentration was
purified by flash column chromatography (20% EtOAc-hexanes) to afford 33 (2.2 g, 85%)
as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ9.69 (t, J = 1.6 Hz, 1H), 7.24-7.39 (m,
25H), 5.058 (dd, J = 1.2 Hz, 8.8 Hz, 1H), 5.03 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 4.99 (dd, J =
1.6 Hz, 8 Hz, 1H), 4.96 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 4.77 (d, J
= 12.4 Hz, 1H), 4.70 (s, 1H), 4.69 (d, J = 12.4 Hz, 1H), 4.63 (s, 2H), 4.59 (d, J = 10.8 Hz,
1H), 3.80 (dd, J = 2.8 Hz, 8.8 Hz, 1H), 3.72 (dd, J = 2 Hz, 3.2 Hz, 1H), 3.64 (t, J = 9.6
161 Hz, 1H), 3.56 (td, $J = 6.4$ Hz, 9.6 Hz, 1H), 3.46 (dt, $J = 2.4$ Hz, 8.8 Hz, 1H), 3.29 (td, $J = 6.4$ Hz, 9.6 Hz, 1H), 2.44 (ddt, $J = 1.6$ Hz, 17.4 Hz, 7.2 Hz, 1H), 2.37 (ddt, $J = 1.6$ Hz, 17.6 Hz, 7.2 Hz, 1H), 2.11-2.24 (m, 2H), 1.68-1.88 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ201.7, 138.4, 138.3, 136.5 (d, $J = 6$ Hz), 128.6, 128.4, 128.3, 128.2, 127.94, 127.91, 127.89, 127.75, 127.73, 127.6, 97.9, 80.1, 78.2, 75.4, 74.8, 75.4, 74.8, 72.9, 72.2, 71.5 (d, $J = 17$ Hz), 67.1, 67.0, 66.3, 40.9, 24.7 (d, $J = 4$ Hz), 22.2 (d, $J = 141$ Hz), 22.1; 31P NMR (162 MHz, CDCl$_3$) δ33.58; HRMS (ESI m/z) calcd for C$_{46}$H$_{51}$O$_9$PNa (M+Na$^+$) 801.3168, obsd 801.3164.

4-Hydroxybutyl 6-deoxy-6-(dibenzyl)phosphonomethyl 2,3,4-tri-O-benzyl--D-mannopyranoside (15). 33 (1.34 g, 1.72 mmol) was dissolved in 20 mL MeOH. NaBH$_4$ (72 mg, 1.91 mmol) was added at room temperature in one portion. The mixture was stirred for another 30 min followed by addition of saturated aqueous NH$_4$Cl. The solution was extracted with CH$_2$Cl$_2$ (3 \times 25 mL). The organic layer was then dried over MgSO$_4$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (40-60% EtOAc-hexanes) to afford 15 (1.28 g, 96%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ7.23-7.38 (m, 25H), 4.93-5.06 (m, 4H), 4.91 (d, $J = 10.8$ Hz, 1H), 4.77 (d, $J = 12.4$ Hz, 1H), 4.74 (d, $J = 1.6$ Hz, 1H), 4.70 (d, $J = 12.4$ Hz, 1H), 4.63 (s, 2H), 4.58 (d, $J = 10.8$ Hz, 1H), 3.85 (dd, $J = 2.8$ Hz, 8.8 Hz, 1H), 3.76 (dd, $J = 2$ Hz, 2.8 Hz, 1H), 3.64 (t, $J = 9.2$ Hz, 1H), 3.56-3.63 (m, 3H), 3.54 (dt, $J = 2.4$ Hz, 9.2 Hz, 1H), 3.30 (td, $J = 6$ Hz, 9.6 Hz, 1H), 1.98-2.25 (m, 2H), 1.71-1.88 (m, 2H), 1.51-1.67 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ138.5, 138.3, 136.5 (d, $J = 6$ Hz),
4-Tosyloxybutyl 6-deoxy-6-(dibenzyl)phosphonomethyl 2,3,4-tri-O-benzyl-\(-\)-D-mannopyranoside (34). To a solution of 15 (414 mg, 0.54 mmol) and anhydrous pyridine (172 \(\mu\)L, 2.2 mmol) in distilled dichloromethane (5 mL) under argon, was added \(p\)-toluenesulfonyl chloride (418 mg, 2.2 mmol) in one portion. The solution was stirred at room temperature overnight. Then the reaction was diluted with \(\text{CH}_2\text{Cl}_2\) (15 mL) and sequentially washed with \(\text{NaHCO}_3\), water and brine. The organic layer was dried over MgSO\(_4\), filtered and concentrated. The crude product was purified by flash column chromatography (10-30% EtOAc-hexanes) to afford 34 (474 mg, 94%) as a colorless oil: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.78\) (d, \(J = 8\) Hz, 2H), 7.23-7.38 (m, 27H), 5.04 (dd, \(J = 0.8\) Hz, 8.8 Hz, 1H), 5.01 (dd, \(J = 1.2\) Hz, 8.8 Hz, 1H), 4.97 (d, \(J = 8\) Hz, 1H), 4.94 (d, \(J = 8\) Hz, 1H), 4.89 (d, \(J = 10.4\) Hz, 1H), 4.75 (d, \(J = 12.4\) Hz, 1H), 4.66 (d, \(J = 1.6\) Hz, 1H), 4.67 (d, \(J = 12.4\) Hz, 1H), 4.61 (s, 2H), 4.56 (d, \(J = 10.4\) Hz, 1H), 3.99 (t, \(J = 6.4\) Hz, 2H), 3.78 (dd, \(J = 2.8\) Hz, 9.2 Hz, 1H), 3.71 (t, \(J = 2\) Hz, 1H), 3.61 (t, \(J = 9.2\) Hz, 1H), 3.47 (td, \(J = 6\) Hz, 9.6 Hz, 1H), 3.40 (dt, \(J = 2.4\) Hz, 9.2 Hz, 1H), 3.21 (td, \(J = 6\) Hz, 9.6 Hz, 1H), 2.41 (s, 3H), 2.10-2.23 (m, 1H), 1.99-2.10 (m, 1H), 1.73-1.85 (m, 2H), 1.58-1.72 (m, 2H), 1.46-1.58 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 144.8\), \(128.6, 128.4, 128.3, 127.94, 127.91, 127.7, 127.6, 97.9, 80.3, 78.4, 75.3, 74.9, 72.9, 72.2, 71.3\) (d, 16 Hz), 67.3, 67.2, 67.1, 67.0, 62.3, 29.5, 25.8, 24.8 (d, \(J = 5\) Hz), 22.2 (d, \(J = 142\) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta 33.59\); HRMS (ESI m/z) calcd for \(\text{C}_{46}\text{H}_{53}\text{O}_9\text{PNa} (\text{M}+\text{Na}^+)\) 803.3325, obsd 803.3312.
31P NMR (162 MHz, CDCl$_3$) δ 33.59; HRMS (ESI m/z) calcd for C$_{53}$H$_{59}$O$_{11}$PNa (M+Na$^+$) 957.3413, obsd 957.3403.

4-Azidobutyl 6-deoxy-6-(dibenzyl)phosphonomethyl 2,3,4-tri-O-benzyl--D-mannopyranoside (16). NaN$_3$ (200 mg, 3 mmol) was added to a solution of 34 (411 mg, 0.44 mmol) in DMF (5 mL) in one portion. After stirring for 12 h at room temperature, dichloromethane (40 mL) was added. The mixture was sequentially washed with saturated aqueous NH$_4$Cl, water and brine. The organic layer was dried over MgSO$_4$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (20-30% EtOAc-hexanes) to afford 16 (321 mg, 91%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.23-7.38 (m, 25H), 5.04 (dd, $J = 0.8$ Hz, 9.6 Hz, 1H), 5.01 (dd, $J = 0.8$ Hz, 8.4 Hz, 1H), 4.98 (d, $J = 8$ Hz, 1H), 4.95 (d, $J = 8$ Hz, 1H), 4.90 (d, $J = 10.8$ Hz, 1H), 4.76 (d, $J = 12.4$ Hz, 1H), 4.70 (s, 1H), 4.69 (d, $J = 12$ Hz, 1H), 4.62 (s, 2H), 4.57 (d, $J = 10.8$ Hz, 1H), 3.82 (dd, $J = 2.8$ Hz, 9.2 Hz, 1H), 3.73 (t, $J = 2$ Hz, 1H), 3.63 (t, $J = 9.2$ Hz, 1H), 3.53 (td, $J = 6$ Hz, 9.6 Hz, 1H), 3.45 (dt, $J = 2$ Hz, 9.2 Hz, 1H), 3.28 (td, $J = 6.4$ Hz, 9.6 Hz, 1H), 3.23 (br t, $J = 6.4$, 2H), 2.02-2.23 (m, 2H), 1.64-1.87 (m, 2H), 1.49-1.64 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 138.4, 138.28, 138.25, 136.5 (d, $J = 6$ Hz), 128.6, 128.42, 128.40, 128.3, 128.2, 127.93, 127.89, 127.73, 127.70, 127.6, 97.9, 80.2, 78.2, 75.4, 74.8, 72.9, 72.2, 71.4 (d, $J = 18$ Hz), 67.10, 67.04, 66.7, 51.2, 26.6, 25.9, 24.7 (d, $J = 4$ Hz),
(266 mg, 0.71 mmol) in acetone (3 mL) at room temperature, Jones Reagent was added dropwise until the solution color persisted orange. After stirring for 0.5 h, the reaction was quenched with isopropanol. Water (10 mL) was added and the solution was extracted with CH$_2$Cl$_2$ (5 × 10 mL). The combined organic layer was dried over MgSO$_4$, filtered and concentrated in vacuo. The residue was purified by column chromatography (10% MeOH-EtOAc) to afford 18 (204 mg, 71%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 8.85 (br, 2H), 3.43 (t, $J = 5.6$ Hz, 4H), 3.40 (br s, 12H), 2.41 (t, $J = 7.2$ Hz, 4H), 1.86 (app quin, $J = 6.4$ Hz, 4H), 1.59 (br s, 12 H); 13C NMR (100 MHz, CDCl$_3$) 70.7, 70.6, 70.5, 69.5, 26.37, 26.34, 26.31, 24.8; HRMS (ESI m/z) calcd for C$_{20}$H$_{38}$O$_8$Na (M+Na$^+$) 429.2464, obsd 429.2447.

Bis(2-(diphenylphosphino)phenyl)- 5, 10,15,20-tetraoxatetracosane-1,24-dioate (21). To a solution of 2-(diphenylphosphino)phenol (178 mg, 0.53 mmol), dicarboxylic acid 18 (107 mg, 0.26 mmol) and DMAP (8 mg, 0.065 mmol) in dry CH$_2$Cl$_2$ (3 mL) was added a solution of DCC (156 mg, 0.76 mmol) in CH$_2$Cl$_2$ (1 mL) at room temperature. After stirring for 12 h, the mixture was filtered through Celite and concentrated in vacuo. The residue was purified by flash column chromatography (50%
EtOAc-hexanes) to afford 21 (210 mg, 87%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.28-7.43 (m, 22H), 7.06-7.14 (m, 4H), 6.78-6.82 (m, 2H), 3.35-3.42 (m, 12H), 3.34 (t, J = 6.4 Hz, 4H), 2.33 (t, J = 7.2 Hz, 4H), 1.75 (app quin, J = 6.8 Hz, 4H), 1.59-1.63 (m, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 171.4, 152.8 (d, J = 17 Hz), 135.6 (d, J = 11 Hz), 134.1, 133.9, 133.7 (d, J = 2 Hz), 130.3 (d, J = 14 Hz), 129.9, 129.0, 128.62, 128.55, 126.1, 122.6 (d, J = 2 Hz), 70.64, 70.62, 70.60, 69.4, 30.8, 26.53, 26.50, 24.7; 31P NMR (162 MHz, CDCl$_3$) δ -16.03; HRMS (ESI m/z) calcd for C$_{56}$H$_{64}$O$_8$P$_2$Na (M+Na$^+$) 949.3974, obsd 949.3989.

5,10,15,20-Tetraoxatetracosane-1,24-dial (19).

To a solution of oxalyl chloride (582 µL, 6.67 mmol) in CH$_2$Cl$_2$ (20 mL) at -40 °C, DMSO (472 µL, 6.67 mmol) was added dropwise. Then a solution of pentabutylene glycol (1 g, 2.67 mmol) in CH$_2$Cl$_2$ (10 mL) was added slowly within 10 min. After stirring for 1 h at -40 °C, triethylamine (9.3 mL, 67 mmol) was added, followed by stirring for another 30 min. Upon completion, the reaction mixture was warmed to room temperature and poured into water (30 mL). The aqueous phase was extracted with CH$_2$Cl$_2$ (2 × 25 mL). The organic layer was dried, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (40% EtOAc-hexanes) to afford 19 (818 mg, 82%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 9.74 (t, J = 1.6 Hz, 2H), 3.40 (t, J = 6 Hz, 4H), 3.37-3.39 (m, 12H), 2.49 (dt, J = 1.6 Hz, 6.8 Hz, 4H), 1.83-1.90 (m, 4H), 1.53-1.59 (m, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 202.4, 70.7, 70.6, 70.5, 69.6, 41.0, 26.5, 26.4, 22.6; HRMS (ESI m/z) calcd for C$_{20}$H$_{38}$O$_6$Na (M+Na$^+$) 397.2566, obsd 397.2561.
1,1,26,26-Tetrabromo-6,11,16,21-tetraoxahexacosa-1,25-diene (35). To a solution of triphenylphosphine (1.55 g, 5.93 mmol) and tetrabromomethane (983 mg, 2.96 mmol) in CH$_2$Cl$_2$ (5 mL) at 0 °C, was added a solution of dialdehyde 19 (277 mg, 0.74 mmol) in CH$_2$Cl$_2$ (4 mL). The mixture was stirred at 0 °C for 1h followed by evaporation of the solvent. The residue was purified by flash column chromatography (10-30% EtOAc-hexanes) to afford the bis-dibromoalkene 35 (436 mg, 86%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 6.39 (t, $J = 8$ Hz, 2H), 3.37-3.40 (m, 16H), 2.16 (app q, $J = 7.2$ Hz, 4H), 1.66 (app quin, $J = 6.8$, 4H), 1.58-1.62 (m, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 138.3, 88.9, 70.8, 70.63, 70.59, 69.7, 30.0, 27.9, 26.5; HRMS (ESI m/z) calcd for C$_{22}$H$_{38}$O$_4$Br$_4$Na (M+Na$^+$) 704.9401, obsd 704.9417.

6,11,16,21-Tetraoxahexacosa-1,25-diyn (22).

35 (436 mg, 0.64 mmol) was dissolved in THF (7 mL) under argon. Then n-BuLi (2 mL of a 1.6 M solution in hexane, 3.2 mmol) was added at -78 °C over 2 min. After stirring for 2 h, the reaction was quenched with saturated aqueous NH$_4$Cl. The aqueous layer was extracted with Et$_2$O (2 \times 15 mL). The combined organic layers were dried over MgSO$_4$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (20% EtOAc-hexanes) to afford 22 (205 mg, 84%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 3.48 (t, $J = 6.4$ Hz, 4H), 3.37-3.45 (m, 12H), 2.26 (dt, $J = 2.4$ Hz, 7.2 Hz, 4H), 1.92 (t, $J = 2.4$, 2H), 1.76 (app quin, $J =$
6.4 Hz, 4H), 1.57-1.67 (m, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 84.1, 70.7, 70.62, 70.59, 69.0, 68.4, 28.6, 26.50, 26.47, 15.3; HRMS (ESI m/z) calcd for C$_{22}$H$_{38}$O$_4$Na (M+Na$^+$) 389.2668, obsd 389.2685.

Methyl 2-(diphenylphosphino)-5-hydroxybenzoate (36). To a solution of methyl 5-hydroxy-2-iodobenzoate (5.13 g, 18.4 mmol) in anhydrous degassed CH$_3$CN, anhydrous triethylamine (2.56 mL, 18.4 mmol), palladium(II) acetate (166 mg, 0.74 mmol) and 1,4-bis(diphenylphosphino)butane (315 mg, 0.74 mmol) were added at room temperature. Diphenylphosphine (3.2 mL, 18.4 mmol) was added to the mixture slowly via syringe upon which the solution turned deep red. The solution was heated at reflux for 4 h, after which the reaction was complete as indicated by TLC. The solution was concentrated under vacuum and the residue was purified by flash column chromatography (10% EtOAc-hexanes) to afford 36 as a white solid: 1H NMR (400 MHz, CDCl$_3$) δ 7.56 (t, $J = 2.8$ Hz, 1H), 7.27-7.37 (m, 10H), 6.88 (dd, $J = 2.8$ Hz, 8.4 Hz, 1H), 6.83 (dd, $J = 3.6$ Hz, 8.4 Hz, 1H), 5.37 (s, 1H), 3.76 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 167.1 (d, $J = 2$ Hz), 155.9, 138.2 (d, $J = 11$ Hz), 136.2, 135.9 (d, $J = 21$ Hz), 133.7 (d, $J = 20$ Hz), 130.8 (d, $J = 23$ Hz), 128.50 (d, $J = 14$ Hz), 128.49, 119.3, 117.7 (d, $J = 3$ Hz), 52.2; 31P NMR (162 MHz, CDCl$_3$) δ -6.23; HRMS (ESI m/z) calcd for C$_{20}$H$_{17}$O$_3$PNa (M+Na$^+$) 359.0813, obsd 359.0817.

1,24-Diiodo-5,10,15,20-tetraoxatetracosane (20). To a
solution of pentabutylene glycol (580 mg, 1.5 mmol) in dry THF (10 mL), imidazole (462 mg, 6.8 mmol), triphenyl phosphine (1.60 g, 6.1 mmol) and iodine (1.56 g, 6.1 mmol) were added at room temperature. The mixture was stirred for 24 h. Then the reaction was diluted with Et₂O (50 mL) and sequentially washed with saturated Na₂S₂O₃ (2 x 20 mL), water (20 mL) and brine (20 mL). The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (20% EtOAc-hexanes) to afford 20 (823 mg, 90%) as colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 3.14-3.38 (m, 16H), 3.16 (t, J = 6.8 Hz, 4H), 1.86 (quin, J = 6.8 Hz, 4H), 1.56-1.64 (m, 16H); ¹³C NMR (100 MHz, CDCl₃) δ 70.7, 70.56, 70.51, 69.4, 30.6, 30.4, 26.5, 7.0; HRMS (ESI m/z) calcd for C₂₀H₄₀O₄I₂Na (M+Na⁺) 621.0914, obsd 621.0892.

Dimethyl 5,5'-((5,10,15,20-tetraoxatetracosane-1,24-diylbis(oxy))bis(2-(diphenylphosphino)-benzoate) (23). NaH (16 mg, 0.39 mmol) was added to a solution of methyl 2-(diphenylphosphino)-5-hydroxybenzoate (120 mg, 0.36 mmol) in DMF (0.4 mL) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 0.5 h, then a solution of diiodide 20 (96 mg, 0.16 mmol) in DMF (0.4 mL) was added to the reaction mixture. After stirring for 12 h, the reaction was diluted with DCM (10 mL) and quenched with saturated NH₄Cl. The organic layer was sequentially washed with saturated NH₄Cl (5 mL), water (3 x 5 mL) and brine (5 mL). The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (30% EtOAc-Hexanes) to afford 23 (112 mg, 69%) as a
colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (t, $J = 3.2$ Hz, 2H), 7.25-7.39 (m, 20H), 9.93 (dd, 2.8 Hz, 8.4 Hz, 2H), 6.85 (dd, 3.6 Hz, 8.4 Hz, 2H), 4.03 (t, 6.4 Hz, 4H), 3.77 (s, 6H), 3.49 (t, $J = 6.4$ Hz, 4H), 3.42-3.47 (m, 12H), 1.85-1.92 (m, 4H), 1.74-1.79 (m, 4H), 1.62-1.66 (m, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 167.1 (d, $J = 2$ Hz), 159.1, 138.4 (d, $J = 12$ Hz), 135.9, 135.8 (d, $J = 21$ Hz), 133.7 (d, $J = 20$ Hz), 130.6 (d, $J = 22$ Hz), 128.45, 128.43 (d, $J = 10$ Hz), 118.5, 116.3 (d, $J = 4$ Hz), 70.7, 70.64, 70.61, 70.3, 67.9, 52.1, 26.5, 26.3, 26.1; 31P NMR (162 MHz, CDCl$_3$) δ -6.44; HRMS (ESI m/z) calcd for C$_{60}$H$_{73}$O$_{10}$P$_2$ (M+H$^+$) 1015.4679, obsd 1015.4673.

(24). Azide 16 (111 mg, 0.14 mmol) and phosphine 21 (60 mg, 0.065 mmol) were dissolved in DMF/H$_2$O (1.4 mL, v/v = 6:1). The mixture was heated at 70 °C for 18h. The volatiles were removed under vacuum. The residue was purified by flash column chromatography (0-10% MeOH-EtOAc) to afford 24 (108 mg, 86%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.25-7.39 (m, 50H), 5.95 (t, $J = 5.2$ Hz, 2H), 4.90-5.07 (m, 8H), 4.89 (d, $J = 10.8$ Hz, 2H), 4.75 (d, $J = 12.4$ Hz, 2H), 4.70 (d, $J = 2$ Hz, 2H), 4.69 (d, $J = 12.4$ Hz, 2H), 4.61 (s, 4H), 4.56 (d, $J = 10.4$ Hz, 2H), 3.82 (dd, $J = 2.8$ Hz, 9.2 Hz, 2H), 3.75 (br s, 2H), 3.62 (t, $J = 9.2$ Hz, 2H), 3.46-3.55 (m, 4H), 3.34-3.46 (m, 14H), 3.22-3.30 (m, 2H), 3.14-3.22 (m, 4H), 2.24 (t, $J = 8.8$ Hz, 4H), 2.11-2.23 (m, 6H), 1.88 (app quin, $J = 7.2$ Hz, 4H), 1.69-1.84 (m, 4H), 1.54-1.67 (m, 12H), 1.41-1.54 (m, 8H); 13C NMR (100 MHz, CDCl$_3$) δ 172.8, 138.4, 138.31, 138.29, 136.4 (d, $J = 6$ Hz).
(25). A solution of the azide 16 (183 mg, 0.23 mmol) and 23 (115 mg, 0.11 mmol) in DMF/H₂O (2.1 mL, v/v = 6:1) was stirred at room temperature overnight. The reaction was concentrated and directly purified by flash column chromatography (5-10% MeOH-EtOAc) to afford 25 (183 mg, 71%) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 8.84 (br s, 2H), 7.64-7.68 (m, 8H), 7.53-7.56 (m, 6H), 7.43-7.49 (m, 8H), 7.24-7.42 (m, 50H), 6.94-6.99 (m, 2H), 6.72-6.78 (m, 2H), 5.06 (d, J = 9.2 Hz, 2H), 5.03 (d, J = 8.8 Hz, 2H), 5.00 (d, J = 8.4 Hz, 2H), 4.97 (d, J = 10.8 Hz, 2H), 4.92 (d, J = 10.8 Hz, 2H), 4.77 (d, J = 12.4 Hz, 2H), 4.72 (s, 2H), 4.70 (d, J = 12.4 Hz, 2H), 4.64 (s, 4H), 4.59 (d, J = 10.8 Hz, 2H), 4.07 (t, J = 6 Hz, 4H), 3.86 (dd, J = 2.8 Hz, 9.2 Hz, 2H), 3.77 (br s, 2H), 3.64 (t, J = 9.2 Hz, 2H), 3.43-3.49 (m, 20H), 3.20 (td, J = 6 Hz, 9.6 Hz, 2H), 2.90-2.91 (m, 4H), 2.06-2.17 (m, 2H), 2.17-2.28 (m, 2H), 1.82-1.93 (m, 6H), 1.68-1.81 (m, 6H), 1.65 (br s, 12H), 1.38-1.44 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2 (d, J = 5 Hz), 162.3 (d, J = 4 Hz), 143.3 (d, J = 9 Hz), 138.5, 138.4, 136.5 (d, J = 6 Hz), 135.5 (d, J = 7 Hz), 132.2, 131.8, 131.7, 131.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.1, 127.90, 127.85,
127.65, 127.61, 127.53, 120.6, 119.5, 117.3 (d, J = 10 Hz), 116.1 (d, J = 13 Hz), 97.7, 80.3, 78.2, 75.3, 74.9, 72.8, 72.1, 71.3 (d, J = 18 Hz), 70.7, 70.64, 70.61, 70.2, 68.1, 67.09, 67.0, 66.8, 39.9, 26.9, 26.5, 26.3, 25.9, 25.4, 24.7 (d, J = 4 Hz), 22.2 (d, J = 142 Hz); 31P NMR (162 MHz, CDCl$_3$) δ 34.75, 33.70; HRMS (ESI m/z) calcd for C$_{150}$H$_{172}$N$_2$O$_{26}$P$_4$Na$_2$ (M+2Na$^+$) 1293.5466, obsd 1293.5475.

(27). To a mixture of 16 (130 mg, 0.162 mmol) and bisalkyne 22 (30 mg, 0.078 mmol) in THF/H$_2$O/\tau-BuOH (1 mL, v/v/v = 1:1:1) was added copper sulfate (0.2 M solution in H$_2$O, 155 μL, 0.031 mmol), followed by sodium ascorbate (freshly prepared 1 M solution in H$_2$O, 62 μL, 0.062 mmol). The reaction mixture was stirred vigorously overnight at room temperature. After completion, the volatiles were removed under vacuum and the residue was purified by flash column chromatography (0-10% MeOH-EtOAc) to afford 27 (135 mg, 88%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.25-7.39 (m, 52H), 5.06 (dd, J = 1.2 Hz, 8.8 Hz, 2H), 5.03 (dd, J = 1.2 Hz, 8.8 Hz, 2H), 4.99 (d, J = 7.6 Hz, 2H), 4.96 (d, J = 8.8 Hz, 2H), 4.92 (d, J = 10.4 Hz, 2H), 4.78 (d, J = 12.4 Hz, 2H), 4.71 (s, 2H), 4.70 (d, J = 12.4 Hz, 2H), 4.64 (s, 4H), 4.59 (d, J = 10.4 Hz, 2H), 4.28 (t, J = 6.8 Hz, 4H), 3.82 (dd, J = 2.8 Hz, 8.8 Hz, 2H), 3.74 (t, J = 1.6 Hz, 2H), 3.64 (t, J = 9.6 Hz, 2H), 3.56 (td, J = 6 Hz, 9.6 Hz, 2H), 3.48 (t, J = 6.4 Hz, 4H), 3.43-3.50 (m, 14H), 3.27 (td, J = 6 Hz, 9.6 Hz, 2H), 2.80 (t, J = 7.2 Hz, 4H), 2.13-2.24 (m, 2H), 2.02-2.13 (m, 2H), 1.96 (app quin, J = 6.4 Hz, 4H), 1.69-1.88 (m, 8H), 1.64-1.65 (m, 12H), 1.50-1.58 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 147.8, 138.4, 138.24, 138.22, 136.4 (d, J = 5 Hz), 128.6, 128.40, 128.38, 128.37, 128.33, 128.2, 127.90,
172

127.87, 127.72, 127.66, 127.62, 120.7, 97.9, 80.1, 78.2, 75.4, 74.8, 72.9, 72.2, 71.4 (d, \(J = 17 \) Hz), 70.69, 70.64, 70.61, 69.9, 67.12, 67.06, 66.5, 49.9, 29.5, 27.4, 26.5, 26.4, 24.7 (d, \(J = 4 \) Hz), 22.4, 22.2 (d, \(J = 142 \) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \) 33.52; HRMS (ESI m/z) calcd for C\(_{114}\)H\(_{142}\)N\(_6\)O\(_{20}\)P\(_2\)Na (M+Na\(^+\)) 1999.9652, obsd 1999.9602.

(26). A mixture of \(16 \) (194 mg, 0.24 mmol), bisalkyne \(22 \) (40 mg, 0.11 mmol) and Cp*RuCl(COD) (8 mg, 0.022 mmol) in THF (1 mL) was stirred at room temperature under argon for 24 h. The reaction was concentrated under vacuum and the residue was purified by flash column chromatography (0-10\% MeOH-EtOAc) to afford \(26 \) (112 mg, 52\%) as a greenish oil: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.47 (s, 2H) 7.27-7.39 (m, 50H), 5.06 (d, \(J = 7.6 \) Hz, 2H), 5.03 (dd, \(J = 8.4 \) Hz, 2H), 5.00 (d, \(J = 8 \) Hz, 2H), 4.97 (d, \(J = 8.8 \) Hz, 2H), 4.92 (d, \(J = 10.4 \) Hz, 2H), 4.78 (d, \(J = 12.4 \) Hz, 2H), 4.72 (s, 2H), 4.71 (d, \(J = 12.4 \) Hz, 2H), 4.64 (s, 4H), 4.59 (d, \(J = 10.8 \) Hz, 2H), 4.22 (t, \(J = 6.8 \) Hz, 4H), 3.83 (dd, \(J = 2.4 \) Hz, 9.2 Hz, 2H), 3.76 (br s, 2H), 3.65 (t, \(J = 9.2 \) Hz, 2H), 3.57 (td, \(J = 6 \) Hz, 9.6 Hz, 2H), 3.43-3.50 (m, 18H), 3.29 (td, \(J = 6 \) Hz, 9.6 Hz, 2H), 2.71 (t, \(J = 7.2 \) Hz, 4H), 2.14-2.22 (m, 2H), 2.07-2.14 (m, 2H), 1.87-1.95 (m, 8H), 1.70-1.85 (m, 4H), 1.64 (br s, 12H), 1.50-1.58 (m, 4H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 138.4, 138.3, 136.5 (d, \(J = 6 \) Hz), 136.4, 132.1 128.6, 128.39, 128.38, 128.33, 128.16, 127.91, 127.89, 127.86, 127.7, 127.65, 127.61, 97. 9, 80.2, 78.1, 75.4, 74.8, 72.9, 72.2, 71.4 (d, \(J = 18 \) Hz), 70.9, 70.7, 70.6, 69.0, 67.11, 67.05, 66.5, 47.3, 28.4, 27.0, 26.54, 26.51, 24.7 (d, \(J = 4 \) Hz), 22.2 (d, \(J
Dibenzyl (2-((2R,3S,4S,5S,6S)-3,4,5-tris(benzyloxy)-6 (4-(5-tosyl-1H-tetrazol-1-yl)butoxy)tetrahydro-2H-pyran-2-yl)ethyl)phosphonate (28). (i) Procedure with metal catalysts: Metal catalyst (20 mol%) was added to a solution of 16 (30 mg, 0.04 mmol) and p-toluenesulfonyl cyanide (7.4 mg, 0.04 mmol) in DCM. The mixture was kept at ~ 1 M concentration and stirred for 20 h or 48 h. Then the solvent was removed under vacuum. The crude product was purified by flash column chromatography (60% EtOAc-hexanes). The yield was given as a mixture of 1,4- and 1,5-regioisomers with the ratio determined by 1H NMR. (ii) Procedure using oil bath heating: A vial was charged with a stir bar, p-toluenesulfonyl cyanide (109 mg, 0.6 mmol) and S6 (442 mg, 0.55 mmol), and tightly capped. The reaction mixture was stirred neat at 95 °C for 20 h. The crude product was then purified as indicated above (60% EtOAc-hexanes) to afford 28 (391 mg, 72%) as the only product. (iii) Procedure under microwave irradiation: 16 (50 mg, 0.06 mmol), p-toluenesulfonyl cyanide (12 mg, 0.06 mmol) and a stir bar were placed at the bottom of a CEM 10 mL vial. The vial was filled with N$_2$, sealed and irradiated at 95 °C using a CEM Discover® SP synthesizer. After 1 h, the vial was cooled down and the crude product was purified as indicated above to yield 28 (43 mg, 70%) as a pale yellow oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, $J=8.4$ Hz, 2H), 7.44 (d, $J=8$ Hz, 2H), 7.22-7.41 (m, 25H), 5.06 (dd, $J=2$ Hz, 9.2 Hz, 1H), 5.04 (dd, $J=1.6$ Hz, 8.8 Hz, 1H), 5.00 (dd, $J=1.2$ Hz, 8.8 Hz,
1H), 4.97 (dd, \(J = 1.6 \) Hz, 7.6 Hz, 1H), 4.93 (d, \(J = 10.8 \) Hz, 1H), 4.79 (d, \(J = 12.4 \) Hz, 1H), 4.68-4.76 (m, 4H), 4.66 (s, 2H), 4.60 (d, \(J = 10.8 \) Hz, 1H), 3.85 (dd, \(J = 2.8 \) Hz, 9.2 Hz, 1H), 3.80 (t, \(J = 2 \) Hz, 1H), 3.59-3.66 (m, 1H), 3.60 (t, \(J = 8.4 \) Hz, 1H), 3.50 (dt, \(J = 2.4 \) Hz, 8.8 Hz, 1H), 3.32 (td, \(J = 6.4 \) Hz, 9.6 Hz, 1H), 2.50 (s, 3H), 2.17-2.28 (m, 1H), 1.97-2.17 (m, 3H), 1.70-1.92 (m, 2H), 1.52-1.66 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 155.0, 147.6, 138.4, 138.3, 136.5 (d, \(J = 6 \) Hz), 134.1, 130.4, 129.3, 128.9, 128.6, 128.40, 128.39, 128.36, 128.32, 128.1, 127.91, 127.89, 127.72, 127.70, 127.6, 98.0, 80.0, 78.2, 75.3, 74.9, 72.9, 72.1, 71.5 (d, \(J = 17 \) Hz), 67.1, 67.0, 66.3, 49.7, 27.2, 26.0, 24.7 (d, \(J = 4 \) Hz), 22.2 (d, \(J = 141 \) Hz), 21.9; \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \) 33.53; HRMS (ESI \(m/\ell \)) calcd for C\(_{54}\)H\(_{59}\)N\(_4\)O\(_{10}\)PSNa (M+Na\(^+\)) 1009.3587, obsd 1009.3611.

General procedure A for displacement of the sulfonyl tetrazole 28. To a stirred solution of pentabutylene glycol or polyethylene glycol (1 equiv.) in DMF (0.2 mmol) was added NaH (2.1 equiv.) in one portion. The mixture was stirred at room temperature for 30 min, and then a solution of 28 (2.1 equiv.) in DMF (0.2 mmol) was added. The resulting solution was stirred at room temperature for 12 h. Then the reaction was quenched with saturated aqueous NH\(_4\)Cl. The aqueous layer was extracted with EtOAc. The combined organic phases were dried over MgSO\(_4\), filtered and concentrated under vacuum. The crude product was then purified by flash column chromatography to afford 1,5-tetrazole-linked ligands.

(29): Following general procedure A, with pentabutylene
glycol (22 mg, 0.057 mmol) and 28 (113 mg, 0.11 mmol), with column chromatographic purification (10% MeOH-EtOAc), was obtained compound 29 (92 mg, 79%) as a colorless oil: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.24-7.41\) (m, 50H), 5.06 (d, \(J = 8\) Hz, 2H), 5.03 (d, \(J = 8.4\) Hz, 2H), 4.99 (d, \(J = 8\) Hz, 2H), 4.96 (d, \(J = 8\) Hz, 2H), 4.91 (d, \(J = 10.8\) Hz, 2H), 4.78 (d, \(J = 12.4\) Hz, 2H), 4.71 (s, 2H), 4.70 (d, \(J = 11.6\) Hz, 2H), 4.64 (s, 4H), 4.53-4.61 (m, 6H), 4.04 (t, \(J = 7.2\) Hz, 4H), 3.82 (dd, \(J = 3.2\) Hz, 9.2 Hz, 2H), 3.74 (t, \(J = 2.4\) Hz, 2H), 3.65 (t, \(J = 9.6\) Hz, 2H), 3.56 (td, \(J = 6\) Hz, 9.6 Hz, 2H), 3.37-3.48 (m, 18H), 3.28 (td, \(J = 6\) Hz, 9.6 Hz, 2H), 2.14-2.26 (m, 2H), 2.02-2.14 (m, 2H), 1.94 (quint, \(J = 7.2\) Hz, 4H), 1.68-1.88 (m, 12H), 1.62-1.68 (m, 12H), 1.47-1.57 (m, 4H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 161.1, 138.4, 138.25, 138.22, 136.5\) (d, \(J = 6\) Hz), 128.6, 128.40, 128.38, 128.37, 128.32, 128.2, 127.90, 127.87, 127.85, 127.71, 127.66, 127.61, 97.9, 80.1, 78.1, 75.4, 74.8, 73.3, 72.9, 72.2, 71.4 (d, \(J = 17\) Hz), 70.8, 70.66, 70.59, 69.9, 67.1, 67.0, 66.3, 45.2, 26.5, 26.2, 25.90, 25.87, 27.6 (d, \(J = 4\) Hz), 22.2 (d, \(J = 141\) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta 33.48\); HRMS (ESI m/z) calcd for C\(_{114}\)H\(_{144}\)N\(_8\)O\(_{22}\)P\(_2\)Na (M+Na\(^+\)) 2061.9768, obsd 2061.9839.

(37). Follow the general procedure A, with tetraethylene glycol (22 mg, 0.11 mmol) and 28 (214 mg, 0.22 mmol), with column chromatographic purification (5% MeOH-EtOAc) was obtained compound 37 (91 mg, 45%) as a colorless oil: \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta 7.41-7.20\) (m, 50H), 5.04 (dd, \(J = 8.8, 1.9\) Hz, 2H), 5.02 (dd, \(J = 8.7, 1.9\) Hz, 2H), 4.97
(d, J = 7.8 Hz, 2H), 4.95 (d, J = 7.8 Hz, 2H), 4.90 (d, J = 10.5 Hz, 2H), 4.76 (d, J = 12.1 Hz, 2H), 4.70-4.68 (m, 3H), 4.67 (br s, 1H), 4.66-4.64 (m, 4H), 4.63 (br s, 3H), 4.62-4.69 (m, 1H), 4.57 (s, J = 10.5 Hz, 2H), 4.04 (t, J = 7.2 Hz, 4H), 3.85-3.82 (m, 4H), 3.80 (dd, J = 9.5, 3.0 Hz, 2H), 3.74-3.72 (m, 2H), 3.65-3.59 (m, 6H), 3.59-3.51 (m, 6H), 3.45 (td, J = 9.2, 2.5 Hz, 2H), 3.30-3.23 (m, 2H), 2.23-2.13 (m, 2H), 2.12-2.00 (m, 2H), 1.90-1.66 (m, 8H), 1.56-1.42 (m, 4H); ¹³C NMR (125 MHz, CDCl$_3$) δ 161.1, 138.4, 138.29, 138.26, 136.5 (d, J = 6.6 Hz), 128.6, 128.50, 128.44, 128.42, 128.40, 128.36, 128.2, 127.94, 127.91, 127.88, 127.74, 127.70, 127.67, 127.64, 98.0, 80.1, 78.2, 75.4, 74.9, 73.0, 72.21, 72.17, 71.47 (d, J = 17.6 Hz), 70.56, 70.54, 70.52, 70.49, 68.8, 67.13, 67.09, 66.4, 45.3, 26.2, 25.9, 24.7 (d, J = 4.0 Hz), 22.2 (d, J = 142.5 Hz); ³¹P NMR (202 MHz, CDCl$_3$) δ 34.23; HRMS (ESI m/z) calcd for C$_{102}$H$_{120}$N$_8$O$_{21}$P$_2$Na (M+Na)$^+$ 1877.7741, obsd 1877.7943.

(38). Following general procedure A, with hexaethylene glycol (18 mg, 0.061 mmol) and 28 (122 mg, 0.12 mmol), and thin-layer chromatographic purification (10% MeOH-EtOAc), was obtained compound 38 (93 mg, 79%) as a colorless oil: 1H NMR (600 MHz, CDCl$_3$) δ 7.41-7.20 (m, 50H), 5.04 (dd, J = 8.6, 1.5 Hz, 2H), 5.02 (dd, J = 8.6, 1.5 Hz, 2H), 4.98 (d, J = 7.9 Hz, 2H), 4.95 (d, J = 7.9 Hz, 2H), 4.90 (d, J = 10.5 Hz, 2H), 4.76 (d, J = 12.4 Hz, 2H), 4.71-4.67 (m, 4H), 4.68-4.64 (m, 4H), 4.63 (br s, 3H), 4.61-4.58 (m, 1H), 4.57 (s, J = 10.7 Hz, 2H), 4.05 (t, J = 7.2 Hz, 4H), 3.87-3.83 (m, 4H), 3.80 (dd, J = 9.2, 3.0 Hz, 2H), 3.74-3.71 (m, 2H), 3.66-3.57 (m, 18H), 3.57-3.51 (m, 2H), 3.44 (td, J = 9.0, 2.7 Hz,
2H), 3.30-3.23 (m, 2H), 2.22-2.13 (m, 2H), 2.12-2.01 (m, 2H), 1.90-1.66 (m, 8H), 1.57-1.43 (m, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 161.0, 138.3, 138.17, 138.14, 136.4 (d, $J = 7.0$ Hz), 128.6, 128.43, 128.41, 128.39, 128.35, 128.2, 127.93, 127.90, 127.77, 127.75, 127.66, 127.64, 97.8, 80.1, 78.1, 75.4, 74.6, 72.9, 72.15, 72.13, 71.37 (d, $J = 17.8$ Hz), 70.56, 70.54, 70.52, 70.49, 68.8, 67.09, 67.04, 66.3, 45.3, 26.2, 25.9, 24.6 (d, $J = 4.6$ Hz), 22.2 (d, $J = 141.8$ Hz); 31P NMR (202 MHz, CDCl$_3$) δ 34.23; HRMS (ESI m/z) calcd for C$_{106}$H$_{128}$N$_8$O$_{23}$P$_2$Na (M+2Na)$^{2+}$ 994.4181, obsd 994.4166.

(39). Following general procedure A, with octaethylene glycol (22 mg, 0.06 mmol) and 28 (128 mg, 0.13 mmol), and thin layer chromatographic purification (10% MeOH-EtOAc), was obtained compound 39 (101 mg, 84%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.24-7.43 (m, 50H), 5.06 (d, $J = 12$ Hz, 2H), 5.03 (d, $J = 8.8$ Hz, 2H), 4.99 (d, $J = 8$ Hz, 2H), 4.97 (d, $J = 8$ Hz, 2H), 4.92 (d, $J = 10.8$ Hz, 2H), 4.78 (d, $J = 12.4$ Hz, 2H), 4.56-4.74 (m, 12H), 4.59 (d, $J = 10.4$ Hz, 2H), 4.07 (t, $J = 7.2$ Hz, 4H), 3.87 (t, $J = 4.4$ Hz, 4H), 3.82 (dd, $J = 2.8$, 9.2 Hz, 2H), 3.75 (br s, 2H), 3.61-3.71 (m, 26H), 3.56 (td, $J = 6$, 9.6 Hz, 2H), 3.46 (t, $J = 8.8$ Hz, 2H), 3.29 (td, $J = 6$, 9.6 Hz, 2H), 2.02-2.24 (m, 4H), 1.73-1.94 (m, 8H), 1.46-1.59 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 161.1, 138.4, 138.26, 138.23, 136.5 (d, $J = 6$ Hz), 128.6, 128.40, 128.39, 128.37, 128.32, 128.2, 127.91, 127.88, 127.85, 127.71, 127.67, 127.6, 97.9, 80.1, 78.1, 75.4, 74.8, 72.9, 72.21, 72.17, 71.4 (d, $J = 18$ Hz), 70.60, 70.58, 70.55, 69.8, 67.1, 67.0, 66.3, 45.3, 26.2, 25.9, 24.7 (d, $J = 4$ Hz), 22.2 (d, J
= 141 Hz); 31P NMR (202 MHz, CDCl$_3$) δ 33.49; HRMS (ESI m/z) calcd for C$_{110}$H$_{137}$N$_8$O$_{25}$P$_2$ (M+H$^+$) 2031.9170, obsd 2031.9114.

(40). Following general procedure A, with decaethylene glycol (28 mg, 0.061 mmol) and 28 (123 mg, 0.12 mmol), and thin-layer chromatographic purification (15% MeOH-EtOAc), was obtained compound 40 (100 mg, 78%) as a colorless oil: 1H NMR (600 MHz, CDCl$_3$) δ 7.41-7.20 (m, 50H), 5.04 (dd, $J = 8.7$, 1.6 Hz, 2H), 5.02 (dd, $J = 8.7$, 1.6 Hz, 2H), 4.97 (d, $J = 7.9$ Hz, 2H), 4.95 (d, $J = 7.9$ Hz, 2H), 4.90 (d, $J = 10.6$ Hz, 2H), 4.76 (d, $J = 12.2$ Hz, 2H), 4.69 (br s, 4H), 4.68-4.65 (m, 4H), 4.63 (s, 3H), 4.62-4.58 (m, 1H), 4.57 (s, $J = 10.9$ Hz, 2H), 4.05 (t, $J = 7.1$ Hz, 4H), 3.89-3.84 (m, 4H), 3.80 (dd, $J = 9.2$, 3.1 Hz, 2H), 3.74-3.71 (m, 2H), 3.70-3.58 (m, 34H), 3.58-3.52 (m, 2H), 3.45 (td, $J = 9.1$, 2.3 Hz, 2H), 3.30-3.25 (m, 2H), 2.22-2.13 (m, 2H), 2.12-2.01 (m, 2H), 1.90-1.76 (m, 8H), 1.55-1.44 (m, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 161.1, 138.4, 138.28, 138.26, 136.5 (d, $J = 6.1$ Hz), 128.6, 128.41, 128.40, 128.38, 128.33, 128.2, 127.92, 127.89, 127.86, 127.72, 127.68, 127.62, 97.9, 80.1, 78.2, 75.4, 74.9, 72.9, 72.23, 72.19, 71.45 (d, $J = 17.6$ Hz), 70.63, 70.60, 70.58, 68.8, 67.10, 67.06, 66.4, 45.3, 26.2, 25.9, 24.7 (d, $J = 4$ Hz), 22.2 (d, $J = 143$ Hz); 31P NMR (202 MHz, CDCl$_3$) δ 34.26; HRMS (ESI m/z) calcd for C$_{114}$H$_{144}$N$_8$O$_{27}$P$_2$3Na (M+3Na)$^{3+}$ 729.3103, obsd 729.3098.
(41). Following general procedure A, with dodecaethylene glycol (34 mg, 0.061 mmol) and 28 (120 mg, 0.12 mmol), and thin-layer chromatographic purification (15% MeOH-EtOAc), was obtained compound 41 (85 mg, 64%) as a colorless oil: 1H NMR (400 MHz, CDCl$_3$) δ 7.41-7.11 (m, 50H), 5.04 (dd, $J = 9$ Hz, 1.5 Hz, 2H), 5.01 (d, $J = 8.8$ Hz, 1.0 Hz, 2H), 4.98 (d, $J = 7.9$ Hz, 2H), 4.95 (d, $J = 8.2$ Hz, 2H), 4.90 (d, $J = 10.6$ Hz, 2H), 4.76 (d, $J = 12.2$ Hz, 2H), 4.72-4.51 (m, 14H), 4.05 (t, $J = 7.3$ Hz, 4H), 3.89-3.82 (m, 4H), 3.80 (dd, $J = 9.1$, 3.0 Hz, 2H), 3.74-3.70 (m, 2H), 3.68-3.51 (m, 42H), 3.58-3.52 (m, 2H), 3.44 (td, $J = 8.8$, 2.2Hz, 2H), 3.31-3.23 (m, 2H), 2.22-1.96 (m, 4H), 1.90-1.67 (m, 8H), 1.58-1.42 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 161.1, 138.4, 138.25, 138.23, 136.5 (d, $J = 5.8$ Hz), 128.6, 128.39, 128.36, 128.32, 128.2, 127.91, 127.88, 127.86, 127.7, 127.67, 127.61, 97.9, 80.1, 78.1, 75.4, 74.8, 72.9, 72.21, 72.17, 71.4 (d, $J = 17.5$ Hz), 70.55, 68.8, 67.1, 67.04, 66.3, 45.3, 26.2, 25.9, 24.7, 22.1 (d, $J = 142$Hz); 31P NMR (202 MHz, CDCl$_3$) δ 34.25; HRMS (ESI m/z) calcd for C$_{118}$H$_{152}$N$_8$O$_{29}$P$_2$Na (M+3Na)$^{3+}$ 758.6611, obsd 758.6596.

General procedure B for deprotection of benzyl groups: A solution of protected bis-phosphonate (~0.015 mmol) in distilled MeOH (2 mL) was stirred in the presence of 40% Pd(OH)$_2$/C and trace amount of TFA, under balloon pressure of hydrogen, for 24 h, at room temperature. Filtration through Celite, then removal of solvent under vacuum afforded bivalent ligands **BL1 - BL10**.
BL1: Following general procedure B, from 24 (27 mg, 0.015 mmol), bivalent ligand BL1 (12 mg, 86%) was obtained as a colorless oil: 1H NMR (400 MHz, MeOD) δ 4.71 (d, $J = 1.2$ Hz, 2H), 3.80 (dd, $J = 1.6$ Hz, 2.8 Hz, 2H), 3.71 (dt, $J = 10$ Hz, 6 Hz, 2H), 3.66 (dd, $J = 3.2$ Hz, 8.8 Hz, 2H), 3.42-3.51(m, 22H), 3.21 (t, $J = 6$ Hz, 4H), 2.28 (t, $J = 8$ Hz, 4H), 2.13-2.21 (m, 2H), 1.90-2.03 (m, 2H), 1.87 (quint, $J = 6.8$ Hz, 4H), 1.74-1.83 (m, 2H), 1.55-1.70 (m, 22H); 13C NMR (100 MHz, MeOD) δ 174.3, 100.1, 72.4 (d, $J = 12$ Hz), 71.2, 70.9, 70.6, 70.31, 70.26, 69.6, 66.6, 38.8, 32.5, 26.6, 26.1 (d, $J = 2$ Hz), 25.9 (d, $J = 133$ Hz), 25.3; 31P NMR (162 MHz, MeOD) δ 26.57; HRMS (ESI m/z) calcd for C$_{42}$H$_{82}$N$_2$O$_{22}$P$_2$Na (M+Na$^+$) 1051.4732, obsd 1051.474.

BL2: Following general procedure B, from 25 (42 mg, 0.016 mmol), bivalent ligand BL2 (24 mg, 89%) was obtained as a colorless oil: 1H NMR (400 MHz, MeOD) δ 7.61-7.73 (m, 12H), 7.48-7.59 (m, 8H), 7.38-7.49 (m, 2H), 7.23-7.31 (m, 2H), 7.11-7.17 (m, 2H), 4.47 (br s, 2H), 4.14 (t, $J = 5.6$ Hz, 4H), 3.81 (br, 2H), 3.61-3.71 (m, 4H), 3.51 (t, $J = 6.4$ Hz, 4H), 3.41-3.49 (m, 16H), 3.37 (br s, 2H), 2.87 (t, $J = 6.4$ Hz, 4H), 2.16-2.25 (m, 2H), 1.97-2.11 (m, 2H), 1.83-1.95 (m, 4H), 1.73-1.82 (m, 8H), 1.61-1.68 (m, 12H), 1.45-1.56 (m, 4H), 1.32-1.45 (m, 4H); 13C NMR (100 MHz, MeOD) δ 169.0, 162.3, 142.0, 136.9 (d, $J = 8$ Hz), 132.6, 132.2, 132.1, 131.6, 131.1, 130.4, 129.3, 128.54, 128.46, 128.38, 128.26, 128.20, 128.05, 127.95, 127.92, 100.1, 72.2 (d, $J = 12$ Hz), 72.0,
71.3, 70.8, 70.7, 70.3, 70.22, 69.9, 68.3, 68.2, 66.4, 66.1, 39.4, 39.2, 29.0, 26.4, 26.24, 26.16, 25.94, 25.87, 25.7, 24.8 (d, J = 3 Hz), 22.8 (d, J = 138 Hz); 31P NMR (162 MHz, MeOD) δ 35.06, 30.58; HRMS (ESI m/z) calcd for C$_{80}$H$_{113}$N$_2$O$_{26}$P$_4$Na (M+H$^+$) 1641.6532, obsd 1641.6533.

BL3: Following general procedure B, from 27 (25 mg, 0.013 mmol), bivalent ligand **BL3** (13 mg, 96%) was obtained as a colorless oil: 1H NMR (400 MHz, MeOD) δ 7.73 (s, 2H), 4.53 (br, 2H), 4.28 (t, J = 6.8 Hz, 4H), 3.62 (br, 2H), 3.55 (dt, J = 9.6 Hz, 6.8 Hz, 2H), 3.42-3.50 (m, 2H), 3.22-3.33 (m, 16H), 3.14 (br, 6H), 2.64 (t, J = 7.6 Hz, 4H), 1.98-2.03 (m, 2H), 1.72-1.88 (m, 8H), 1.50-1.62 (m, 4H), 1.45 (br, 18H); 13C NMR (100 MHz, MeOD) δ 122.3, 100.2, 72.1, 71.9, 71.2, 70.8, 70.6, 70.32, 70.26, 69.4, 66.4, 53.4, 50.0, 29.0, 26.9, 26.15, 26.13, 24.8 (d, J = 4 Hz), 22.2 (d, J = 128 Hz), 17.9; 31P NMR (162 MHz, CDCl$_3$) δ 29.42; HRMS (ESI m/z) calcd for C$_{44}$H$_{82}$N$_6$O$_{20}$P$_2$Na (M+Na$^+$) 1099.4957, obsd 1099.4971.

BL4: Following general procedure B, from 26 (22 mg, 0.011 mmol), bivalent ligand **BL4** (11 mg, 93%) was obtained as a colorless oil: 1H NMR (400 MHz, MeOD) δ 7.41 (s, 2H), 4.56 (d, J = 1.6 Hz, 2H), 4.23 (t, J = 6.8 Hz, 4H), 3.65 (dd, J = 1.6 Hz, 3.2 Hz, 2H), 3.58 (dt, J = 10 Hz, 6 Hz, 2H), 3.49 (dd, J = 3.6 Hz, 9.2 Hz, 2H), 3.30-3.36 (m,
182

16H), 3.21 (br s, 2H), 3.17 (quint, J = 1.6 Hz, 4H), 2.68 (t, J = 7.6 Hz, 4H), 1.99-2.06 (m, 2H), 1.77-1.90 (m, 8H), 1.57-1.66 (m, 4H), 1.48-1.49 (m, 18H); \(^{13}\)C NMR (100 MHz, MeOD) \(\delta\) 137.7, 131.3, 100.2, 72.1, 71.9, 71.2, 70.1, 70.8, 70.6, 70.4, 70.28, 70.27, 68.8, 66.4, 28.1, 26.6, 26.20, 26.16, 24.7 (d, J = 4 Hz), 22.8 (d, J = 135 Hz), 19.2; \(^{31}\)P NMR (162 MHz, MeOD) \(\delta\) 33.57; HRMS (ESI m/z) calcd for C\(_{44}\)H\(_{82}\)N\(_6\)O\(_{20}\)P\(_2\)Na (M+Na\(^{+}\)) 1099.4957, obsd 1099.4963.

BL5: Following general procedure B, from 29 (27 mg, 0.013 mmol), bivalent ligand BL5 (13 mg, 88%) was obtained as a colorless oil: \(^1\)H NMR (400 MHz, MeOD) \(\delta\) 4.72 (d, J = 1.2 Hz, 2H), 4.58 (t, J = 6.5 Hz, 4H), 4.22 (t, J = 7.2 Hz, 4H), 3.79-3.82 (m, 2H), 3.74 (dt, J = 10 Hz, 6 Hz, 2H), 3.63-3.67 (m, 2H), 3.52 (t, J = 6 Hz, 4H), 3.41-3.49 (m, 18H), 2.14-2.27 (m, 4H), 1.92-2.02 (m, 8H), 1.71-1.81 (m, 8H), 1.51-1.66 (m, 16H); \(^{13}\)C NMR (150 MHz, MeOD) \(\delta\) 161.2, 100.2, 73.3, 72.0 (d, J = 17 Hz), 71.2, 70.8, 70.5, 70.34, 70.25, 69.8, 66.2, 45.1, 29.0, 26.1, 26.0, 25.6, 25.5, 24.7 (d, J = 3 Hz), 22.8 (d, J = 140 Hz); \(^{31}\)P NMR (162 MHz, MeOD) \(\delta\) 30.36; HRMS (ESI m/z) calcd for C\(_{44}\)H\(_{85}\)N\(_8\)O\(_{22}\)P\(_2\) (M+H\(^{+}\)) 1139.5253, obsd 1139.5271.

BL6: Following general procedure B, from 37 (38 mg, 0.02 mmol), bivalent ligand BL6 (18 mg, 95%) was obtained as a colorless oil: \(^1\)H NMR (600 MHz, MeOD) \(\delta\) 4.71 (br, 2H), 4.69 (m, 4H), 4.38 (d, J = 1.2 Hz, 2H), 4.36 (t, J = 7.2 Hz, 4H), 3.77-3.80 (m, 2H), 3.74 (dt, J = 10 Hz, 6 Hz, 2H), 3.61-3.66 (m, 2H), 3.51 (t, J = 6 Hz, 4H), 3.40-3.49 (m, 18H), 2.14-2.26 (m, 4H), 1.92-2.02 (m, 8H), 1.71-1.81 (m, 8H), 1.51-1.66 (m, 16H); \(^{13}\)C NMR (150 MHz, MeOD) \(\delta\) 161.2, 100.2, 73.3, 72.0 (d, J = 17 Hz), 71.2, 70.8, 70.5, 70.34, 70.25, 69.8, 66.2, 45.1, 29.0, 26.1, 26.0, 25.6, 25.5, 24.7 (d, J = 3 Hz), 22.8 (d, J = 140 Hz); \(^{31}\)P NMR (162 MHz, MeOD) \(\delta\) 30.36; HRMS (ESI m/z) calcd for C\(_{44}\)H\(_{85}\)N\(_8\)O\(_{22}\)P\(_2\) (M+H\(^{+}\)) 1139.5253, obsd 1139.5271.
4.22 (t, J = 6.8 Hz, 4H), 3.91-3.86 (m, 4H), 3.80 (br, 2H), 3.76-3.70 (m, 2H), 3.69-3.57 (m, 10H), 3.50-3.38 (m, 6H), 2.22-2.12 (m, 2H), 2.08-1.89 (m, 6H), 1.81-1.66 (m, 4H), 1.67-1.55 (m, 4H); 13C NMR (150 MHz, MeOD) δ 162.7, 101.6, 73.8, 72.8 (d, J = 16.9 Hz); 72.6, 72.1, 72.0, 71.6, 71.6, 69.9, 67.6, 46.5, 30.4, 27.3, 26.8, 26.3, 22.9 (d, J = 142.2 Hz); 31P NMR (202 MHz, MeOD) δ 30.5; HRMS (ESI m/z) calcd for C32H60N8O21P2Na (M+Na+) 977.3246, obsd 977.3214.

BL7: Following general procedure B, from 38 (30 mg, 0.015 mmol), bivalent ligand BL7 (17 mg, quantitative) was obtained as a colorless oil: ¹H NMR (400 MHz, MeOD) 4.73-4.62 (m, 6H), 4.22 (t, J = 6.6 Hz, 4H), 3.93-3.86 (m, 4H), 3.79 (br s, 2H), 3.76-3.53 (m, 20H), 3.50-3.38 (m, 6H), 2.06-1.89 (m, 6H), 1.83-1.68 (m, 4H), 1.68-1.52 (m, 4H); 13C NMR (150 MHz, MeOD) δ 162.7, 101.6, 73.8, 73.4 (d, J = 15.4 Hz), 72.6, 72.2, 71.9, 71.62, 71.56, 71.52, 69.9, 67.6, 46.5, 30.4, 27.4, 26.9, 26.2, 24.25 (d, J = 142.1 Hz); 31P NMR (202 MHz, MeOD) δ 30.8; HRMS (ESI m/z) calcd for C36H68N8O23P2Na (M+Na+) 1065.3770, obsd 1065.3770.

BL8: Following general procedure B, from 39 (28 mg, 0.013 mmol), bivalent ligand BL8 (13 mg, 88%) was obtained as a colorless oil: ¹H NMR (400 MHz, MeOD) 4.68-4.71 (m, 4H), 4.24 (t, J = 6.8 Hz, 4H), 3.88-3.94 (m, 4H), 3.81-3.84 (dd, J = 1.2 Hz, 2H), 4.68-4.71 (m, 4H), 4.24 (t, J = 6.8 Hz, 4H), 3.88-3.94 (m, 4H), 3.81-3.84 (dd, J =
1.6 Hz, 3.2 Hz, 2H), 3.58-3.77 (m, 28H), 3.42-3.52 (m, 6H), 2.13-2.26 (m, 2H), 1.92-2.06 (m, 6H), 1.71-1.85 (m, 4H), 1.61-1.69 (m, 4H); 13C NMR (100 MHz, MeOD) δ 161.3, 100.2, 72.4, 72.5 (d, $J = 17.7$ Hz), 71.2, 70.8, 70.5, 70.21, 70.17, 70.16, 70.11, 68.5, 66.2, 45.1, 29.0, 26.0, 25.5, 24.7 (d, $J = 3.7$ Hz), 22.8 (d, $J = 138$ Hz), 17.9; 31P NMR (162 MHz, MeOD) δ 30.32; HRMS (ESI m/z) calcd for C$_{40}$H$_{77}$N$_8$O$_{25}$P$_2$ (M+H$^+$) 1131.4475, obsd 1131.4435.

BL9: Following general procedure B, from 40 (30 mg, 0.014 mmol), bivalent ligand BL9 (18 mg, quantitative) was obtained as a colorless oil: 1H NMR (600 MHz, MeOD) 4.71 (br s, 2H), 4.70-4.66 (m, 4H), 4.22 (t, $J = 6.9$ Hz, 4H), 3.92-3.86 (m, 4H), 3.80 (br s, 2H), 3.76-3.53 (m, 40H), 3.48-3.40 (m, 6H), 2.22-2.12 (m, 2H), 2.06-1.83 (m, 6H), 1.83-1.68 (m, 4H), 1.68-1.58 (m, 4H); 13C NMR (100 MHz, MeOD) δ 162.7, 101.6, 73.8, 73.4 (d, $J = 17.7$ Hz), 72.6, 72.2, 71.9, 71.61, 71.56, 71.53, 71.47, 69.9, 67.6, 46.5, 30.4, 27.4, 26.9, 26.2 (d, $J = 3.7$ Hz), 24.2 (d, $J = 139.9$) ; 31P NMR (202 MHz, MeOD) δ 30.77; HRMS (ESI m/z) calcd for C$_{44}$H$_{84}$N$_8$O$_{27}$P$_2$Na (M+Na$^+$) 1241.4819, obsd 1241.4832.

BL10: Following general procedure B, from 41 (30 mg, 0.014 mmol), bivalent ligand BL10 (18 mg, 97%) was obtained as a colorless oil: 1H NMR (400 MHz, MeOD) 4.71 (br s, 2H), 4.70-4.66 (m, 4H), 4.22 (t, $J = 6.9$ Hz, 4H), 3.92-3.86 (m, 4H), 3.80 (br s, 2H), 3.76-3.53 (m, 44H),
3.48-3.40 (m, 6H), 2.22-2.12 (m, 2H), 2.06-1.83 (m, 6H), 1.83-1.55 (m, 8H); 13C NMR (100 MHz, MeOD) δ 162.7, 101.6, 73.8, 73.4 (d, $J = 16.7$), 72.6, 72.1, 71.9, 71.6, 71.5, 71.49, 71.43, 71.4, 71.36, 71.33, 69.9, 67.6, 46.5, 30.4, 27.3, 26.9, 26.2, 24.2 (d, $J = 140.3$); 31P NMR (202 MHz, MeOD) δ 30.17; HRMS (ESI m/z) calcd for $^{\text{C}_{48}\text{H}_{92}\text{N}_{8}\text{O}_{29}\text{P}_{2}\text{Na}}$ (M+Na$^+$) 1329.5343, obsd 1329.5331.

B. Binding Affinity Assay

Soluble bovine M6P/IGF2R was purified from fetal bovine serum (Life Technologies) according to the procedure of Byrd et al.121 The collected fractions were dialyzed to remove M6P, lyophilized to concentrate the receptor, and stored at -20°C. The purified and re-dissolved receptor was coupled to CNBr-activated Sepharose 4B resin, according to the manufacturer’s instructions.

A M6P/IGF2R-Sepharose 4B resin-based radioligand displacement assay was used to evaluate the ability of each of the M6P-based ligands to bind the receptor. Aliquots (20 μL) of receptor resin (50% slurry) were incubated with 1.5 nM 125I-PMP-BSA in the presence of increasing concentrations of M6P-based ligands (0.1 μM to 1 mM) in assay buffer (50 mM HEPES, pH 7.4, 0.15 M NaCl, 0.05% Triton X-100) in a volume of 0.2 ml tube, for 16 h at 4°C on an end-over-end clinical mixer. As positive and negative controls, parallel assays were done that had increasing concentrations of M6P (0.1 μM to 10 mM) or G6P (1 to 10 mM), respectively. The resin pellets were collected by centrifugation for 1 min at 9,000 x g at 4°C, and were washed with 2 x 1 mL of ice-cold buffer. The tips of the tubes with the resin pellets were cut and quantified in a WIZARD 1470 Automatic Gamma Counter (Perkin Elmer). The data were converted into
percent binding values based on comparison with the test ligand-free controls (designated as 100% radioligand binding). The competitive binding data were graphed as semi-log plots of percent binding vs. concentration of M6P, G6P, or the M6P-based ligands. Best-fit curves were generated by nonlinear regression analysis using Prism GraphPad software (San Diego, CA), which also estimated the IC50 values (the test ligand concentration that displaces 50% of radioligand binding). Values for relative binding affinity (RBA) for the M6P-based ligands were normalized to M6P for a given experiment.

Figure 3.23 Competitive binding analysis for bivalent ligands BL1 – BL5
IV. References

89. Distler, J. J.; Guo, J.; Jourdian, G. W.; Srivastava, O. P.; Hindsgaul, O., The binding specificity of high and low molecular weight phosphomannosyl receptors from bovine testes. Inhibition studies with chemically synthesized 6-O-

V. NMR Spectra
13C NMR (100 MHz, CDCl$_3$)
Chapter 4
Carbafructopyranosyl 1,2-Diamines as New Chiral Scaffolds

I. Introduction

A. Chiral Pool in Asymmetric Catalysis

Naturally-occurring compounds, such as the natural phosphonates in Chapter one, have been great inspiration for medicinal chemists. On the other hand, natural products have also been magnificent resources for quite a different domain: asymmetric catalysis. Chiral pool-derived catalysts, ligands and auxiliaries have all contributed significantly to the development of numerous asymmetric transformations.\(^1\) For instance, the cinchona alkaloid backbone, as classically presents itself in the natural product quinine, has made enormous impact as the stereo-differentiating element in the Sharpless asymmetric hydroxylation (ADH)\(^2\), as well as the O’ Donnell-Lygo-Corey chiral phase-transfer catalysts (PTCs)\(^3-5\). As marked cases in the terpenoid category, the \(\alpha\)-pinene derived organoboron reagents, such as Alphine-borane\(^\text{TM}\) and DIP-chloride, have been widely utilized in asymmetric reduction.\(^6\) Furthermore, inspired by the efficiency of enzymes, chemists have extensively utilized amino acids in catalyst assembly.\(^7\) Notably, amino acid derived phosphinooxazoline (PHOX) ligands have had a major impact on a range of transition metal (TM)-catalyzed reactions.\(^8\) In a more biomimetic approach, Miller \textit{et al} have developed a series of \(\beta\)-turn-based oligopeptides with the tetrapeptide catalytic core. These organocatalysts have shown remarkable selectivities in various transformations, including the Aldol reaction, conjugate additions, epoxidations, acylations, phosphorylations etc.\(^9-10\)
Their abundance and variety in nature have made carbohydrates an amazing source of chirality.11-20 The success of sugar based chiral catalysts can be epitomized by the historic tartaric acid derived ligands, such as diethyl tartrates (DET)21, TADDOLs22 and Chiraphos23 (Fig. 4.1). Recent examples include Rajanbabu’s diphosphinite ligands which was built upon the bicyclic 4,6-O-benzylidene-D-glucopyranose. The nickel-ligand complex catalyzes hydrocyanation reactions with a range of vinilarenes, with up to 91% ee.24
Moreover, Gomez, Claver and Godard reported a diphosphite ligand bearing a 2-deoxy-L-fructofuranose backbone which showed excellent enantioselectivities in the Pd-catalyzed allylic amination reactions.24 Boysen group has developed a series of α-D-glucosamine based bis(oxazoline) (glucoBox) ligands. The 3-O-Ac glucBox was utilized in the total synthesis of alkaloid (-)-desoxyeseroline via an enantioselective Cu-catalyzed cyclopropanantion of N-acyl indoles.25 Adopting the same glucosamine motif, Ruffo and et al have synthesized a number of bis(phosphinoamide) ligands (Trost ligands).26 They are exploited in the desymmetrization of meso-1,4-biscarbamate cyclopentene, via the Pd-promoted intramolecular allylic amination. In addition to these synthetically useful ligands, carbohydrate framework has also been successfully utilized in developing chiral organocatalysts. One of the most notable cases is Shi’s seminal work on the ketone-mediated asymmetric epoxidation reactions.27-29 The β-D-fructopyranose derived exocyclic ketones proved to be highly enantioselective (up to 97%), across a wide range of di- or tri-substituted alkenes (Fig. 4.2).30-31

B. A Chiral Pool Derived Salen Ligand Library

In 2005, our group reported a combinatorial approach to explore novel salen scaffolds. A 7×7 library was built on the diamines derived from chiral pool (Fig. 4.3). Particularly, terpenoid (β-pinene), amino acids (L-phenylalanine and L-phenylglycine) and carbohydrate (D-fructopyranose) are utilized to prepare the vicinal diamines. By coupling with various salicylaldehydes, a series of non-C2-symmetric salen ligands were prepared. They were subsequently evaluated in the Co-(III)-mediated hydrolytic kinetic resolution (HKR) of terminal epoxides, as a platform to introduce the double-cuvette ISES.32 Two hit salen scaffolds emerged from the screening. The β-pinene-diamine/α-
hydroxynaphthaldehyde combination showed high selectivity for the HKR of the matched epoxides. This salen ligand was recently utilized to set the stereochemistry, in a streamlined synthesis of pseudo-enantiomeric cores of linearifolin and zaluzanin A (Fig. 4.4).33

In addition, the \textit{\beta}-D-fructopyranosyl-1,2-diamine showed great promise as a novel chiral motif. The salen ligand derived from this diamine and 3,5-diiodo-salicylaldehyde exhibited the highest E-value in the HKR of propylene oxide. Moreover,
this salen series showed an interesting enantioswitch, which seems to be only dependent on the salicylaldehyde counterpart. Namely, changing from 3,5-diiodo-salicylaldehyde to 3,5-di-ter-butyl-salicylaldehyde, the β-D-fructopyranosyl-diamine derived ligand manifested opposite enantio-preference in the HKR. It was postulated that an undetected anomerization might cause the change of the enantiopreferences. Given the excellent enantioselectivity of this novel salen scaffold, we set out to explore more about these ligands. Specifically, we set out to make the carbocyclic version of this carbohydrate based diamine to lock the anomeric center of the sugar.

C. Novel Screening Methods in Combinatorial Catalysis

After more than 200 years of research in organic synthesis, there is no doubt that the discovery of new reactivity gets more and more challenging. However, search for new types of reactions, particularly catalytic transformations, has become increasingly essential for many aspects of the society, such as energy and medicine. Despite some great successes in recent years34, catalyst development is still a difficult process. The discovery of a highly efficient and selective catalyst often requires a combination of rational design, intuition and serendipity. In the last two decades, the combinatory chemistry has emerged as an approach to speed up the process. It has proved to be effective in catalyst discovery, via screening diverse catalytic elements including metals, chirality, etc.35 Recently, taking this approach, MacMillan \textit{et al} discovered a Ir(III)-mediated photoredox amine C-H arylation reaction.36 By applying an automated workflow system, they screened a large number of potential reactions between various functional groups. Out of an array of identified reactions, the C-H arylation of tertiary amines presents the most interesting result, owing to the pharmaceutical values of the
produced benzylic amine motif. Moreover, in a more dynamic combinatorial approach, Hartwig et al screened a variety of catalysts with diverse mixture of substrates, and then utilized mass spectrometry to identify the products. A Cu(I)-catalyzed alkyne hydroamination and two Ni(0)-promoted alkyne hydroarylation reactions were unveiled as new types of transformations (Fig. 4.5).

MacMillan et al

![Chemical structure](image)

Visible light, \(\text{Ir(ppy)}_3 \) (0.5-1.0 mol %), NaOAc, DMA, 23°C, 12 h

16 examples, 78-98% yield

Hartwig et al

![Chemical structure](image)

CuCl in THF, 100°C

8 examples, 51-84% yield

![Chemical structure](image)

Ni(cod)\(_2\) (20 mol%), PPh\(_3\) (40 mol%), THF, 100°C

8 examples, 62-95% yield

![Chemical structure](image)

Ni(cod)\(_2\) (20 mol%), P(nBu)\(_3\) (40 mol%), Et\(_3\)SiH (2 equiv), THF, 100°C

5 examples, 38-71% yield

both from combinatorial screening by mass spectrometry

Figure 4.5: Novel reactivity discovered by combinatorial screening
Although great effort has been devoted to its development, the screening process is still arguably the “bottleneck” of the combinatorial catalysis.38 Recently, Glorius \textit{et al} nicely summarized some contemporary screening methods in combinatorial catalysis.39 Notably, by tagging substrate with a pyrene, Kozmin \textit{et al} were able to screen hundreds of reactions using laser desorption/ionization and time-of-flight mass spectrometry.40 This label assisted LDI-TOF-MS technique eliminates the needs for an external matrix and also simplifies MS analysis. Through this novel screening method, they identified two interesting benzannulation reactions of siloxy alkyne; namely, the Au(III)-mediated annulation with 2-pyrone and Ag(I)-catalyzed cycloaddition with N-isoquinoline (Fig. 4.6).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure4.6.png}
\caption{Label assisted mass spectrometry for novel reactivity}
\end{figure}
Furthermore, enzyme immunoassays have shown their prowess in combinatorial catalysis.41-42 Recently, Taran et al utilized the sandwich enzyme-linked immunosorbant assay (ELISA) to uncover a novel 1,3-dipolar cycloaddition reactions.43 In this assay, one component was labeled with an epitope that can be recognized by a solid-supported monoclonal antibody (mAB), while the other component was labeled with a different epitope that binds to an acetylcholinesterase (AChE)-linked antibody. After the execution of 2816 reactions in 96-well plates, each reaction was treated with the solid-phase mAB, followed by the AChE-linked mAB. After several rounds of washing, the unreacted

![Figure 4.7: A new bioorthogonal chemistry disclosed by combinatorial immunoassay screening](image-url)
components and the AChE-linked mAB were removed from the wells. Subsequent treatment with Ellman reagent (a colorimetric enzymatic substrate) lit up the wells that contain the hit reactions. Therefore, these cycloaddition reactions can be evaluated rapidly with visual screening (Fig. 4.7). After the initial screen and further optimization, Taran et al. disclosed a new Cu-catalyzed sydnone-alkyne cycloaddition reaction which was shown to be biocompatible in the fluorescent labeling of BSA.

D. In Situ Enzymatic Screening

In 2002, our group unveiled a conceptually new screening method: In-Situ Enzymatic Screening (ISES).44 By exploiting a bilayer system, we could monitor relative rates in real time for the allylic substitution reaction. The first Ni(0)-mediated allylic amination was revealed in this process (Fig. 4.8). Asymmetric version of this reaction was later developed, as an expeditious approach toward L-β,γ-unsaturated amino acids (Fig. 4.9).45
Recently, this first generation of ISES was adapted to a colorimetric method, utilizing the ABTS dye. The menthol byproduct from a (pseudo)halometalation/carbocyclization reaction diffused into the aqueous layer, where it was oxidized by an alcohol oxidase. The produced hydrogen peroxide was further oxidized to \(\text{H}_2\text{O} \) by two equivalent of ABTS dye under the catalysis of peroxidase. The generated \(\text{ABTS}^+ \) has a strong green color (\(\varepsilon_{405-414} \approx 70000 \text{ M}^{-1}\text{cm}^{-1} \)), which allows for simple visual identification (Fig. 4.10). 1152 combinations of substrates and catalysts were rapidly screened using this colorimetric ISES. The electron-deficient rhodium catalyst was found to be an efficient catalyst for the bromination-carbocyclization reaction. Furthermore, a thiocyanation-carbocyclization reaction was identified as a new transformation under palladium catalysis.\(^{46}\)

ISES has the advantage that the products do not need to be installed with a chromophore to be detected. This is particularly useful for evaluation of product ee’s, as most of them are determined from HPLC traces. In 2005, our group revealed a “double cuvette” ISES, which not only measures the reaction rates, but also estimates the sense and magnitude of the enantioselection of the reaction.\(^{32}\) In this second generation ISES, we utilized two reporting enzymes which have different enantiopreferences toward the products.
In this particular case, cobalt(III)-mediated HKR of propylene oxide was employed as a model reaction. Hydrolytica kinetic resolution of terminal epoxides,
particularly catalyzed by Co(III)-salen complexes developed by the Jacobsen group, proved to be a powerful synthetic tool in asymmetric synthesis and has been applied widely in natural product total synthesis. TBADH/HLADH pair was selected as the dual enzymatic screening system. For the oxidation of 1,2-propanediol by NADP⁺, TBADH has an estimated enantioselectivity (Sel_{TBADH}) of 8.4 (v_R/v_S) at 40 mM concentration of the diol. On the other hand, HLADH oxidizes the diol with an estimated enantioselectivity (Sel_{HLADH}) of 0.34 (v_R/v_S), using NAD⁺ as the cofactor. Thus, for each cobalt-salen catalyst, ISES was executed in two separated cuvettes, where the produced diol was oxidized in different rates (v_{TBADH} vs v_{HLADH}) (Fig. 4.11). To estimate the enantiomeric ratios from these reaction rates and enantioselectivities, equation (1) was derived and validated in multiple studies.³², ⁴⁷

$$\frac{[R]}{[S]} = \frac{\left(\frac{Sel_{E2}}{Sel_{E1}}\right)^{v_{E2}-v_{E1}}}{Sel_{E2} \times (v_{E1}-v_{E2})} \quad (1)$$

II. Results and Discussion

A. Synthesis of the Oxa- and Carbafructopyranose Derived Diamines

The α- and β-oxafructopyranosyl diamines were conveniently synthesized from D-fructose. Following the procedures in literature⁴⁸, 4- and 5-hydroxyl groups were selectively protected with acetonide in 75% yield. 3-hydroxyl group was then selectively methylated, with MeI and NaH, in 95% yield. A TMSOTf-mediated anomeric azidation led to a mixture (α : β = 1 : 4) of the α- and β-2-dexoy-2-azido-3-methyl-4,5-acetonide D-fructopyranose. Further triflation of 1-hydroxyl group, followed by TMSN₃ displacement provided the diazide 3 and 4 in excellent yields. The hydrogenation of the
diazides proved to be challenging. With 10 wt% of Pd/C or PtO$_2$, the reaction proceeded slowly and significant decomposition was occurred during this process. Consequently, the hydrogenation was attempted in much faster fashion. Pleasingly, with 50 mol% PtO$_2$ in THF, the diazides (potentially explosive) were efficiently converted to a mixture ($\alpha : \beta = 1 : 9$) of α- and β-diamines (5 and 6) in quantitative yield (Fig. 4.12). The separation of these two diamines is particularly challenging, in part due to the instability of these diamino compounds. Therefore, the mixture of the α- and β-diamines was carried forward into the salen synthesis without further purification.

![Figure 4.12: Synthesis of α- and β-D-oxafructopyranosyl 1,2-diamines](image)

The synthesis of the D-carbafructose derived diamines was originally started from (-)-quinic acid (7). 49-51 7 was treated with cyclohexanone under acidic conditions to afford the lactone 8. Cleavage of the lactone, followed by PCC oxidation and
concomitant β-elimination gave compound 9. After the reduction and treatment with acetone and acid, the more stable bicyclic compound 10 was generated. Barton deoxygenation, followed by Grignard addition and dihydroxylation provided 11. The triol was selectively methylated and then cleaved using Pb(OAc)₄ to yield the cyclic ketone 12. A standard Wittig-methylenation reaction converted the ketone to desired olefin 13 in 80% yield. The diazidation of the exocyclic alkene was realized adopting Snider’s procedure. The Mn(OAc)₃ mediated radical diazidation rendered diazide, as an “α/β” mixture (14:15 = 75:25), in 80% yield. After chromatographic separation with silica column, these diastereomeric diazides were reduced by Pd/C catalyzed hydrogenation to give the respective diamines, 16 and 17, in quantitative yield (Fig. 4.13).

Figure 4.13: Synthesis of α- and β-D-carbafructopyranosyl 1,2-diamines
All the four diamines were subsequently utilized to build a focused 4×4 library of salen ligands. Coupling with four different salicylaldehydes, oxa- and carbafructopyranosyl-1,2-diamines yielded 15 out of 16 possible salen combinations. The active cobalt catalysts were then synthesized from the reactions between these salen ligands and Co(OAc)$_2$, followed by oxidation with air in the presence of 3,5-dinitrobenzoic acid (Fig. 4.14).

B. A New Miniaturized ISES

The “double cuvette” ISES was successfully introduced in 2005 to screen a 7×7 (42-membered) library. New reporting enzymes (LKADH, ketoreductases) were later recruited to expand the substrate scope. However, the scale of this “double cuvette”
ISES is not compatible with high through screen. For each cuvette, it normally requires 4 - 5 mg of the catalyst (0.25 mol% cat. loading) to give reliable reaction rates within a 30 min window. With varying conditions and substrates, this method requires a large quantity of each catalyst. This drawback hinders a broader screening of catalysts, particularly of the ones with limited access. Therefore, as a proof of principle for the high-through compatibility, we have developed a miniaturized ISES, and utilized it to evaluate the newly synthesized salen library.
By exploiting a 16 multi-microcell array the total volume of the biphasic layer was scaled down to 110 µL from 1 mL. The “miniaturized” ISES requires 0.5 mol% catalyst loading to give readable rates within a short time (5 – 10 min) window. Consequently, the amount needed for each catalyst was reduced to < 1 mg per reaction. With same amount of catalysts, this newly developed platform allows ISES to evaluate five times more reactions than the “cuvette” setup. Furthermore, using the standard Shimadzu UV-2401 instrument, we were able to read up to 8 channels in one single experiment, representing a higher throughput screen (Fig. 4.15).

Since previously-employed reporting enzyme HLADH is no longer commercially available, we set out to find easily-accessible alternatives. Hence, we have screened an array of Codexis KRED (ketoreductase) enzymes towards their activities with (R)- and (S)-1,2-hexane diol, as well as (R)- and (S)-1,2-propane diol. Based on the reaction rates and selectivity factors (kS/kR, see Fig. 4.24 in the experimental section for detailed kinetic analysis), KRED-107, and KRED-119 were picked as the reporting enzymes for the HKR of hexene oxide, while KRED-23 and TBADH were used to screen the HKR of propylene oxide (Fig. 4.16).

To examine the new ISES platform, the HKR reactions were also conducted under typical flask conditions. A comparison of the ISES estimated % ees and the HPLC determined % ees was compiled in Table 4.1. A three dimensional bar graph was also created to compare the two sets of data. The difference between ISES conditions and flask conditions should be noted. Under typical ISES conditions, reactions are carried out in a biphasic system. The produced diols diffuse into the aqueous layer and get read out
by the enzymes. However, under flask conditions, the reactions are usually conducted without extra solvent, and the products are isolated for ee determination. As seen in Table

<table>
<thead>
<tr>
<th>Table 4.1: Screen of a 4 × 4 library of salen ligands for the Co(III)-</th>
<th>![Chemical Structures]</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Chemical Structures]</td>
<td>![Chemical Structures]</td>
</tr>
<tr>
<td>![Chemical Structures]</td>
<td>![Chemical Structures]</td>
</tr>
<tr>
<td>![Chemical Structures]</td>
<td>![Chemical Structures]</td>
</tr>
</tbody>
</table>

| ![Chemical Structures] | ![Chemical Structures] |

Each box provides the HKR data of propylene oxide (black) and hexene oxide (blue). The ISES estimated % ees of the produced diols are presented in brackets, followed by the observed % ees (chiral HPLC) and calculated E-values. Difficulty was encountered in synthesizing appreciable quantities of this salen. These catalysts gave ISES signals < 20 mAbs min⁻¹ over 35 min. These catalysts gave a conversion < 2% after 72 h.

Figure 4.17: Three dimensional bar graph of ISES screening results
4.1 and Fig. 4.17, the estimated % ee’s correlates well with the HPLC determined % ee’s. Indeed, the “miniaturized” ISES decreases the reaction scale without sacrificing its accuracy, thereby providing a highly efficient screening tool.

C. Preserved Enantioswitch and Boosted Enantioselectivity

From this focused combinatorial screening, two interesting results have emerged. First, the salicylaldehyde-dependent enantioswitch was preserved in the carbafructopyranosyl series. Namely, the Co(III)-salen catalyst derived from β-D-carbafructopyranosyl diamine (17) and the sterically encumbering 3,5-di-tert-butylsalicylaldehyde (a) gives rise to (R)-diols, whereas the catalyst based on the same diamine and the electronically rich 3,5-diiodosalicylaldehyde (c) gives rise to the (S)-antipodes (Table 4.1). This observation disproves the suggestion that an “undetected anomerization” is the cause of the enantioswitch. In the carbafructose based ligands, the anomeric position is locked into α- or β-configuration, eliminating the possibility of anomerization. Therefore, this unusual enantioswitch is truly dependent on the choices of the pairing salicylaldehydes. This is quite interesting, considering the salicylaldehyde is the achiral part of a salen ligand.

Perhaps, the more exciting result is the remarkable enantioselectivity enhancement from the oxafructopyranose-based ligand 6c to its carbocyclic congener 17c. Replacing the ring oxygen with CH$_2$ renders a much more (S)-selective Co(III)-salen complex, with an E-value53 of 44 for the HKR of propylene oxide. Since salen ligand is considered as a “privileged” chiral scaffold and has been widely applied in many transformations$^{54-55}$, this novel combination of carbohydrate-based diamine and an unhindered salicylaldehyde clearly represents an important combinatorial hit.
The most promising Co(III)-salen(17c) catalyst was subsequently examined for HKR across a range of distinct epoxides, using standard flask conditions. Given the nature of kinetic resolution, the ee’s of both remaining epoxide substrates and the formed diols were measured. Thus two independent selectivity factors were collected for each entry (Table 4.2), giving a fair judgment of the catalyst performance. Pleasingly, three substrates exhibited excellent resolution with E-values being around 50.56 And near perfect resolution (E-value = ~ 100) was obtained for another three substrates, namely O-

Table 4.2: Substrates screening using Co(III)-DNB catalyst derived from salen 17c

<table>
<thead>
<tr>
<th>entry</th>
<th>epoxides (t)</th>
<th>catalyst loading (mol%)</th>
<th>conditions*</th>
<th>conversionb</th>
<th>isolated epoxidec</th>
<th>isolated diol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.14</td>
<td>neat, 0 °C, 15 h</td>
<td>45</td>
<td>50, -74, 44</td>
<td>46, 88, 34</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.5</td>
<td>DCM, rt, 20 h</td>
<td>51</td>
<td>47, -96, 97</td>
<td>46, 92, 93</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.5</td>
<td>neat, 0 °C, 30 h</td>
<td>52</td>
<td>45, -99, 104</td>
<td>48, 91, 116</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.5</td>
<td>neat, 0 °C, 23 h</td>
<td>51</td>
<td>48, -97, 119</td>
<td>49, 92, 93</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.0</td>
<td>THF, rt, 35 h</td>
<td>44</td>
<td>55, -72, 49</td>
<td>40, 92, 52</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.5</td>
<td>neat, rt, 30 h</td>
<td>54</td>
<td>40, -99, 61</td>
<td>48, 82, 40</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.5</td>
<td>DCM, rt, 20 h</td>
<td>32</td>
<td>68, -39, 16</td>
<td>26, 86, 20</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.0</td>
<td>THF, rt, 50 h</td>
<td>28</td>
<td>63, -33, 17</td>
<td>28, 90, 27</td>
</tr>
</tbody>
</table>

*0.2-1 mol% of catalyst was added to a solution of epoxide in THF or DCM or neat condition. The mixture was cooled to 0 °C or kept at rt and 0.5 eq water was added to initiate the reaction. The reaction was stirred at 0 °C or rt until completion. bConversion of the reaction was determined by 1H NMR. cThe purified yield, % ee and calculated E-value are listed consecutively.

The most promising Co(III)-salen(17c) catalyst was subsequently examined for HKR across a range of distinct epoxides, using standard flask conditions. Given the nature of kinetic resolution, the ee’s of both remaining epoxide substrates and the formed diols were measured. Thus two independent selectivity factors were collected for each entry (Table 4.2), giving a fair judgment of the catalyst performance. Pleasingly, three substrates exhibited excellent resolution with E-values being around 50.56 And near perfect resolution (E-value = ~ 100) was obtained for another three substrates, namely O-
phenylglycidol, hexene oxide and (2,3-epoxypropyl)benzene. We believe this salen ligand will find broad applications in various asymmetric transformations.

D. Comparison to A Directed Evolution Based Approach

Interestingly, the HKR result of O-phenylglycidol allows us to compare this small molecule-based combinatorial approach to Reetz’s Combinatorial Active-site Saturation Test (CAST) strategy iteratively applying the CAST method, Reetz *et al* have evolved *A. niger* epoxide hydrolase for the HKR of O-phenylglycidol. They were able to improve the E-value from 14 to 115 over 5 cycles of directed evolution, after constructing ~20,000 mutants. Ultimately 9 individual residue were mutated from the wild type to afford the best evolved enzyme (Fig. 4.18).

Reetz’s approach starts from the native epoxide hydrolase. This is based on the knowledge that this enzyme catalyzes the HKR of epoxides. Likewise, we have selected the salen scaffold for our catalyst design. The evolution of the Co(III)-salen catalyst emanates from a 7x7 salen library that involves variation of diamine and salicylaldehyde components. The screening of the first generation catalysts rendered a similar starting point; namely, the Co(III)-salen(6c) catalyst showed an E-value of 13 for the HKR of (±)-propylene oxide. In the next round “catalyst evolution”, the ring oxygen was substituted by a methylene group, initially as a method to support the salicylaldehyde-dependent enantioswitch. Nonetheless, this step boosted the selectivity to essentially the same value as Reetz’s enzyme. Taken together, the combinatorial approach utilized in this work is highly complementary to other types of methods, such as the directed evolution strategy.

On one hand, our combinatorial assembly of diverse salen structures provides unprecedented and valuable ligand motifs. One the other hand, the focused screening of
our fructose based salen array impoves the ligand, providing an efficient approach to ligand optimization.

E. X-Ray Structures and Transition State Model of HKR

To understand the difference between the oxa- and carbafructose derived catalysts, we set out to characterize some of the Co(II)-salen complexes by X-ray crystallography. The crystals of these complexes derived from 6a, 6c, and 17c were successfully obtained. The x-ray crystallography studies gave very interesting results. Both oxacycles take a distorted boatlike conformation, whereas the corresponding carbacycle adopts a chairlike geometry (Fig. 4.19). It is possible this conformational
change of the fructose ring leads to the observed enantioselectivity improvement. And we believe that these oxafructopyranose rings twist to the boatlike structure to avoid the deleterious anomeric effect. Specifically, if the oxacycle was in the chairlike conformation, the C\textsubscript{2}-N dipole would be aligned with the ring dipole, thereby reinforcing the molecular dipole moment. On the contrary, when taking the boatlike geometry, C\textsubscript{2}-N dipole partially counteracts the ring dipole and stabilizes the molecule. However, to substantially support this theory and shed light on why chairlike geometry is more enantiodiscriminating, sophisticated density functional theory (DFT) calculations are inevitable in the future studies.

Figure 4.19: X-ray crystal structures of the Co(II)-salen complexes and a possible influence of dipole-dipole interactions on the ring conformation
Nonetheless, using the crystal structure of Co(II)-17c complex and some observations in literature, we were able to build a transition state model, attempting to interpret the origin of the enantiopreference. First, as Blackmond and Jacobsen suggested, we presumed the HKR studied here is a second-order reaction on the catalyst concentration. Thus, two molecules of the Co(III)-catalyst were incorporated into the transition state; one coordinates the epoxide oxygen, and the other delivers the nucleophile. Second, the 3D structure of Chin’s aziridine-Co(III)-salen complex was utilized as a guidance, to modulate the Co-O distances and the epoxide approaching angle to the cobalt-salen complex. Third, according to Jacobsen’s recent DFT calculation, the O-Co-O-C dihedral angle (θ) has a major influence on the binding energy of an epoxide substrate, with an optimal range of $20° – 60°$.

Therefore, a bimolecular transition state model was constructed, using Accelrys View-Pro to avoid the unfavorable van der Waals interactions. As seen in Fig. 4.20, the epoxide binds strongly to the Co(III)-salen complex, through a 1.99 Å Co-O coordination bond, very close to the distance between Co and nitrogen in Chin’s crystal structure (1.95 Å). In addition, the oxirane ring approaches the Co center at an angle ($122° \pm 18°$) that is very similar to that from the binding aziridine ($123° \pm 3°$). Furthermore, the O-Co-O-C dihedral angle in our model is shown to be around $24°$. This is quite similar to the one observed in Chin’s structure ($33°$), and very close to the global minimal on Jacobsen’s chart. In the meantime, the nucleophilic hydroxyl group is well positioned to the attack the terminal carbon through a second molecule of catalyst. Consequently, we believe this model should serve well in the transition state prediction for the HKR reactions. Herein,
(S)-hexene oxide fits in nicely underneath the π-face of the OH-delivering Co-salen complex, elucidating the high enantio-preference of this catalyzed hydrolysis.

Finally, it was also noted that the stepped conformation of the salen complex could be important for the enantioselectivity. Therefore, we employed all the three crystal structures to estimate these step heights. As seen in Fig 4.21, two key parameters are measured for each complex: (i) the crystallographic rise angle and (ii) the C2'-C2''-distance (designated as “hypotenuse length”). Consequently, the step heights can be calculated from equation (2). Indeed, the largest step height (0.76 Å) is observed in the

![Transition-state model of Co(III)-catalyst derived from 17c in HKR of hexene oxide.](image)

Figure 4.20. Transition-state model of Co(III)-catalyst derived from 17c in HKR of hexene oxide. The crystal structure of Chin’s Co(III)-aziridine complex was shown on the left. Transition state model was for the Co(III)-mediated HKR was shown on the right. Co(II)-17c complex was first modified using Spartan 2008. Consulting the crystal structure of Jik Chin’s Co(III)-aziridine complex, nucleophile hydroxyl group was added to the Co center. (S)-Hexene oxide (preferred enantiomer) was manually docked with the resulting model for the HO-Co(III)-12c complex, using Accelrys ViewerPro. The distance between the nucleophile oxygen and the electrophile carbon is ~1.90 Å. The Co-O coordination bond length is ~1.99 Å. The O-Co-O-C dihedral angle θ is 24°.
Co(II)-17c complex (Fig. 4.22), which renders the best catalyst among this series. This is consistent with Jacobsen’s theory and provides an additional criterion for the future catalyst design.

\[
\text{step height} = \sin(180^\circ - \text{rise angle}) \times \text{hypotenuse length} \quad (2)
\]

Figure 4.21: Measurement of step height for the Co(II)-17c complex

Figure 4.22 Step heights from crystal structures of the Co(II)-salen complexes
F. Streamlined Synthesis of the \(\alpha\)- and \(\beta\)-D-Carbafructopyranosyl-1,2-Diamines

To facilitate extensive studies of the valuable D-carbafructose derived diamines, we set out to develop a more streamlined synthesis, making these diamines more accessible. Specifically, we sought an expedient route to the key intermediate 12. The new route started from \(\alpha\)-methyl-D-mannopyranoside. Appel reaction could converted the 6-OH to the 6-iodide in excellent yield. The requisite acetonide was then selectively installed across the cis-configured 2,3-vicinal diol using a recipe of 2,2-dimethoxypropane/acetone with catalytic \(p\)-TsOH. Pleasingly, C-4-\(O\)-methylation and dehydrohalogenation were achieved in one pot in almost quantitative yield to give the enol ether intermediate 19.

Several divalent, late transition metal catalysts (\(\text{HgCl}_2\), \(\text{Pd(OAc)}_2\) and \(\text{PdCl}_2\)) were examined, as well as variation of the solvent and temperature for the key type-II Ferrier rearrangement step. The optimal conditions employs 10 mol% \(\text{Pd(OAc)}_2\) in a mixture of acetone, dioxane and water (40:40:20) at 0°C, providing rearranged product 20 in 85% yield. The temperature proved to be critical, with warming the reaction to room temperature resulted in unwanted side products (Figure 4.23). To remove the extra hydroxyl group, Barton deoxygenation was first employed. However, the projected phenyl thionocarbonate ester proved to be unstable. It decomposes during the silica column purification to yield the corresponding \(\alpha\),\(\beta\)-unsaturated ketone in poor yield. Therefore, the route was modified and the alcohol 20 was mesylated, followed by in situ \(\beta\)-elimination to the ketone intermediate in 80% yield. Hydrogenation then gave desired product 12 in quantitative yield. The newly developed synthesis saves 6 steps and raises the overall yield from 7% to 39%. The new route also starts from a cheaper commercial
source α-methyl-D-mannopyranoside ($109/100g$-Aldrich) compared to (-)-quinic acid ($192/100g$-Aldrich).

In conclusion, we have developed a miniaturized ISES manifold. This new ISES setup allows us to screen more reactions in a higher-throughput fashion. As a proof of principle, this screening method was utilized to examine a library of oxa- and carbafructopyranosyl 1,2-diamines derived salen ligands, towards the Co(III)-mediated HKR reactions. The β-D-carbafructopyranosyl 1,2-diamine/3,5-diiodosalicylaldehyde derived Co(III)-salen complex was shown to be a highly enantioselective catalyst, over 4 times more selective than the oxafructose derived catalyst. We believe that this novel chiral scaffold has the great potential to be applied in other types of asymmetric transformations, and this miniaturized ISES will be utilized to screen different reactions.
III. Experimental Section

A. Organic Synthesis

All reactions were conducted under nitrogen atmosphere using flame or oven-dried glassware, unless otherwise indicated. Methylene chloride was distilled from CaH₂. Toluene, THF and Et₂O were distilled from sodium benzophenone ketyl. Methanol was distilled from Mg, and ethanol from Na-diethyl phthalate. Alcohol dehydrogenase from *Thermoanaerobium brockii* (TBADH, EC 1.1.1.2), β-NAD⁺ (sodium salt) and β-NADP⁺ (sodium salt) were purchased from Sigma. KRED (ketoreductase) enzymes were purchased from Codexis. 3,5-Di-tert-butylsalicylaldehyde (a) was purchased from Alfa-Aesar, 3,5-diiodosalicylaldehyde (c) from Lancaster, 1-hydroxy-2-naphthaldehyde (d) from TCI America, 3-tert-salicylaldehyde (b), and cobalt(II)-acetate tetrahydrate from Aldrich. Flash chromatography was performed using Merck silica gel 60 (230-400 mesh).

1H NMR spectra were recorded on Bruker-DRX-Avance-400 MHz, 500 MHz and 600 MHz instruments with chemical shifts reported relative to residual CHCl₃ (7.25 ppm) and CH₂Cl₂ (5.2 ppm). Proton-decoupled 13C NMR spectra were acquired on Bruker-DRX-Avance-400 MHz, 500 MHz and 600 MHz instruments with chemical shifts reported relative to CDCl₃ (77.0 ppm). Optical rotations @589 nm were measured at 19 °C in an Autopol polarimeter. IR spectra were obtained using a Nicolet Avatar 360 FTIR spectrometer. Mass spectra were acquired at the Nebraska Center for Mass Spectrometry (University of Nebraska-Lincoln). Enzyme assays and ISES were performed on a Shimadzu 2401 spectrophotometer, equipped with a 16-microcell sample changer with temperature control. A Chiralcel OD (4.6 mm x 25 cm) chiral stationary phase was used for enantiomeric excess determinations by HPLC.
3-O-Methyl-4,5-O-isopropylidene-β-D-fructopyranosyl-1,2-diazide (4):

The starting material, 2-azido-2-deoxy-3-O-methyl-4,5-O-isopropylidene-β-D-fructopyranose was prepared following the known literature procedure.52

A flame dried flask was charged with the β-azido alcohol 2 (2.6 g, 10 mmol, 1 equiv) followed by pyridine (5 mL) and CH\textsubscript{2}Cl\textsubscript{2} (15 mL). The flask was cooled to \(-20 \) °C and triflic anhydride (2.85 mL, 16.9 mmol, 1.7 equiv.) was added dropwise. The reaction was stirred at \(-20 \) °C for 20 min and then warmed up to rt and stirred till all the starting material was consumed. The reaction contents were diluted with ether and washed with 1N HCl followed by saturated NaHCO\textsubscript{3}. The ethereal layer was treated with anhydrous Na\textsubscript{2}SO\textsubscript{4} and vacuum dried. The triflate thus obtained was re-dissolved in DMF (10 mL), and sodium azide (2 g, 30.7 mmol, 3.1 equiv) was added to it. The contents were stirred overnight at 40-50 °C and diluted with ether, then washed with water and 1N HCl and then finally with saturated NaHCO\textsubscript{3}. The ethereal layer was dried with anhydrous Na\textsubscript{2}SO\textsubscript{4}. Subsequent removal of ether and vacuum drying gave the diazide as a yellow oil (2.68 g, 94%, over two steps). \textit{Triflate:} \(^1\text{H NMR}\) (500 MHz, CDCl\textsubscript{3}) 1.36 (s, 3H), 1.53 (s, 3H), 3.44 (d, \(J = 6 \) Hz, 1H), 3.56 (s, 3H), 4.11 (ddd, \(J = 2, 3, 13 \) Hz, 2H), 4.27-4.35 (m, 2H), 4.58 (d, \(J = 10 \) Hz, 1H), 4.69 (d, 10 Hz, 1H). \textit{Diazide:} \(^1\text{H NMR}\) (600 MHz, CDCl\textsubscript{3}) 1.32 (s, 3H), 1.51 (s, 3H), 3.39 (d, \(J = 7 \) Hz, 1H), 3.51 (s, 3H), 3.54 (app s, 2H), 4.03 (dd, \(J = 3, 13 \) Hz, 1H), 4.11 (app d, \(J = 13 \) Hz, 1H), 4.19-4.24 (unresolved, 2H); \(^1\text{C NMR}\) (150 MHz, CDCl\textsubscript{3}) 25.8, 27.8, 54.1, 59.8, 62.1, 72.9, 76.1, 78.8, 92.3,
109.3; FTIR (ATR) 2099 cm\(^{-1}\) (N\(_3\) stretch); HRMS (FAB, 3-NOBA) calcd for C\(_{10}\)H\(_{16}\)O\(_4\)N\(_6\) (M+Li\(^+\)) \(291.0643\), obsd. 291.1398.

3-O-Methyl-4,5-O-isopropylidene-\(\beta\)-D-fructopyranosyl-1,2-diamine (6): Diazide (200 mg, 0.7 mmol) was dissolved in THF (2 mL) and platinum oxide (80 mg, 50 mol\%) catalyst was added. The diazide was hydrogenated (52 psi) for 1 h and filtered through a pad of celite. The celite was washed several times with CH\(_2\)Cl\(_2\) and the solvent was removed in \textit{vacuo}. TLC indicated the complete reduction of diazide to a ninhydrin positive spot (\(R_f = 0.3\), 95:4:1 CH\(_2\)Cl\(_2\) : MeOH : NH\(_4\)OH). The diamine (mixture of anomers ~ 9:1; as seen from \(^{13}\)C NMR) thereby obtained (160 mg, 98\%) was of sufficient purity to be used directly for synthesis of salen ligands. The \(\beta\)-anomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.33 (s, 3H) 1.52 (s, 3H), 2.67 (d, \(J = 13\) Hz, 1H), 2.84 (d, \(J = 13\) Hz, 1H), 3.20 (d, \(J = 7\) Hz, 1H), 3.5 (s, 3H), 3.83 (d, \(J = 13\) Hz, 1H), 4.1- 4.28 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) 26.2, 28.1, 50.3, 58.8, 59.7, 74.0, 77.2, 80.4, 85.9, 108.6; HRMS (FAB, 3-NOBA) calcd for C\(_{10}\)H\(_{20}\)O\(_4\)N\(_2\) (M+H\(^+\)) \(233.1503\), obsd 233.1505.

This ~ 9:1 mixture of \(\alpha\)- and \(\beta\)-diamine was used to prepare \(\beta\)-fructopyranose derived catalyst with 3,5-di-\textit{tert}-butylsalicylaldehyde, 3-butylsalicylaldehyde 3,5-diiodosalicylaldehyde and 2-hydroxy-1-naphthaldehyde.\(^{32}\)
The starting material, alkene was prepared from the literature procedure. To a flask containing starting alkene (300 mg, 1.41 mmol, 1 equiv), tert-butanol (16 mL), N-methylmorpholine N-oxide (272 mg, 2.32 mmol, 1.63 equiv), water (0.153 mL, 8.5 mmol, 6 equiv), pyridine (0.82 mL, 10.1 mmol, 7.1 equiv), potassium osmate dihydrate (24 mg, 0.065 mmol, 0.045 equiv) was added. The contents were refluxed at 100 °C for 12 h. The TLC indicated completion of the reaction. The reaction was then quenched with satd NaHSO₃ and the volatiles were removed under reduced pressure. The contents were extracted with EtOAc after saturating the aqueous layer with NaCl. The organic layer was dried with sodium sulfate and passed through a pad of silica gel, concentrated and dried in vacuo. The crude reaction product (290 mg, crude yield 83%) was carried on to the next step.

(3aS,4S,5R,7aR)-5-(2-hydroxypropan-2-yl)-2,2-dimethylhexahydrobenzo[d][1,3]-dioxole-4,5-diol (11): 1H NMR (400 MHz, CDCl₃) 1.12 (s, 3H), 1.27 (s, 3H), 1.3 2 (s, 3H), 1.46 (s, 3H), 1.5 (m, 2H), 1.89 (br d, J = 14.4 Hz, 1H), 2.05 (m, 1H), 3.43 (s, 1H), 3.84 (d, J = 6 Hz, 1H), 4.07 (t, J = 7.3 Hz, 1H), 4.12 (s, 1H), 4.19 (s, 1H), 4.27 (m, 1H); 13C NMR (100 MHz, CHCl₃) 21.9, 23.5, 25.4, 25.9, 26.1, 28.5, 73.9, 75.5, 75.8, 76.6, 80.6, 108.5.

(3aR,4S,5R,7aR)-5-(2-hydroxypropan-2-yl)-4-methoxy-2,2-dimethylhexahydro-benzo[d][1,3]dioxol-5-ol (21): To a solution of triol 11 (290 mg, 1.18 mmol, 1 equiv) in THF (6 mL) at 0 °C, NaH (hexanes washed, 86 mg, 3.54 mmol, 3 equiv) was added in one portion and stirred for 10 min. The contents were cooled to −40 °C and iodomethane (74 μL, 1.18 mmol, 1 equiv) was added dropwise. The contents were stirred at −40 °C for 5 h
and then warmed to –20 °C (NaCl/ice mixture) and stirred for 8 h. The completion of the reaction was monitored by TLC. The reaction was quenched by added satd NH₄Cl and THF was removed under reduced pressure. The contents were extracted with EtOAc and the organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated and dried under vacuo. The crude product was chromatographed (0→25% EtOAc-hexanes) to yield the title compound (265 mg, 72 %, over two steps). [α]D –41.3 (c 5.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 1.1 (s, 3H), 1.2 (s, 3H), 1.3 (s, 3H), 1.49 (s, 3H), 1.53 (m, 2H), 1.84 (ddd, J = 14.8, 7.9, 3.6 Hz, 1H), 2.06 (m, 1H), 3.18 (s, 1H), 3.48 (d, J = 7 Hz, 1H), 3.58 (s, 3H), 4.16 (s, 1H), 4.24 (app t, J = 5.6 Hz, 1H), 4.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 22.3, 23.5, 25.6, 26.2, 26.4, 28.3, 58.7, 74.4, 76.0, 76.1, 80.8, 84.8, 108.0; HRMS (FAB) calcd for C₁₃H₂₄O₅Li (M+Li)+ 267.1784, obsd 267.1794.

(3aR,4S,7aR)-4-methoxy-2,2-dimethyltetrahydrobenzo[d][1,3]dioxol-5(6H)-one (12): To a stirred suspension of the diol (100 mg, 0.384 mmol, 1 equiv) and dust of 3 Å molecular sieve in CH₂Cl₂ (8 mL) at rt, Pb(OAc)₄ (340 mg, 0.768 mmol, 2 equiv) was added. The contents were stirred for 10 min. TLC indicated complete conversion of the diol to the product, ketone. The reaction was quenched by adding satd. NaHCO₃ and extracted with ether. The organic layer was then washed with brine, dried over anhyd Na₂SO₄. Removal of solvent under reduced pressure yielded the title compound S5 (77 mg, quantitative). [α]D¹⁹ –69.6 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 3H), 1.43 (s, 3H), 2.09-2.14 (m, 1H), 2.21-2.30 (m, 2H), 2.46-2.55 (m, 1H), 3.41(s, 3H), 4.31 (dd, J = 6.8, 4.6 Hz, 1H), 4.41-
(3aR,4R,7aR)-4-methoxy-2,2-dimethyl-5-methylenehexahydrobenzo[d][1,3]dioxole (13): To a stirred ice-cold solution of Ph₃PCH₃Br (1.32 g, 2.14 mmol, 1.5 equiv), was added 1.3 M BuLi in hexanes (1.5 mL, 2.0 mmol, 1.4 equiv) slowly. The resulting yellow solution was stirred for 10 min at 0 °C, and the ethereal solution of the ketone (288 mg, 1.44 mmol, 1 equiv) was added slowly. Immediate precipitation appeared, the resulting suspension was stirred overnight, and quenched with 1 M NaOH. The product was extracted with ether, washed with brine and dried over Na₂SO₄. Removal of solvent under reduced pressure provided the crude product. The product was purified by column chromatography on silica gel to yield the terminal olefin 9 (228 mg, 80%) as a clear liquid. [α]°D = −96.2 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.26 (d, J = 2.5 Hz, 3H), 1.41 (d, J = 2.6 Hz, 3H), 1.77-1.81 (m, 1H), 1.86-1.92 (m, 1H), 2.11-2.14 (m, 1H), 2.20-2.27 (m, 1H), 3.30 (d, J = 2.8 Hz, 3H), 3.61 (dt, J = 3.8, 1.1 Hz, 1H), 3.93-3.97 (m, 1H), 4.23-4.26 (m, 1H), 4.92 (d J = 1.08 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 25.32, 25.78, 26.15, 27.49, 57.25, 73.48, 79.43, 83.23, 108.18, 111.20, 142.53; HRMS (Cl) calcd for C₁₁H₁₉O₃ (M+H)⁺ 199.1334, obsd 199.1338.
(3aR,4R,5S,7aR)-5-azido-5-(azidomethyl)-4-methoxy-2,2-dimethylhexahydro-
benzo[d][1,3]dioxole (β-diazide) (15):

A dry flask was charged with NaN₃ (442 mg, 6.8 mmol, 5 equiv), Mn(OAc)₃·2H₂O (1.1 g, 4.1 mmol, 3 equiv) and CH₃CN (7 mL) and nitrogen gas was bubbled through the mixture. Then the mixture was cooled down to −20 °C and 13 (270 mg, 1.36 mmol, 1 equiv) was added to it dropwise. The reaction was initiated by the slow addition of TFA (0.21 mL). The reaction mixture was slowly warmed up to rt. After 3 h, aqueous NaHSO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂. The organic layer was washed with satd Na₂CO₃ and dried. Column chromatography (10% Et₂O in hexanes) gave two fractions with very close Rₚ values, with 80% yield.

Fraction 1 yield the β-diazide 15 as a clear oil (84 mg, 22%); [α]_D^19 − 84.2 (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 1.32 (s, 3H), 1.48 (s, 3H), 1.59 (m, 1H), 1.71 (dt, J = 14, 5.5 Hz, 1H), 1.92 (m, 2H), 3.22 (d, J = 7.3 Hz, 1H), 3.55 (s, 3H), 3.55 (d, J = 12.1 Hz, 1H), 3.62 (d, J = 12.1 Hz, 1H), 4.13 (dd, J = 7.2, 5.4 Hz 1H), 4.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 21.8, 26.2, 26.3, 28.4, 55.3, 60.2, 65.8, 73.9, 79.7, 82.5, 108.5; HRMS (FAB) calcd for C₁₃H₁₉N₆O₃ (M+H)+ 283.1519, obsd 283.1530.

Fraction 2 yielded the α-diazide 14 as a clear oil (221 mg, 58%); [α]_D^19 − 110.3 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 1.31 (s, 3H), 1.49 (s, 3H), 1.64 (m, 2H), 1.83 (m, 1H), 2.03 (m, 1H), 3.18 (d, J = 13.4 Hz, 1H), 3.35 (d, J = 7.1 Hz, 1H), 3.55 (s, 3H), 3.68 (d, J = 13.4 Hz, 1H), 3.90 (app t, J = 6.8 Hz
1H), 4.21 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) 22.6, 25.4, 26.1, 28.2, 51.2, 60.4, 66.2, 73.3, 79.2, 85.2, 108.8; HRMS (FAB) calcd for C$_{11}$H$_{18}$N$_6$O$_3$Li (M+Li)$^+$ 289.1600, obsd 289.1596.

(3aR,4R,5S,7aR)-5-(aminomethyl)-4-methoxy-2,2-dimethylhexahydrobenzo-[d][1,3]dioxol-5-amine (β-diamine) (17):

β-Diazide 15 (321 mg, 1.14 mmol) was dissolved in EtOH (10 mL) and 32 mg of 10% Pd/C was added. The resulting suspension was hydrogenated at 52 psi for 12 h, resulting total reduction to give the β-diamine 17 (262 mg, 100%). $[\alpha]^{19}_{D}$ −61.5 (c 0.76, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) 1.30 (br s, 4H), 1.33 (s, 3H), 1.5 (s, 3H), 1.54 (dt, J = 13.5, 4.6 Hz, 2H), 1.87 (br d, J = 13.2 Hz, 1H), 2.04 (tt, J = 13.3, 4.7Hz, 1H), 2.6 (d, J = 12.7 Hz, 1H), 2.63 (d, J = 12.7 Hz, 1H), 3.08 (d, J = 7.2, Hz, 1H), 3.51 (s, 3H), 4.16 (app t, J = 6.8 Hz, 1H), 4.26 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) 21.9, 26.4, 27.7, 28.4, 51.7, 56.0, 60.0, 74.4, 80.2, 84.1, 107.7; HRMS (FAB) calcd for C$_{13}$H$_{23}$N$_2$O$_3$ (M+H)$^+$ 231.1709, obsd 231.1700.

α-diamine (16): α-Diazide 14 (168 mg, 0.6 mmol) was dissolved in EtOH (5 mL) and 20 mg of 10% Pd/C was added. The resulting suspension was hydrogenated at 52 psi for 12 h, resulting total reduction to give α-diamine (135 mg, 100%). $[\alpha]^{19}_{D}$ −54.7 (c 0.35, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) 1.30 (br s, 3 H), 1.37-1.47 (m, 4 H), 1.48 (s, 3 H), 1.54 (dt, J = 13.6, 4 Hz, 1 H), 1.60-1.70 (m, 1 H), 1.92 (qt, J = 4, 15.6 Hz, 1 H), 2.42 (d, J = 13.2 Hz, 1 H), 2.67 (d, J = 13.2 Hz, 1 H),
6-(iodomethyl)-4-methoxy-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-7-ol (22): Methyl-α-D-mannopyranose (9 g, 46.3 mmol) was suspended in 200 mL toluene at 80 °C, from that suspension was added triphenylphosphine (13.9 g, 53.3 mmol) and imidazole (10.88 g, 160 mmol) and kept stirring for 10 min at that temperature. Then iodine (17.2 g, 66.7 mmol) was added in portions over 0.5 h. The resulting suspension was vigorously stirred at 80 °C for 2 h and solution became dark brown. The solution was cooled and the product was extracted into H₂O (3×200 mL), the aqueous layer was washed with 200 mL of toluene and concentrated under vacuum. The crude was purified by column chromatography with pure ethyl acetate (R_f 0.45 in 50% ethylacetate in acetone) and pure product (11.3 g, 37.0 mmol, 80%) was obtained as white solid. [α]¹⁹D +64.3 (c 1.1, EtOH); ¹H NMR (400 MHz, D₂O) δ 3.37 (dd, J = 10.9, 7.1 Hz, 1H), 3.45 (ddd, J = 9.4, 7.1, 2.2 Hz, 1H), 3.57 (app t, J = 9.5, 9.4 Hz, 1H), 3.63 (ddd, J = 10.9, 2.2 Hz, 1H), 3.76 (dd, = 9.5, 3.5 Hz, 1H), 3.93 (dd, J=3.4, 1.7 Hz, 1H), 4.73 (d, J = 1.4 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 6.1, 55, 69.8, 70.05, 70.6, 71.5, 101.1; HMRS (FAB) Calcd for C₇H₁₃IO₅Li (M+Li)⁺ 310.9968, obsd 310.9961.
6-(Iodomethyl)-4-methoxy-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c] pyran-7-ol (18): To a solution of 22 (7.5 g, 24.6 mmol, 1 equiv) in 120 mL acetone at 0 °C was added p-toluenesulfonic acid (936 mg, 4.92 mmol, 20%), followed by dropwise addition of dimethoxypropane (9.1 mL, 73.8 mmol, 3 equiv) via syringe pump. The resulting solution was kept stirring for 3 h upon which time all the starting materials disappeared. The reaction was quenched by Et₃N (1.37 mL, 9.84 mmol, 40%) and organic solvent was evaporated under reduced pressure. The resulting residue were re-suspended in 60 mL water and extracted with EtOAc (3 × 60 mL). The organic layer was washed with brine and dried under Na₂SO₄, filtered and evaporated, resulted in pale yellowish liquid as clean product (8.5 g, 95%) without the need for further purification. [α]D¹⁰ +33.4 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.34 (s, 3H), 1.51 (s, 3H), 3.30 (dd, J=10.5, 7.1Hz, 1H), 3.4d (ddd, J=9.2, 7.1, 2.4Hz, 1H), 3.46 (s, 3H), 3.49 (ddd, J=9.4, 6.9, 3.4Hz 1H), 3.58(dd, J=10.6, 2.5Hz, 1H), 4.10-4.12 (m, 2H), 4.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 6.81, 26.06, 27.97, 55.55, 68.95, 73.06, 75.69, 78.35, 98.33, 109.78; HMRS (FAB) Calcd for C₁₀H₁₈IO₅ (M+H)+ 345.0121 obsd 345.0204.

6-(iodomethyl)-4,7-dimethoxy-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c] Pyran (23): To a solution of 18 (160 mg, 0.47 mmol) in 3 mL THF at 0 °C was added imidazole (6.8 mg, 0.1 mmol) and NaH (240 mg, 60% suspension in mineral oil, 6 mmol), followed by slow addition of MeI (62 µL, 1 mmol). The resulting solution was kept stirring at 0 °C for 3 h, upon which time TLC showed complete consumption of the starting material. The reaction is
quenched by saturated NH₄Cl and extracted with Et₂O. Organic phase was dried, filtered and evaporated. The crude product was purified by silica column chromatography to afford 23 as a clear oil (134 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 1.31 (s, 3H), 1.51 (s, 3H), 3.07 (dd, J = 9.6, 6.9 Hz, 1H), 3.27 (dd, J = 10.3, 7.4 Hz, 1H), 3.35 (ddd, J = 9.6, 7.4, 2.2 Hz, 1H), 3.43 (s, 3H), 3.50 (s, 3H), 4.06 (d, J = 5.7 Hz, 1H), 4.14 (app t, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 7.15, 26.18, 27.93, 55.91, 59.25, 67.91, 75.76, 78.09, 81.65, 98.21, 109.29; HRMS ESI calcd for C₁₁H₁₉O₅INa (M+Na)⁺ 381.0175, obsd 381.0164.

(3aR,4S,7S,7aR)-7-Hydroxy-4-methoxy-2,2-dimethyltetrahydrobenzo[d][1,3]dioxol-5(6H)-one (19): Two step procedure from 18: To 150 mg 23 (0.42 mmol) in 5 mL DMF was added 0.7 mL DBU (0.46 mmol) at rt. The resulting mixture was stirred at 80 °C for overnight. The reaction mixture was cooled down and 60 mL EtOAc and 30 mL of saturated NaHCO₃ solution were added. The layers were separated and the organic layer was washed with water (3×60 mL), then with brine. The resulting organic phase was dried with Na₂SO₄ and evaporated under reduced pressure to give the product in 60% yield: [α]D²⁰ +49.1 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 3H), 1.48 (s, 3H), 3.46 (d, J = 0.7 Hz, 3H), 3.49 (d, J = 0.7 Hz, 3H), 3.81 (dd, J = 0.8, 4.6 Hz, 1H), 4.16 (ddd, J = 7.2, 3.8, 0.5 Hz, 1H), 4.26 (dd, J = 7.1, 6.0 Hz, 1H), 4.43 (d, J = 0.8 Hz, 1H), 4.64 (d, J = 0.8 Hz, 1H), 4.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.74, 26.89, 56.25, 57.91, 74.58, 75.86, 77.97, 93.22, 100.23, 109.80, 151.94; HMRS (FAB) Calcd for C₁₁H₁₈O₅Li (M+Li)⁺ 237.031, obsd 237.1316.
For the one-pot process: 1.3 g 18 (3.78 mmol) was dissolved in 40 mL DMF, cooled to 0°C and 0.47 mL MeI (7.56 mmol) was added, followed by 51 mg imidazole (0.76 mmol, 20%) and 272 mg NaH (11.3 mmol, washed with hexane to remove mineral oil). The reaction mixture was kept stirring at 0°C for 3 h, TLC shows all SM converted to alkene product and iodide intermediate. The reaction mixture was left stirring at rt for overnight. TLC showed a single spot as the eliminated product. Work-up: The reaction mixture was added 60 mL EtOAc and 30 mL of saturated NaHCO₃ solution. The layers were separated and the organic layer was washed with water (3 × 60 mL), then with brine. The resulting organic phase was dried with Na₂SO₄ and evaporated under reduced pressure to give 19 as a colorless oil (0.85 g, 98%).

(3aR,4S,7S,7aR)-7-hydroxy-4-methoxy-2,2-dimethyltetrahydrobenzo[d][1,3]dioxol-5(6H)-one (20): 19 (5.21 g, 22.6 mmol) was dissolved in 120 mL solvent containing 2:2:1 volume ratio of acetone, dioxane and H₂O. The solution was cooled to 0°C, Pd(OAc)₂ (10 mol %) was added in portions. Reaction mixture was kept at 0°C for 12 h and the TLC showed complete consumption of the starting material. Reaction mixture was diluted with saturated NaCl and extracted with EtOAc (3 × 60 mL). The resulting organic phase was dried with Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (Rₜ 0.25 at 50% EA in hexanes) and 4.15 g product were obtained (85% total yield, which contains about 8% of the 5-epimer). For the major
epimer: \([\alpha]^{19}_D -32.9 (c 1.0, \text{CHCl}_3)\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 1.30 (s, 3\text{H}), 1.41 (s, 3\text{H}), 2.42 (dd, J = 18.3, 6.2 \text{ Hz, 1H}), 2.75 (dd, J = 18.3, 5.0 \text{ Hz, 1H}), 3.45 (s, 3\text{H}), 3.56-3.63 (m, 1\text{H}), 3.70 (d, J = 5.2 \text{ Hz, 1H}), 4.27 (app. t, J = 6.9, 5.4Hz, 1\text{H}), 4.39 (dd, J = 7.0, 5.3Hz, 1\text{H}), 5.51-5.55 (m, 2\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 24.26, 26.73, 41.86, 59.00, 67.50, 76.71, 77.04, 83.89, 109.77, 204.70; \) HRMS FAB calcd for C\(_{10}\)H\(_{17}\)O\(_5\) (M+H)\(^+\) 217.1076, obsd 217.1073.

\((3\text{aR,4S,7aR})\)-4-methoxy-2,2-dimethyl-3\text{a},4-

dihydrobenzo[d][1,3]dioxol-5(7aH)-one (24): To a solution of 20 (692 mg, 3.2 mmol) in 10 mL of CH\(_2\)Cl\(_2\) at 0 °C, were added diisopropylethyl amine (1.11 mL, 6.4 mmol) and 1 crystal of DMAP. Then MsCl (371 \(\mu\)L, 4.8 mmol) was added dropwise and the resulting solution was stirred at rt until SM disappeared. The reaction was quenched by addition of saturated NH\(_4\)Cl and extracted with CH\(_2\)Cl\(_2\), column chromatography purification afforded 24 as a clear oil (480 mg, 76% yield). \([\alpha]^{19}_D -84.4 (c 0.65, \text{CHCl}_3)\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 1.35 (d, J = 4.26 \text{ Hz, 3H}), 1.40 (d, J = 4.38 \text{ Hz, 3H}), 3.45 (d, J = 4.5 \text{ Hz, 3H}), 3.82 (app. t, J = 4.4, 5.2 \text{ Hz, 1H}), 4.47 (m, 1\text{H}), 4.73 (m, 1\text{H}), 5.99 (dd, J = 10.25, 4.53 Hz, 1\text{H}), 6.64-6.69 (m, 1\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 26.29, 27.82, 59.17, 71.12, 76.68, 81.07, 110.96, 128.08, 143.32, 194.96; \) HRMS FAB calcd for C\(_{10}\)H\(_{14}\)LiO\(_4\) (M+Li)\(^+\) 205.1052, obsd 205.1046.
(3aR,4S,7aR)-4-methoxy-2,2-dimethyltetrahydrobenzo[d][1,3]dioxole-5(6H)-one (12): To a solution of 24 (200 mg, 1.0 mmol) in EtOAc (10 mL) was added 20% Pd(OH)₂/C (20 wt%, 40 mg). The resulting mixture was hydrogenated at 20 psi for 1 h, the catalyst was then filtered off a pad of celite and washed with EtOAc. The filtrate was evaporated to give the ketone 8 as a colorless oil (202 mg, 100% yield). [α]₁⁹D –69.6 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 3H), 1.43 (s, 3H), 2.09-2.14 (m, 1H), 2.21-2.30 (m, 2H), 2.46-2.55 (m, 1H), 3.41 (s, 3H), 4.31 (dd, J = 6.8, 4.6 Hz, 1H), 4.41-4.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23, 70, 24.38, 26.72, 32.68, 58.80, 72.29, 78.05, 84.23, 109.22, 207.53; HRMS reported above.

General procedure for salen synthesis:

The oxa-fructopyranose diamine derived salens (5a-5d, 6a-6d) were synthesized following previous procedures. For the synthesis of the carba-fructopyranose diamine derived salens (16a-16d, 17a-17d), a general procedure is described using 16a as an example. To an oven-dried RB flask was added diamine 16 (388 mg, 1.68 mmol, 1 equiv), 3,5-di-tert-butylsalicylaldehyde (789 mg, 3.37 mmol, 2 equiv) and freshly distilled ethanol (5 mL). The reaction mixture was heated at 60 °C for 12 h. TLC indicated completion of the reaction. The reaction was concentrated in vacuo. The residue was purified by silica column chromatography (eluting with EtOAc/Hexanes: 0-30%) to afford salen 16a as a yellow solid (729 mg, 63%). In some cases, the salen ligands
crystallized out during the reaction, therefore, the products were purified by simple trituration with cold ethanol.

2,4-di-tert-butyl-6-(((E)-(((3aR,4R,5R,7aR)-5-((E)-(3,5-di-tert-butyl-2-hydroxybenzylidene)amino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methyl)imino)methyl)phenol (16a): Following the general procedure for salen synthesis, a mixture of α-diamine (388 mg, 1.68 mmol) and 3,5-di-tert-butylsalicylaldehyde (789 mg, 3.37 mmol) in ethanol (5 mL) was heated at 60 °C for 12 h. The product 16a (729 mg, 63%) was obtained as yellow solid after column chromatography purification. \[\alpha\]_D^19 +127.8 (c 0.7, CH₂Cl₂); \(^1\)H NMR (400 MHz, CD₃Cl₃) 1.32 (s, 9H), 1.33 (s, 9H), 1.45 (s, 3H), 1.47 (s, 9H), 1.49 (s, 9H), 1.59 (s, 3H), 1.87-1.96 (m, 1 H), 1.97-2.10 (m, 2 H), 2.16-2.26 (m, 1 H), 3.52 (d, \(J = 7.2\) Hz, 1 H), 3.66 (s, 3 H), 3.82 (d, \(J = 13.2\) Hz, 1 H), 4.05 (d, \(J = 12.8\) Hz, 1 H), 4.27 (dd, \(J = 4.4, 6.8\) Hz, 1 H), 4.45 (dd, \(J = 2.8, 8.0\) Hz, 1 H), 7.09 (d, \(J = 2.4\) Hz, 1 H), 7.12 (d, \(J = 2.4\) Hz, 1 H), 7.40 (d, \(J = 1.6\) Hz, 2 H), 8.42 (s, 1 H), 8.54 (s, 1 H), 13.45 (s, 1 H), 14.25 (s, 1 H); \(^{13}\)C NMR (100 MHz, CD₃Cl₃) 23.2, 26.1, 26.3, 28.3, 29.44, 29.45, 31.47, 31.51, 34.1, 35.1, 59.5, 61.4, 65.4, 73.8, 79.6, 86.4, 108.6, 117.8, 117.9, 126.1, 126.5, 127.0, 127.2, 136.66, 136.70, 139.8, 140.1, 158.0, 158.4, 163.9, 168.5; HMRS (ESI) Calcd for C₄₁H₆₂N₂O₅Na (M+Na)⁺ 685.4556 obsd 685.4531.
2-(tert-butyl)-6-(((E)-((((3aR,4R,5R,7aR)-5-((E)-(3-(tert-butyl)-2-hydroxybenzylidene)amino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methyl)imino)methyl)phenol (16b): Following the general procedure for salen synthesis, a mixture of α-amino (212 mg, 0.92 mmol) and 3-tert-butylsalicylaldehyde (328 mg, 1.84 mmol) in ethanol (5 mL) was heated at 60 °C for 12 h. The product (380 mg, 70%) was obtained as pale yellow solid after column chromatography purification. \([\alpha]^{19}_D +161.4 (c 2.5, \text{CH}_2\text{Cl}_2); \ ^1\text{H NMR} (400 \text{MHz, CD}_3\text{Cl}_3) 1.42 (s, 3 \text{H}), 1.44 (s, 9 \text{H}), 1.45 (s, 9 \text{H}), 1.56 (s, 3 \text{H}), 1.87-1.94 (m, 1 \text{H}), 1.98 (dt, J = 14.8, 4 \text{ Hz, 1 H}), 2.03-2.10 (m, 1 \text{H}), 2.15-2.23 (m, 1 \text{H}), 3.53 (d, J = 7.2 \text{ Hz, 1 H}), 3.63 (s, 3 \text{H}), 3.81 (dd, J = 0.8, 13.2 \text{ Hz, 1 H}), 4.02 (d, J = 13.2 \text{ Hz, 1 H}), 4.25 (dd, J = 5.2, 6.4 \text{ Hz, 1 H}), 4.43 (dd, J = 4.4, 9.2 \text{ Hz, 1 H}), 6.80 (dt, J = 1.6, 7.6 \text{ Hz, 2 H}), 7.08 (dd, J = 1.6, 7.6 \text{ Hz, 1 H}), 7.11 (dd, J = 2.0, 8.0 \text{ Hz, 1 H}), 7.32 (t, J = 0.8 \text{ Hz, 1 H}), 7.34 (br s, 1 \text{ H}), 8.38 (s, 1 \text{ H}), 8.49 (s, 1 \text{ H}), 13.59 (s, 1 \text{ H}), 14.43 (s, 1 \text{ H}); \ ^1\text{C NMR} (100 \text{ MHz, CD}_3\text{Cl}_3) 22.7, 23.2, 26.2, 26.3, 28.3, 29.31, 29.33, 34.8, 59.4, 61.2, 65.4, 73.7, 73.7, 79.4, 85.9, 108.6, 117.6, 117.9, 118.5, 118.6, 129.4, 129.7, 129.9, 130.3, 137.4, 137.5, 160.2, 160.8, 163.6, 168.2; HMRS (ESI) Calcd for C_{33}H_{46}N_2O_5Na (M+Na)^+ 573.3304 obsd 573.3302.
yl)methyl)imino)methyl)-4,6-diiodophenol (16c): Following the general procedure for salen synthesis, a mixture of α-diamine (128 mg, 1.97 mmol) and 3,5-diiodosalicylaldehyde (1.46 g, 3.93 mmol) in ethanol (5 mL) was heated at 60 °C for 12 h. The product (1.01 g, 65%) was obtained as yellow solid after column chromatography purification. \[\alpha \] 19 D +137.5 (c 0.8, CH2Cl2); \(^1\)H NMR (400 MHz, CD3Cl3) 1.37 (s, 3 H), 1.49 (s, 3 H), 1.86-1.94 (m, 2 H), 1.98-2.04 (m, 1 H), 2.16-2.23 (m, 1 H), 3.37 (d, \(J = 7.2\) Hz, 1 H), 3.56 (s, 3 H), 3.81 (d, \(J = 13.6\) Hz, 1 H), 3.98 (d, \(J = 13.6\) Hz, 1 H), 4.17 (dd, \(J = 5.2, 6.8\) Hz, 1 H), 4.37 (dd, \(J = 3.2, 4.8\) Hz, 1 H), 7.45 (d, \(J = 2\) Hz, 1 H), 4.46 (d, \(J = 2\) Hz, 1 H), 8.02 (s, 1 H), 8.03 (s, 1 H), 8.09 (s, 1 H), 8.11 (d, \(J = 2.4\) Hz, 1 H), 13.99 (s, 1 H), 15.06 (d, \(J = 2.4\) Hz, 1 H); \(^13\)C NMR (100 MHz, CD3Cl3) 22.9, 25.7, 26.3, 28.2, 58.1, 61.0, 65.7, 73.4, 78.3, 79.4, 79.8, 85.3, 87.2, 89.2, 108.9, 119.2, 119.7, 140.1, 140.6, 149.1, 149.3, 160.3, 160.9, 162.6, 165.9; HMRS (ESI) Calcd for C25H26N2O5I4Na (M+Na)^+ 964.7918 obsd 964.7901.

2-((E)-((((3aR,4R,5R,7aR)-5-((E)-((1-hydroxynaphthalen-2-yl)methylene)amino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methyl)imino)methyl)naphthalen-1-ol (16d): Following the general procedure for salen synthesis, a mixture of α-diamine 16 (122 mg, 1.87 mmol) and 2-hydroxy-1-naphthaldehyde (643 mg, 3.74 mmol) in ethanol (5 mL) was refluxed at 60 °C for 12 h. The product (488 mg, 64%) was obtained as yellow solid after column chromatography purification. \[\alpha \] 19 D +1386 (c 1.0, CH2Cl2); \(^1\)H NMR (400 MHz, CD3Cl3) 1.42 (s, 3 H), 1.55 (s, 3 H), 1.93-2.04 (m, 2 H), 2.18-2.27 (m, 1 H), 2.29-2.41
(m, 1 H), 3.53 (d, J = 7.6 Hz, 1 H), 3.73 (d, J = 13.6 Hz, 1 H), 3.79 (s, 3 H), 3.88 (d, J = 13.6 Hz, 1 H), 4.17 (dd, J = 5.2, 7.2 Hz, 1 H), 4.40 (dd, J = 3.2, 4.8 Hz, 1 H), 6.71 (d, J = 8.8 Hz, 1 H), 6.79 (d, J = 8.8 Hz, 1 H), 6.88 (dd, J = 8.8 Hz, 1 H), 6.92 (dd, J = 8.8 Hz, 1 H), 7.41-7.47 (m, 1 H), 4.47-7.49 (m, 1 H), 7.52-7.59 (m, 3 H), 7.63 (d, J = 10.8 Hz, 1 H), 7.84 (d, J = 10.8 Hz, 1 H), 7.96 (br s, 1 H), 8.40 (d, J = 8.0 Hz, 1 H), 8.49 (d, J = 8.0 Hz, 1 H), 13.97 (br s, 1 H), 13.03 (d, J = 10.8 Hz, 1 H); 13C NMR (100 MHz, CD$_3$Cl$_3$) 22.7, 24.6, 26.3, 28.2, 55.1, 61.1, 62.9, 73.3, 79.2, 85.4, 108.9, 110.2, 114.9, 116.6, 124.5, 125.0, 125.3, 125.5, 127.25, 127.29, 127.4, 127.6, 128.3, 129.8, 129.9, 130.4, 136.8, 137.7, 157.5, 165.3, 169.8, 177.3; HMRS (ESI) Calcd for C$_{33}$H$_{34}$N$_2$O$_5$Na (M+Na)$^+$ 561.2365 obsd 561.2388.

$\textbf{2,4-di-tert-butyl-6-((E)-(((3aR,4S,5S,7aR)-5-((E)-3,5-di-tert-butyl-2-hydroxybenzylideneamino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methylimino)methyl)phenol (17a):}$ Following the general procedure for salen synthesis, a mixture of β-diamine 17 (207 mg, 0.9 mmol, 1 equiv) and 3,5-di-tert-butylsalicylaldehyde (380 mg, 1.62 mmol, 1.8 equiv) in ethanol (5 mL) was heated at 60 °C for 12 h. The product (429 mg, 80%) was obtained as pale yellow solid after addition of cold 10% water in EtOH. $^{[\alpha]}_{D}^1$ = -125.3 (c 1.6, CH$_2$Cl$_2$); 1H NMR (400 MHz, CD$_3$Cl$_3$) 1.31 (s, 9H), 1.32 (s, 9H), 1.37 (s, 3H), 1.45 (s, 9H), 1.45 (s, 9H), 1.57 (s, 3H), 1.77-1.87 (m, 1H), 2.01-2.04 (m, 3H), 3.59 (d, J = 7.9 Hz, 1H), 3.63 (d, J = 12.1 Hz, 1H), 3.67 (s, 3H), 4.13 (d, J = 12.1 Hz, 1H), 4.22 (dd, J = 7.9, 5.2 Hz, 1H), 4.31 (t, J = 4.7 Hz, 1H), 7.11 (dd, J = 6.8, 2.4 Hz, 2H), 7.34 (d, J = 2.4
Hz, 1H), 7.39 (dd, J = 6.4, 2.4 Hz, 2H), 7.59 (d, J = 2.4 Hz, 1H), 8.41 (s, 1H), 8.70 (s, 1H), 13.56 (s, 1H), 13.95 (s, 1H); ¹³C NMR (100 MHz, CD₃Cl₃) 14.11, 22.1, 22.6, 26.6, 28.4, 29.35, 29.43, 31.5, 31.6, 34.1, 35.1, 61, 64.5, 65.3, 74.4, 80.2, 83.2, 108.2, 117.8, 118.1, 126, 126.6, 127.2, 127.3, 136.8, 139.9, 140.2, 158.1, 158.4, 166.6, 167.9; HMRS (FAB) Calcd for C₄₁H₆₃N₂O₅ (M+H)⁺ 663.4659 obsd 663.4727.

2-(tert-butyl)-6-(((E)-((((3aR,4R,5S,7aR)-5-((E)-(3-(tert-butyl)-2-hydroxybenzylidene)amino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methyl)imino)methyl)phenol (17b): Following the general procedure for salen synthesis, a mixture of β-diamine (177 mg, 0.77 mmol, 1 equiv) and 3-tert-butylsalicylaldehyde (274 mg, 1.54 mmol, 2 equiv) in ethanol (5 mL) was heated at 60 °C for 12 h. The product (347 mg, 82%) was obtained as pale yellow solid after column chromatography purification. [α]¹⁹D -59.1 (c 0.7, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) 1.38 (s, 3H), 1.45 (s, 9H), 1.49 (s, 9H), 1.58 (s, 3H), 1.74-1.85 (m, 1H), 2.01-2.12 (m, 3H), 3.59 (d, J = 8.0 Hz, 1H), 3.64 (d, J = 11.6 Hz, 1H), 3.66 (s, 3H), 4.14 (d, J = 12.0 Hz, 1H), 4.22 (dd, J = 5.2, 8.0 Hz, 1H), 4.34 (t, J = 2.4 Hz, 1H), 6.81 (d, J = 7.6, 1 H), 6.85 (d, J = 7.6, 1 H), 7.13 (dd, J = 1.6, 6.0 Hz, 1 H), 7.15 (dd, J = 1.6, 6.0 Hz, 1 H), 7.35 (dt, J = 1.6, 7.6 Hz, 2 H), 8.41 (s, 1 H), 8.71 (s, 1 H), 13.8 (s, 1 H), 14.16 (s, 1 H); ¹³C NMR (100 MHz, CD₃Cl₃) 22.1, 26.6, 28.4, 28.6, 29.3, 29.4, 34.9, 60.9, 64.4, 65.3, 74.4, 80.2, 83.0, 117.8, 118.0, 118.6, 118.9, 129.7, 129.8, 129.9, 130.4, 137.56, 137.59, 160.4, 160.8, 166.3, 167.7; HMRS (ESI) Calcd for C₃₃H₄₆N₂O₅Na (M+Na)⁺ 573.3304 obsd 573.3301.
2-((E)-(((3aR,4S,5S,7aR)-5-((E)-2-hydroxy-3,5-diiodobenzylideneamino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methylimino)methyl)-4,6-diiodophenol (17c): Following the general procedure for salen preparation, a mixture of β-diamine 17 (65 mg, 0.28 mmol) and 3,5-diiodosalicylaldehyde (190 mg, 0.51 mmol, 1.8 equiv) in ethanol (3 mL) was heated at 50 °C overnight, the product (211 mg, 88%) was obtained as yellow solid after washing with cold Ethanol. [α]_{D}^{19} = -138.4 (c 1.0, CHCl3); 1H NMR (400 MHz, CD$_3$Cl$_3$) 1.33 (s, 3H), 1.53 (s, 3H), 1.86-1.88 (m, 1H), 1.95-1.97 (m, 2H), 2.06-2.08 (m, 1H), 3.41 (d, $J = 7.7$ Hz, 3H), 3.59 (s, 3H), 3.98 (d, $J = 12.5$ Hz, 1H), 3.83 (d, $J = 12.5$ Hz, 1H), 4.8 (dd, $J = 7.5$, 5.4 Hz, 1H), 4.28 (br s, 1H), 7.48 (d, $J = 1.9$ Hz, 1H), 7.51 (d, $J = 1.9$ Hz, 1H), 8.04 (d, $J = 1.9$ Hz, 1H), 8.05 (d, $J = 1.9$ Hz, 1H), 8.12 (s, 1H), 8.37 (d, $J = 1.73$ Hz, 1H), 14.05 (s, 1H), 14.83 (s, 1H); 13C NMR (100 MHz, CD$_3$Cl$_3$) 21.8, 26.3, 27.4, 28.4, 60.8, 63.9, 65.3, 73.7, 78.6, 79.3, 79.7, 83.9, 87.3, 88.9, 108.4, 119.4, 119.6, 139.9, 140.6, 149.0, 149.2, 160.3, 162.3, 163.8, 165.4; HMRS (FAB) Calcd for C$_{25}$H$_{27}$N$_2$O$_5$I$_4$ (M+H)$^+$ 942.8021 obsd 942.8115.

2-((E)-(((3aR,4R,5S,7aR)-5-((1-hydroxynaphthalen-2-yl)methylene)amino)-4-methoxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-5-yl)methylimino)methyl)naphthalen-1-ol (17d):

Following the general procedure for salen synthesis, a mixture of β-diamine (60 mg, 0.26 mmol) and 2-hydroxy-1-naphthaldehyde (89 mg,
0.52 mmol) in ethanol (2 mL) was heated at 60 °C for 12 h. The product (106 mg, 73%) was obtained as a brown solid after column chromatography purification. $[\alpha]_{D}^{19} +488$ (c 1, CH$_2$Cl$_2$); 1H NMR (400 MHz, CDCl$_3$) 1.36 (s, 3H), 1.56 (s, 3H), 1.89-2.01 (m, 1H), 2.03-2.22 (m, 3H), 3.47 (d, $J = 6.8$ Hz, 1H), 3.74 (d, $J = 10.4$ Hz, 1H), 3.76 (s, 3 H), 3.88 (d, $J = 12.8$ Hz, 1H), 4.26-4.32 (m, 2 H), 6.71 (d, $J = 8.8$ Hz, 1 H), 6.79 (d, $J = 8.8$ Hz, 1 H), 6.91 (d, $J = 12.4$ Hz, 1 H), 6.94 (d, $J = 12.4$ Hz, 1 H), 7.40-7.45 (m, 1 H), 7.46-7.51 (m, 1 H), 7.52-7.61 (m, 3 H), 7.64 (d, $J = 7.6$ Hz, 1 H), 7.88 (s, 1 H), 7.92 (d, $J = 10.4$ Hz, 1 H), 8.46 (d, $J = 8.0$ Hz, 1 H), 8.50 (d, $J = 8.0$ Hz, 1 H), 13.68 (d, $J = 10.4$ Hz, 1 H), 13.95 (s, 1 H); 13C NMR (100 MHz, CD$_3$Cl$_3$) 21.4, 25.5, 26.4, 28.4, 60.7, 61.5, 62.6, 73.7, 79.4, 82.5, 124.7, 125.2, 125.4, 125.6, 127.30, 127.31, 127.4, 127.9, 128.2, 129.9, 130.0, 130.6, 136.9, 137.7, 158.9, 164.7, 170.7, 178.0; HMRS (ESI) Calcd for C$_{33}$H$_{34}$N$_2$O$_5$Na (M+Na)$^+$ 561.2365 obsd 561.2363.

General Procedure for Synthesis of Co(III)-Salen Catalysts (illustrated for 16a):

To a stirred solution of salen ligand (16a) (116 mg, 0.17 mmol, 1 equiv.) in 1 mL CH$_2$Cl$_2$, a methanolic (1 mL) solution of cobalt (II) acetate tetrahydrate (42 mg, 0.17 mmol, 1.0 equiv.), was added via cannula, under Ar. The Co(II)-salen complex precipitated out as a red solid. After filtration, the Co(II) complex was taken up in CH$_2$Cl$_2$ or toluene (2 mL) and stirred with 3,5-dinitrobenzoic acid (1 equiv.) open to the air. The oxidation could be followed by TLC [formation of a greenish-brown spot of lower Rf {Co-(III) complex} from the visibly red, higher Rf spot characteristic of the Co-(II) salen]. When TLC indicated the completion of the reaction (2-12 h), the solvent was evaporated, and the Co(III)-salen complex further dried *in vacuo*. The Co-(III)-salen complexes were
generally used directly for HKR experiments, under ISES (bilayer) conditions or under typical neat or one-phase flask conditions.

Table 4.3: HR-MS characterization of Co(III)-salen catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Molecular Formula</th>
<th>Calcd</th>
<th>obsd HR-MS (EI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(III)-16a-3,5-DNB</td>
<td>C_{41}H_{60}N_{2}O_{5}Co</td>
<td>719.3834</td>
<td>719.3824</td>
</tr>
<tr>
<td>Co(III)-16b-3,5-DNB</td>
<td>C_{33}H_{44}N_{2}O_{5}Co</td>
<td>607.2582</td>
<td>607.2563</td>
</tr>
<tr>
<td>Co(III)-16c-3,5-DNB</td>
<td>C_{25}H_{24}N_{2}O_{5}I_{4}Co</td>
<td>998.7196</td>
<td>998.7170</td>
</tr>
<tr>
<td>Co(III)-16d-3,5-DNB</td>
<td>C_{33}H_{32}N_{2}O_{5}Co</td>
<td>595.1643</td>
<td>595.1635</td>
</tr>
<tr>
<td>Co(III)-17a-3,5-DNB</td>
<td>C_{41}H_{60}N_{2}O_{5}Co</td>
<td>719.3834</td>
<td>719.3833</td>
</tr>
<tr>
<td>Co(III)-17b-3,5-DNB</td>
<td>C_{33}H_{44}N_{2}O_{5}Co</td>
<td>607.2582</td>
<td>607.2604</td>
</tr>
<tr>
<td>Co(III)-17c-3,5-DNB</td>
<td>C_{25}H_{24}N_{2}O_{5}I_{4}Co</td>
<td>998.7196</td>
<td>998.7200</td>
</tr>
<tr>
<td>Co(III)-17d-3,5-DNB</td>
<td>C_{33}H_{32}N_{2}O_{5}Co</td>
<td>595.1643</td>
<td>595.1644</td>
</tr>
</tbody>
</table>

B. Miniaturized ISES (In Situ Enzymatic Screening) Experiments

A general procedure for the minituarized ISES to estimate both relative reaction rates and sense and magnitude of enantioselectivity is presented below. Cobalt-(III)-salen mediated HKR of (+)-propylene oxide and (+)-hexene oxide were chosen as model reactions. A new reporting system was developed in this work, so that more readily available enzymes might be used by chemists seeking to perform these ISES assays. To establish a new set of reporting enzymes for these model reactions, commercially available nicotinamide-dependent ketoreductases from Codexis (so-called KREDs) were screened for catalytic efficiency and enantioselectivity for the oxidation of the 1,2-diol products of these model HKR reactions (Note: One motivation here was the reduced
availability of the most utilized reporting enzyme heretofore; namely native HLADH = horse liver alcohol DH). As a result of these screening studies, TBADH (selective for R-1,2-propanediol) and KRED 23 (selective for S-1,2-propanediol) were selected as reporting enzymes for the HKR of (±)-propylene oxide. Correspondingly, KRED 107 and KRED 119 were selected as reporting enzymes for the HKR of (±)-hexene oxide. The details of the characterization of these new KRED reporting enzymes are provided herewith.

KRED Reporting Enzyme Characterization

1) KRED 107: The enantioselectivity of KRED 107 was estimated by comparing the initial velocities of (R)- vs. (S)-1,2-hexanediol oxidation at fixed initial concentrations between 1.25 and 100 mM at 25 °C. Each velocity measurement was performed in duplicate. The assay well contained the following: 2.2 mM NADP+ (3.5 μL from a 125 mM stock), 0.045 U of KRED 107, and various concentrations of either (R)- or (S)-1,2-hexanediol. In all cases, the final volume was adjusted to 0.2 mL using 50 mM sodium pyrophosphate buffer, pH 8.8. 2) KRED 119: The enantioselectivity of KRED 119 was estimated in the same manner as for KRED 107, as described above. 3) KRED 23: The enantioselectivity of KRED 23 was estimated by comparing the rates of (R)- vs. (S)-1,2-propanediol oxidation at fixed initial concentrations between 3 and 140 mM at 25 °C. Each velocity measurement was performed in duplicate. The assay well contained the following: 7.2 mM NAD$^+$ (5 μL from a 220 mM stock), 10 μL of a KRED 23 stock solution (2 mg in 250 μL buffer) and various concentrations of either (R)- or (S)-1,2-propanediol. In all cases, the final volume was adjusted to 150 μL using 50 mM sodium pyrophosphate buffer, pH 8.8.
Previously, we estimated during HKR-ISES experiments that the diol concentration is in the range of 2.5-70 mM. So, generally selectivity parameters appropriate for ISES screening are chosen based upon enantioselectivities observed in this concentration range. For KRED 119, a selectivity factor of 6.5 in favor of the \((R)\)-1,2-hexanediol was used for ISES estimations. This corresponds to the selectivity observed in the standard assay cuvette at approximately 40 mM diol concentration. KRED 107 proved to be the most difficult reporting enzyme to parametrize, owing to its very high preference for the \((S)\)-antipode of 1,2-hexanediol. In the end, iterative analysis of candidate fitting factors led us to assign a selectivity factor of 59 for this reporting enzyme (corresponds approximately to the selectivity of this reporting enzyme on the lower end of the aforementioned concentration window). Selectivity factors of 8.4 \((v_s/v_R)\) for TBADH\(^2\) and 6.5 \((v_s/v_R)\) for KRED 23 were employed for 1,2-propanediol reporting. The complete set of enantiomeric diol screening data (rate vs. concentration) for each of the selected KRED screening enzymes is provided in Fig. 4.24.

Enzyme Standardization

Stock Solutions. The following stock solutions were made for enzyme standardization: 40 mM \(\beta\)-NAD\(^+\), 130 mM \(\beta\)-NAD\(^+\), 0.016mg/μL TBADH, 0.016 mg/μL KRED 23, 0.002 mg/μL KRED 107 and 0.002 mg/μL KRED 119 in 25 mM sodium phosphate buffer (pH 7.0), 2 M \((R)\)-1,2-propanediol in water. Enzyme units were calculated by measuring the rate of formation of NADPH or NADH at 340 nm (vide infra). In each case, one S.I. unit is taken as the amount of enzyme catalyzing the formation of one µmol of NADPH per minute.
Standardization of TBADH. The assay cuvette contained the following components: 2.2 mM (5 μL of 40 mM stock solution), β-NADP⁺, 5 μL of TBADH stock solution, 71 μL of 50 mM sodium pyrophosphate buffer (pH 8.8), and 200 mM (9 μL of 2 M stock) of (R)-1,2-propanediol. The reaction was initiated by the addition of the (R)-1,2-propanediol, which typically gave a rate of 0.709 abs/min at 25°C at 340 nm
wavelength. This was indicative of 0.028 U/µL for the TBADH stock solution for the oxidation of (R)-1,2-propanediol.

Standardization of KRED 23. The assay cuvette contained the following components: 7.2 mM (5 µL of 130 mM stock solution) β-NAD⁺, 5 µL of KRED 23 stock solution, 71 µL of 50 mM sodium pyrophosphate buffer (pH 8.8), and 200 mM (9 µL of 2 M stock) of (R)-1,2-propanediol. The reaction was initiated by the addition of the (R)-1,2-propanediol, which typically gave a rate of 0.540 abs/min at 25°C at 340 nm wavelength. This is indicative of 0.016 U/µL for the KRED 23 stock solution for the oxidation of (R)-1,2-propanediol.

Standardization of KRED 107. The assay cuvette contained the following components: 2.2 mM (5 µL of 40 mM stock solution), β-NADP⁺, 5 µL of KRED 107 stock solution, 81 µL of 50 mM sodium pyrophosphate buffer (pH 8.8), and 200 mM (9 µL of 2 M stock) of (R)-1,2-hexanediol. The reaction was initiated by the addition of the (R)-1,2-hexanediol, which typically gave a rate of 0.124 abs/min at 25°C at 340 nm wavelength. This is indicative of 0.00398 U/µL for the KRED 107 stock solution for the oxidation of (R)-1,2-hexanediol.

Standardization of KRED 119. The assay cuvette contained the following components: 2.2 mM (5 µL of 40 mM stock solution) β-NADP⁺, 5 µL of KRED 119 stock solution, 81 µL of 50 mM sodium pyrophosphate buffer (pH 8.8), and 200 mM (9 µL of 2 M stock) of (R)-1,2-hexanediol. The reaction was initiated by the addition of the (R)-1,2-hexanediol, which typically gave a rate of 0.291 abs/min at 25°C at 340 nm wavelength.
wavelength. This was indicative of 0.00935 U/μL for the KRED 119 stock solution for the oxidation of (R)-1,2-hexanediol.

Layer Composition

Quartz cuvettes with nominal 1 mL volumes were used in all previous ISES experiments. Here, for the first time, we describe a general procedure utilizing a 16 multimicrocell array for “cassette” in situ enzymatic screening. For every catalyst, a four well “cassette screen” was performed over the two different substrates: propylene oxide and hexene oxide. For propylene oxide, well A contains TBADH and well B contains KRED 23. For hexene oxide, well C contains KRED 107 and well D contains KRED 119.

Organic Layer in Wells A and B. Both well A and B had the following composition: 10 μL propylene oxide (8.3 mg, 0.14 mmol), 10 μL of CHCl₃ and 0.25 mol% catalyst. The total organic layer volume was maintained to 20 μL. **Organic Layer in Wells C and D.** Both well C and D had the following composition: 10 μL hexene oxide (8.3 mg, 0.08 mmol), 10 μL of CHCl₃ and 0.25 mol% catalyst. The total organic layer volume was maintained to 20 μL.

Aqueous Layer in Well A. 0.1 U of TBADH (3.6 μL from a stock solution (0.028 U/μL)), 2.2 mM β-NADP⁺ (5 μL from a 40 mM stock solution) and 81.4 μL of 50 mM sodium pyrophosphate buffer, pH 8.8. The total volume of the aqueous layer was maintained at 90 μL. **Aqueous Layer in Well B.** 0.1 U of KRED 23 (6.2 μL from a stock solution (0.016 u/μL)), 7.2 mM β-NAD⁺ (5 μL of 130 mM stock solution) and 78.8 μL of 50 mM sodium pyrophosphate buffer (pH 8.8). The total volume of the aqueous layer
was maintained at 90 μL. **Aqueous Layer in Well C.** 0.0374 U of KRED 107 (9.4 μL from a stock solution (0.00398 U/μL)), 2.2 mM β-NADP⁺ (5 μL from a 40 mM stock solution) and 75.6 μL of 50 mM sodium pyrophosphate buffer, pH 8.8. The total volume of the aqueous layer was maintained at 90 μL. **Aqueous Layer in Well D.** 0.0374 U of KRED 119 (4 μL from a stock solution (0.00935 U/μL)), 2.2 mM β-NADP⁺ (5 μL from a 40 mM stock solution) and 81 μL of 50 mM sodium pyrophosphate buffer, pH 8.8. The total volume of the aqueous layer was maintained at 90 μL.

Step by Step Protocol

It was found practical to load the aqueous layers first. Routinely 90 μL aqueous layers were loaded into individuate wells of 16-well quartz multimicrocell either with a microsyringe or with a multichannel pipetter. The quartz cell was gently tapped to keep the layers evenly distributed in the solid quartz apparatus, then cooled on ice. Then the organic layers were prepared by briefly vortexing the catalyst stock in CHCl₃ with (±)-propylene oxide or (±)-hexene oxide in iced microcentrifuge tubes. The low volume (20 μL) organic layer was then loaded to each well, most easily by rapidly syrining below the aqueous layer. Catalyst screens were run at room temperature in duplicate, with ISES rates taken as the average of the two ΔOD₃₄₀/time values obtained, for the appropriate time window (*vide infra*).

C. HKR Reactions Under Flask Conditions

General Procedure for HKR of Epoxides: Two different general procedures were adapted based on the boiling points of the epoxides. In some cases, the epoxide was
opened with phenyl selenide anion. This latter protocol may be of advantage (i) to
decrease the volatility of leftover epoxides, (ii) to introduce a UV chromophore (for UV
detection – HPLC) and/or (iii) to improve enantiomeric peak resolution in chiral-HPLC.

Procedure for Epoxide Opening by Phenylselenide: Phenylselenide anion was
prepared by slow addition of 3 equiv NaBH₄ into an ice-cold suspension of 1.5 equiv of
diphenyl diselenide in ethanol (5-7 mL). The resulting mixture was heated at 40 °C for
20 – 40 min, until the solution became colorless. Then, either purified epoxide or the
reaction mixture out of HKR was added to the ethanolic solution of phenyl selenide at
0 °C. The resulting reaction was slowly allowed to warm to rt and stirring was continued
for 8 - 10 h at rt. The reaction was quenched with ~1 mL of NH₄Cl. The mixture was
diluted with dichloromethane and dried over anhydrous Na₂SO₄. The crude product was
obtained after filtration and the removal of the solvent. Silica gel column
chromatography was used to isolate seleno-alcohol (and the diol, in cases, where the
mixture of both epoxide and diol was added to phenyl selenide anion). **Mosher Ester**

Analysis: For some seleno-alcohols, enantiomeric excess was estimated via a classical
Mosher esterification procedure [CH₂Cl₂, NEt₃ (10 equiv), DMAP (cat.), S-Mosher acid
chloride] followed by ¹H NMR analysis.

**General Procedure A (Direct Treatment of the HKR Reaction Mixture with
Phenyl Selenide):** This procedure was adapted for propylene oxide, hexene oxide, 1, 2-
epoxy-3-phenylpropane, butadiene monoxide and 1,2-epoxy-7-octene. Here, we
describe a general procedure for propylene oxide.

Propylene oxide (Table 4.2, entry 1):
In this case catalyst \textbf{Co(III)-17c-3,5-DNB} (29.4 mg, 0.026 mmol, 1 mol%) was mixed with 1,2-epoxypropane (1.52 g, 26.1 mmol) and cooled to 0 °C. The reaction was initiated by 213 µL (0.5 equiv) of water and the stirring was continued for 12 h at 0 °C. For this substrate, the reaction mixture was added to the phenyl selenide solution at 0 °C. Workup and column chromatography provided selenoalcohol (2.06 g, 38%, 0→30% ether in pentane) and 1,2-propanediol (786 mg, 42%, 50→0% ether in EtOAc).

\textbf{1-(Phenylseleno)-2-propanol}: NMR data matched reported data.7 The sign of the rotation was dependent on the solvent: in ethanol, \([\alpha]\)\textsubscript{19} obsd +4.5 (for 54% ee of \(R\)), \([\alpha]\)\textsubscript{19} D +8.3 (calcd); in CH\(_2\)Cl\(_2\) \([\alpha]\)\textsubscript{19} obsd -28.1 (for 54% ee of \(R\)), \([\alpha]\)\textsubscript{19} D -52.1 (calcd). The enantiomeric excess of the 1-(phenylseleno)-2-propanol was estimated by derivatization as its \(R\)-Mosher ester - \(^1\)H NMR, 3.02 (dd, 1H, \(R\)-enantiomer) & 2.93 (dd, 1H, \(S\)-enantiomer).

\textbf{1,2-Propanediol}: The diol was derivatized to its bis-(p-bromobenzoate) ester and the enantiomeric excess was measured in chiral HPLC (Chiralcel OD, hexanes:PrOH 97:3, flow rate 1mL/min) \(t_R\) 9.9 min (\(R\)), 10.8 min (\(S\)).

\textbf{1,2-Epoxyhexane} (Table 4.2, entry 3):

General Procedure A was followed, starting from 1,2-epoxyhexane (100 mg, 1.0 mmol), catalyst \textbf{Co(III)-17c-3,5-DNB} (5 mg, 0.005 mmol, 0.5 mol%) and 9 µL (0.5 equiv) of water at 0 °C for 30 h. \(^1\)H NMR of a small aliquot of the reaction showed a 53% reaction conversion. Direct ring-opening with phenyl selenide anion was performed. Workup and column chromatography, provided
both the seleno-alcohol (116 mg, 45%, using 20% EtOAc in hexanes) and 1,2-hexanediol (57 mg, 48%, using 10% methanol in EtOAc).

1-(phenylseleno)-2-hexanol: 1H NMR (400 MHz, CDCl$_3$) δ 0.87 (t, J = 6.4 Hz, 3H), 1.26-1.32 (m, 3H), 1.38-1.42 (m, 1H), 1.50-1.55 (m, 2H), 2.34 (br s, 1H), 2.85-2.90 (m, 1H), 3.12-3.16 (m, 1H), 3.63-3.67 (m, 1H), 7.24-7.26 (m, 3H), 7.51-7.53 (m, 2H); $[^{19}\alpha]$$_{obsd}$ -29.5 (for 99% ee of R), $[^{19}\alpha]$$_D$ -29.8, calcd (c = 1.1, CHCl$_3$). The enantiomers of the seleno alcohol were separable using Chiralcel OD column. For this alcohol (hexanes/i-PrOH 98:2, flow rate 1 mL/min), minor isomer, t_R = 10.5 min (S) and major isomer, t_R = 11.6 min (R).

1,2-Hexanediol: 1H NMR (400 MHz, CDCl$_3$) δ 0.88 (t, J = 6.4 Hz, 3H), 1.23-1.41 (m, 6H), 2.69 (br s, 2H), 3.43-3.68 (m, 3H); $[^{23}\alpha]$$_{obsd}$ -33.93 (for 91% ee of S), $[^{23}\alpha]$$_D$ -37.28, calcd (c = 0.75, EtOH), [lit.8 $[^{\alpha}]_D$ = +15.7 (c = 1.0, EtOH, for R-diol); lit.9 $[^{\alpha}]_D$ = -22.1 (c = 1.0, EtOH, for S-diol), lit.10 (S)-diol is -17.5° (c = 1.3, EtOH), lit.11 (S)-diol is -17.0° (c = 1.09, EtOH), lit.12 (R)-diol is +22.0 (c = 1.1, EtOH)]. The 1,2-diol was derivatized as its bis-p-bromobenzoate ester and the enantiomeric excess was determined using the same chiral column (hexanes/i-PrOH 97:3, flow rate 1 mL/min) for minor isomer, t_R = 6.9 min (R) and for major isomer, t_R = 8.0 min (S).

1,2-Epoxy-3-phenylpropane (Table 4.2, entry 4):

General Procedure A was followed, starting from epoxy-3-phenylpropane (315 mg, 2.3 mmol), catalyst Co(III)-17c-3,5-DNB (24.8 mg, 0.023 mmol, 1 mol%) and 22 µL (0.5 equiv) of water at 0 °C for 12 h. 1H NMR of a small aliquot of the reaction showed a 49% reaction conversion. Direct ring-
opening with phenyl selenide anion ensued. After workup and column chromatography were obtained both the seleno-alcohol (329 mg, 48%, 0→50% ether in pentane) and 3-phenyl-1,2-propanediol (175 mg, 49%, 50→0% ether in EtOAc).

1-(Phenylseleno)-3-phenyl-2-propanol: 1H NMR (400 MHz, CDCl$_3$) δ 2.36 (d, $J = 3.6$ Hz, 1H), 2.86-2.88 (m, 2H), 2.91-2.96 (m, 1H), 3.10-3.14 (m, 1H), 3.92-3.96 (m, 1H), 7.17-7.30 (m, 8H), 7.47-7.50 (m, 2H); $[\alpha]^{19}_{D}$ -24.6 (for 76% ee of R), $[\alpha]^{19}_{D}$ -32.4, calcd (c = 1.0, CHCl$_3$). The seleno-alcohol was resolved on Chiral column. For the seleno-alcohol (hexane/ i-PrOH 97:3, flow rate: 1 mL/min), major isomer, t$_R$ = 17.1 min (R) and minor isomer, t$_R$ = 19.3 min (S).

3-Phenylpropane-1,2-diol: 1H NMR (400 MHz, CDCl$_3$) δ 2.68-2.78 (m, 2H), 3.44-3.48 (m, 2H), 3.63 (d, $J = 10.8$ Hz, 2H), 3.89 (d, $J = 5.6$ Hz, 1H), 7.18-7.31 (m, 5H); $[\alpha]^{19}_{D}$ -21.5 (for 92% ee of S), $[\alpha]^{19}_{D}$ -23.3, calcd (c = 1.0, CHCl$_3$), [lit.12 $[\alpha]_D$ -18.6, (c = 1.3, CHCl$_3$) for S-diol], lit.13 $[\alpha]^{20}_{D}$ +20.4, (c = 1.0, CHCl$_3$) for R-diol), lit.14 $[\alpha]^{20}_{D}$ +15.0, (c = 1.0, CHCl$_3$) for R-diol), lit.15 $[\alpha]_D$ -29.0, (c = 1.2, EtOH) for S-diol$]$. 1,2-diol was resolved on Chiral column. For 1,2-diol (hexane/i-PrOH 92:8, flow rate: 1 mL/min), minor isomer, t$_R$ = 12.1 min (R) and major isomer, t$_R$ = 13.2 min (S).

1,2-Epoxy-7-octene (Table 4.2, entry 6):

General Procedure A was followed, starting from 1,2-epoxy-7-octene (126 mg, 1.0 mmol), catalyst Co(III)-17c-3,5-DNB (5 mg, 0.005 mmol, 0.5 mol% loading) and 9 µL (0.5 equiv) of water at rt for 30 h. Direct ring-opening with phenyl selenide anion ensued. After workup and column
chromatography, were obtained both the seleno-alcohol (119 mg, 42%, using 20% EtOAc in hexanes) and oct-7-ene-1,2-diol (71 mg, 49%, using pure EtOAc).

1-(Phenylseleno)-oct-7-ene-2-ol: 1H NMR (400 MHz, CDCl$_3$) δ 1.34-1.38 (m, 4H), 1.50-1.53 (m, 2H), 2.02 (d, J = 6.8 Hz, 2H), 2.38 (d, J = 4Hz, 1H), 2.84-2.90 (m, 1H), 3.11-3.15 (m, 1H), 3.65 (bs, 1H), 4.90-4.50 (m, 2H), 5.77-5.78 (m, 1H), 7.25-7.27 (m, 3H), 7.50-7.53 (m, 2H); $\left[\alpha\right]_{19}^{D}$ obsd -36.4 (for 99% ee of R), $\left[\alpha\right]_{19}^{D}$ -36.7, calcd (c = 1.1, CHCl$_3$). The enantiomeric excess of this seleno alcohol was estimated by chiral HPLC (Chiralcel OD, hexanes/i-PrOH 97:3, flow rate 1 mL/min, 254 nm), $t_{R_{major}} = 11.6$ min (R) and $t_{R_{minor}} = 13.8$ min (S).

Oct-7-ene-1,2-diol: 1H NMR (400 MHz, CDCl$_3$) δ 1.29-1.46 (m, 6H), 2.01-2.06 (m, 2H), 3.05 (br s, 2H), 3.37-3.41 (m, 1H), 3.60-3.65 (m, 2H), 4.90-4.99 (m, 2H), 5.72-5.82 (m, 1H); $\left[\alpha\right]_{19}^{D}$ obsd -2.6 (for 81% ee of S), $\left[\alpha\right]_{19}^{D}$ -3.2, calcd (c = 1.0, CHCl$_3$).

The enantiomeric excess of 7-octen-1,2-diol was determined by derivatization as its bis-(p-bromobenzoate) ester and chiral HPLC analysis (Chiralcel OD column, hexanes/i-PrOH, 97:3, flow rate 1 mL/min, 254 nm), $t_{R_{minor}} = 15.0$ min (R); $t_{R_{major}} = 16.2$ min (S).

General Procedure B (Separation of the Epoxide and Diol HKR Products):

(Illustrated for 3-phenoxy-1,2-epoxypropane). This procedure is applicable to all remaining epoxides.

3-Phenoxy-1,2-epoxypropane (Table 4.2, entry 2):

![Catalyst](attachment://catalyst.png) Catalyst **Co(III)-17c-3,5-DNB** (5 mg, 0.005 mmol, 0.5 mol%
loading) was mixed with 3-phenoxy-1,2-epoxypropane (150 mg, 1 mmol) and 300 µL of CH₂Cl₂. The mixture was cooled to 0 °C, and the reaction was initiated by adding 9 µL (0.5 equiv) of water and stirring was continued for 20 h at rt. After the reaction, silica gel column chromatography provided the unreacted 3-phenoxy-1,2-epoxypropanee (71 mg, 47%, using 50% ether in pentane) and 3-phenoxy-1,2-propanediol (77 mg, 46%, using 10% methanol in ether).

3-Phenoxy-1,2-epoxypropane: ¹H NMR (400 MHz, CDCl₃) δ 2.73-2.79 (m, 1H), 2.89-2.91 (t, J = 4.8 Hz, 1H), 3.33-3.37 (m, 1H), 3.94-4.04 (m, 1H), 4.19-4.25 (m, 1H), 6.88-7.00 (m, 3H), 7.23-7.33 (m, 2H); [α]ᵡ₁⁹obsd +22.3 (for 97% ee of S), [α]₁⁹D +23.0, calcd (c = 1.4, CHCl₃). The enantiomers of this epoxide were separable using Chiralcel OD column. For the epoxide (hexanes:i-PrOH 87:13, flow rate 1 mL/min), minor isomer, tᵣ = 8.2 min (R) and major isomer, tᵣ = 12.4 min (S).

3-Phenoxy-1,2-propanediol: ¹H NMR (400 MHz, CDCl₃) δ 2.54 (br s, 1H), 3.03 (br s, 1H), 3.71-3.84 (m, 2H), 4.01-4.11 (m, 3H), 6.88-6.98 (m, 3H), 7.23-7.30 (m, 2H); [α]₁⁹obsd -9.1 (for 92% ee of R), [α]₁⁹D -9.9, calcd (c = 1.4, CHCl₃), [lit.¹⁶ [α]₂₃D -10.0 (c = 1.9, EtOH)]. The enantiomers of the diol were also separable using Chiralcel OD column. For the diol (hexanes:i-PrOH 90:10, flow rate 1 mL/min), major isomer, tᵣ = 15.6 min (R) and minor isomer, tᵣ = 33.7 min (S).

6-[(tert-Butoxycarbonyl)-amino]-1,2-epoxyhexane (Table 4.2, entry 5):

Following General Procedure B, catalyst Co(III)-17c-3,5-DNB (5 mg, 0.05 mmol, 1 mol% loading) with 6-[(tert-butoxycarbonyl)-amino]-1,2-epoxyhexane (107 mg, 0.5 mmol), 200 µL of THF and
water (4 µL, 0.2 mmol, 0.44 equiv) at rt for 35 h, provided the unreacted epoxide (59 mg, 55%, using pure ether) and the diol (47 mg, 40%, using 30% methanol in ether) after silica gel column chromatography.

6-[(tert-Butoxycarbonyl)-amino]-1,2-epoxyhexane: 1H NMR (400 MHz, CDCl$_3$) δ 1.46 (s, 9H), 1.48-1.60 (m, 6H), 2.43-2.45 (m, 1H), 2.71-2.74 (m, 1H), 3.10-3.11 (m, 1H), 3.68 (m, 2H), 4.54 (br s, 1H); $\left[\alpha\right]_{19}^{\text{obsd}} +5.1$ (for 72% ee of R), $\left[\alpha\right]_{19}^{\Delta} +7.2$, calcd (c = 1.1, CHCl$_3$). The enantiomeric excess of the epoxide was determined by converting the epoxide to 6-[(tert-butoxycarbonyl)-amino]-1-(phenylseleno)-2-hexanol.

6-[(tert-Butoxycarbonyl)-amino]-1-(phenylseleno)-2-hexanol: 1H NMR (400 MHz, CDCl$_3$) δ 1.42 (s, 9H), 1.45-1.57 (m, 6H), 2.42 (br s, 1H), 2.84-2.89 (m, 1H), 3.08-3.13 (m, 3H), 3.64-3.66 (m, 1H), 4.50 (br s, 1H), 7.24-7.27 (m, 3H), 7.50-7.52 (m, 2H), $\left[\alpha\right]_{19}^{\text{obsd}} -10.5$ (for 72% ee of R), $\left[\alpha\right]_{19}^{\Delta} -14.6$, calcd (c = 0.3, CHCl$_3$). The enantiomers of the seleno-alcohol were resolved on a Chiralcel OD column (92:8 hexanes:i-PrOH, flow rate: 1 mL/min), $t_{R_{\text{major}}} = 16.0$ min (R) and $t_{R_{\text{minor}}} = 18.6$ min (S).

6-[(tert-Butoxycarbonyl)-amino]-1,2-hexanediol: 1H NMR (400 MHz, CDCl$_3$) δ 1.43 (s, 9H), 1.45-1.61 (m, 6H), 1.97 (br s, 1H), 2.16 (br s, 1H), 3.12-3.13 (m, 2H), 3.41-3.47 (m, 1H), 3.61-3.71 (m, 2H), 4.54 (br s, 1H); $\left[\alpha\right]_{19}^{\text{obsd}} -9.7$ (for 92% ee of S), $\left[\alpha\right]_{19}^{\Delta} -10.5$, calcd (c = 1.0, CHCl$_3$). The diol was derivatized to its bis(p-bromobenzoate) and the enantiomers of the diol derivative were resolved using Chiralcel OD column (95:5 hexanes:i-PrOH, flow rate 1 mL/min), $t_{R_{\text{minor}}} = 24.9$ min (R) and $t_{R_{\text{major}}} = 29.8$ min (S).

4-Benzylloxy-1,2-epoxybutane (Table 4.2, entry 7):
Following General Procedure B, catalyst **Co(III)-17c-3,5-DNB** (5 mg, 0.005 mmol, 0.5 mol% loading), 4-benzyloxy-1,2-epoxybutane\(^\text{17}\) (178 mg, 1.0 mmol), 400 µL of CH\(_2\)Cl\(_2\) and 9 µL of water at rt for 20 h provided the unreacted epoxide (121 mg, 68%, using 25% ether in pentane) and the product diol (51 mg, 26%, 0→100% EtOAc in ether), after silica gel column chromatography.

4-Benzyl-1,2-epoxybutane: \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 1.77-1.84\) (m, 1H), 1.89-1.95 (m, 1H), 2.54-2.56 (m, 1H), 2.79-2.82 (m, 1H), 3.07-3.12 (m, 1H), 3.63-3.67 (m, 2H), 4.56 (s, 2H), 7.28-7.38 (m, 5H); \([\alpha]_{23}^{\text{obsd}} +6.40\) (for 39% ee of \(R\)), \([\alpha]_{23}^{\text{D}} +16.41\), calcd (c = 1.0, CHCl\(_3\)), \([\alpha]_{23}^{\text{D}} +16.6\), (c = 3.0, CHCl\(_3\)) for \(R\)-epoxide and \([\alpha]_{23} -13.9\), (c = 2.0, CHCl\(_3\)) for \(S\)-epoxide, lit.\(^\text{18}\) \([\alpha]_{23}^{\text{D}} +16.9\), (c = 2.51, CHCl\(_3\)) for \(R\)-epoxide and \([\alpha]_{23} -14.5\), (c = 2.51, CHCl\(_3\)) for \(S\)-epoxide]. The enantiomeric excess of the epoxide was determined by converting the epoxide to 4-benzyloxy-1-phenylseleno-2-butanol with phenyl selenide.

4-Benzyl-1-phenylseleno-2-butanol: \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 1.85-1.89\) (m, 2H), 2.97-3.09 (m, 2H), 3.16 (br s, 1H), 3.62-3.68 (m, 2H), 3.93-3.96 (br s, 1H), 4.49 (s, 2H), 7.22-7.32 (m, 8H), 7.49-7.52 (m, 2H). The enantiomeric excess was determined from HPLC using Chiralcel OD column (95:5 hexanes:i-PrOH, flow rate 1 mL/min), \(t_R^{\text{major}} = 9.3\) min (\(R\)) and \(t_R^{\text{minor}} = 13.9\) min (\(S\)).

4-Benzyl-1,2-butanediol: \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 1.71-1.82\) (m, 2H), 2.59 (br s, 1H), 3.25 (br s, 1H), 3.46-3.50 (m, 1H), 3.59-3.69 (m, 3H), 3.70-3.91 (m, 1H), 4.50 (s, 2H), 7.25-7.36 (m, 5H); \([\alpha]_{23}^{\text{obsd}} -16.46\) (for 86% ee of \(S\)), \([\alpha]_{23}^{\text{D}} -19.14\), calcd (c = 0.65,
EtOH), [lit.16 $[\alpha]_{D}^{23}$ -22.5, (c = 1.1, EtOH) for S-diol]. The enantiomers were resolved in chiral HPLC. (Chiralcel OD column, hexanes:i-PrOH 95:5, flow rate 1 mL/min), $t_{R_{\text{minor}}} = 21.2$ min (R) and $t_{R_{\text{major}}} = 23.2$ min (S).

5-[(tert-butyldiphenylsilyl)oxy]-1,2-epoxypentane (Table 4.2, entry 8):

Following General Procedure B, the catalyst Co(III)-17c-3,5-DNB (10 mg, 0.01 mmol, 1 mol% loading) was mixed with 5-[(tert-butyldiphenylsilyl)oxy]-1,2-epoxypentane17 (343 mg, 1 mmol) and 500 µL of THF. The mixture was cooled to 0 °C, and the reaction initiated by adding 9 µL (0.5 equiv) of water and stirring continued for 50 h at rt. After the reaction, silica gel column chromatography provided the unreacted epoxide (214 mg, 63%, using ether) and 5-[(tert-butyldiphenylsilyl)oxy]-1,2-pentanediol (104 mg, 29%, using 10% methanol in ether).20

5-[(tert-butyldiphenylsilyl)oxy]-1,2-epoxypentane: 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 1.04 (s, 9H), 1.65-1.71 (m, 4H), 2.44-2.46 (m, 1H), 2.71-2.73 (m, 1H), 2.90-2.91 (m, 1H), 3.68-3.71 (m, 2H), 7.25-7.41 (m, 8H), 7.64-7.66 (m, 2H); $[\alpha]_{D}^{19}$ obsd +1.0 (for 33 ee of R), $[\alpha]_{D}^{19}$ +3.15, calcd (c = 1.0, CHCl\textsubscript{3}), [lit.20 $[\alpha]_{D}^{20}$ -3.41, (c = 1.12, CHCl\textsubscript{3}) for S-epoxide, lit.21 $[\alpha]_{D}^{20}$ -2.71, (c = 1.1, CHCl\textsubscript{3}) for S-epoxide]. The enantiomeric excess of the epoxide was determined by converting the epoxide to 5-[(tert-butyldiphenylsilyl)oxy]-1-(phenylseleno)-pentane-2-ol.

5-[(tert-Butyldiphenylsilyl)oxy]-1-(phenylseleno)-2-pentanol: 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 1.01 (s, 9H), 1.57-1.71 (m, 4H), 2.75 (d, J = 3.6 Hz, 1H), 2.90-2.95 (m, 1H), 3.08-3.12 (m, 1H), 3.65 (t, J = 4.0 Hz, 2H), 3.68-3.74 (m, 1H), 7.23-7.26 (m, 3H), 7.34-
7.41 (m, 6H), 7.50-7.53 (m, 2H), 7.64 (dd, $J = 1.6, 8.0$ Hz, 4H). The enantiomeric excess was estimated using chiral HPLC (Chiralcel OD, hexanes:iPrOH 98:2, flow rate: 1 mL/min), $t_R^{\text{minor}} = 17.7$ min (S) and $t_R^{\text{major}} = 19.0$ min (R).

5-(tert-Butyldiphenylsilyloxy)-pentane-1,2-diol: 1H NMR (400 MHz, CDCl$_3$) δ1.01 (s, 9H), 1.58-1.73 (m, 4H), 2.16-2.19 (br s, 1H), 3.02 (br s, 1H), 3.42-3.47 (m, 1H), 3.63-3.87 (m, 4H), 7.25-7.41 (m, 8H), 7.64-7.66 (m, 2H); [α]19D -2.8 (for 90% ee of S), [α]19D -3.0, calcd (c = 1.2, CHCl$_3$); [lit20] [α]19D -1.27, c = 1.73, CHCl$_3$ for S-diol; lit.21 [α]20D -1.0, (c = 1.03, CH$_2$Cl$_2$) for S-diol; lit.22 [α]19D +1.0, (c = 0.39, CHCl$_3$) for R-diol].

The diol was derivatized as its bis(p-bromobenzoate) ester, and the enantiomers were resolved on a Chiralcel OD column (hexanes:i-PrOH 96:4, flow rate: 1 mL/min), $t_R^{\text{minor}} = 7.3$ min (R) and $t_R^{\text{major}} = 8.8$ min (S).
IV. References

56. When E-value is over 50, either the remaining starting material or the product has a ee over 90%. Therefore, we consider it to be synthetically useful.

V. NMR Spectra

\[{^1}H \text{ NMR (400 MHz, CDCl}_3) \]
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
H NMR (400 MHz, CDCl₃)
13C NMR (100 MHz, CDCl$_3$)