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Scattering and bound-state solutions to the wave equation for one electron
in the presence of a physical dipole

G. A. Gallup™
Department of Physics and Astronomy, The University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0111, USA
(Received 26 March 2009; published 22 July 2009)

This paper presents a quantum-mechanical analysis of the interaction of one electron with a physical dipole
(two physically separated charges). Aspects of threshold laws in the continuous spectrum are treated. In
addition there are determinations of energies of some dipole bound states. The bound-state calculations are
used as a model for certain high dipole moment molecules, where, together with empirical data, an equivalent
dipole length may be determined. These model calculations predict that the bound dipole orbital in high dipole
molecule ions should have a node between its valence part and the more remote part where the majority of the
charge resides. Some results from the two parts of the treatment are brought together to calculate the asym-
metry factor of the photoelectron signal for uracil, measured by Schiedt et al.

DOI: 10.1103/PhysRevA.80.012511

I. INTRODUCTION

There has been current interest in electron interactions
with supercritical dipole moments, in both positive- and
negative-energy regimes. In the positive-energy case the di-
pole moment can affect the scattering wave function in ways
that influence many processes. We shall be particularly inter-
ested in the threshold behavior predicted for resonance life-
times (I'), and, through this, the dissociative electron attach-
ment and vibrational excitation (VE). Experiments
measuring the photodetachment energy of dipole bound-state
(DBS) systems are also being made currently. In the past
most theoretical analyses of dipole problems have relied
upon a point-dipole model. This has the disadvantage of
modifying the Schrodinger equation’s r~2 singularity at the
origin in such a way that simple formulas for the wave func-
tion cannot be used there directly. In this paper, we examine
the motion of an electron predicted by solutions of
Schrodinger’s equation for a potential due to a physical di-
pole (PD), i.e., equal magnitude positive and negative point
charges separated by a finite distance p. This potential has no
difficulties at the origin or at the charges. The electric-dipole
moment D=gq,p. Unless stated otherwise, in this paper the
orientation of the dipole vector is in the positive z direction.

Schrddinger’s equation for an electron is separable in pro-
late ellipsoidal coordinates for a potential consisting of two
fixed charges. This fact was exploited in an early work on the

7 ion and has also been extended to the motion of an elec-
tron in the presence of two different nuclei [1-3]. Nonethe-
less, states for the |g_|=q, charge specification treated here
have rarely been discussed. Komorov et al. [4] have a chap-
ter in their book discussing PDs but no numerical results are
presented. Numerical studies were made by Takayanagi and
Itikawa [5] for scattering from a PD and by Wallis er al. [6]
for energies of DBSs.

As stated, Schrodinger’s equation in this case is separable
in prolate ellipsoidal coordinates, which are discussed in nu-
merous places, see, for example, [7]. Using
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In these equations the new variable, e=Ep2/ 2, has been in-
troduced, where E is the electronic energy, and D is the
system dipole moment. Atomic units are used throughout.

Equation (4) is by far the easiest to deal with. In fact, for
the calculations we report on, only m=0 is an important
physical case. Nonzero m values are actually easily treated
but no molecule is likely to have a large enough dipole mo-
ment to show significant dipole moment effects then.

Equation (2) is also not difficult to treat, expanding 7T in
an infinite series of associated Legendre functions [1-3]. The
eigenvalues N\ can then be obtained numerically as indicated
in Ref. [8]. The situation here is similar to that for m. Even
for m=0 only the algebraically lowest N\ is physically rel-
evant for our purposes.

Equation (3) is, however, more challenging. Except for a
different relation between A=\(e,D) and e, it is identical
with the form obtained when the Helmholtz equation is sepa-
rated in prolate ellipsoidal coordinates, see Meixner [9],
Flammer [10], and Komorov et al. [4], and references
therein. Some further details on the background to Eq. (3)
are in the Appendix. When a singular point analysis is per-
formed on the ¢ equation, it is found that there are regular
singular points at {=* 1 and an essential singularity at &
=00, It is thus a confluent form of Lamé’s equation with no
known closed solutions in terms of familiar functions. In
general we treat it numerically using the Bulirsch-Stor
method [11]. Reasons for this decision are outlined in Sec.

m*d = (4)
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IIT and the Appendix. We observe here that, however, a
series-expansion solution near the £€=1 pole is needed. No
difficulty is encountered since only Coulomb singularities
are involved.

Concerning the PD Schrodinger’s equation, we make one
further comment that deals with its behavior as p—0. As is
well known, under these circumstances 77— cos(#6) of spheri-
cal coordinates, and Eq. (2) passes exactly into the angular
equation for a point dipole in spherical coordinates, which at
that point is independent of the energy. At the same time,
pé—2r, and 4ep~>— 2E. Thus Eq. (3) goes directly into the
spherical Bessel equation for a point dipole. We note that,
asymptotically, all of the energy dependence devolves to the
radial equation.

Before taking up solutions to Schrédinger’s equation, in
Sec. II we discuss some properties of the PD potential. Sec-
tion III gives a brief discussion of the solutions of Eq. (3) in
general, and in Secs. IV and V we discuss applications to
physical problems for the positive- and negative-energy re-
gimes, respectively. One use for the tables in Sec. IV is to
compare the PD results to experimental photodetachment
threshold behavior.

II. POTENTIAL OF A PD

It is of interest to examine the behavior of the PD, com-
paring it to the more commonly considered point-dipole po-
tential. We do this by computing the ratio of the two poten-
tials. In ellipsoidal coordinates easy calculations give

4Dén

Vpoint = 2@+ -1 (5)
and
4D
Vphysical = pz(gz—_nnz) (6)
Therefore,
Vphysical _ [l + (7]2 - 1)/§2]3/2 (7)
Vooinak 1= (99’
=1+ (57 -3)/28)+0(&Y), (8)
— 1+ p[5 cos(8)> - 31/(82) + O((p/r)*), 9)

and the ratio (in ellipsoidal coordinates) is everywhere, inde-
pendent of both D and p. This is clearly not the case for p in
spherical coordinates. By symmetry the PD has no quadru-
pole moment, and all higher moments are due to its odd
multipoles starting with the octopole. In the longitudinal di-
rections, the physical version is the one that is larger in mag-
nitude, whereas transversely, where both are near zero any-
way, the point version is the larger. We can obtain an idea of
the impact of the octopole term by noting that it has the same
r dependence as a polarization potential, and in the cos(6)
=+ | directions, the magnitude of the (p/r)* term is equiva-
lent to a polarization potential with a=p3/2, if |D/p|=]e|.

III. £ EQUATION FOR m=0
We rewrite Eq. (3) (with m=0) in the form

PHYSICAL REVIEW A 80, 012511 (2009)

[(E-1)+2]8"+ [2+ﬁ}5' + [e(g— 1)+2€+§:_)1\ S

=0, (10)

and substituting a power-series expansion about the point &
=1,

S(&) = 2 a(é- 1)k, (11)
k

we obtain a recursion relation for the coefficients, a;, where
k=0,1,2,..., with four terms, in general, and the first two
having only two and three terms. The indicial equation has
the double root, s=0, and the two-term relation,

1
a1=—5(6—)\)a0, (12)
provides the one solution we need, analytical at £é&=1. Stan-
dard methods for analyzing differential equations [12] show
that the other solution is logarithmic at é=1. In general we
have

1
ag=- ﬁ{[f =N+ k(k—1]ay +2€a,, + €a;_3}.

(13)

This may be simplified using further variable changes but the
present form gives a convergent series in the range |é—1]
<2, which is large enough for our needs.

For positive energies Meixner [9] has given an analytical
solution of Eq. (3) as an infinite series of generalized spheri-
cal Bessel functions. An outline of this approach is given in
the Appendix. A treatment using the Meixner form would
yield only tables of numbers for phase shifts and threshold
values since all of the series must be evaluated numerically.
The same result is true if we use the Bulirsch-Stor method to
integrate a solution outward, starting from the analytic solu-
tion implied by Eq. (13). It is our judgment that the latter is
an easier approach. Further details concerning this decision
occur below and in the Appendix.

For negative energies, series solution expressions for Eq.
(3) are not so difficult. Nevertheless, the Bulirsch-Stor
method may again be used to match inwardly integrated so-
lutions to series solutions in the vicinity of the é=1 point.

IV. POSITIVE ENERGIES

Takayanagi and Itikawa [5] have calculated scattering
cross sections for the PD potential in ranges of energies and
dipole moments. They, however, do not deal explicitly with
the threshold behavior, which is the focus of our interest.

A. Threshold behavior

A standard analysis of Eq. (3) shows that the solution with
S(1)=ag has the asymptotic behavior,

sin(\e"zg +9)

AR S
Ve -1

S(¢)—C (14)

012511-2



SCATTERING AND BOUND-STATE SOLUTIONS TO THE ...

:C,sm(KFr+ 5)’ (15)
Vkr

where C and C’ are constants. The a; [see Eq. (11)] constant
in our solution is still free; therefore, if C” is the result in Eq.
(15) when ay=1, setting ay=1/C’" will yield the solution
going to an energy normalized plane wave. This analysis
follows that of O’Malley [13], where, in his Eq. (3), our a,
plays the role of his N;(k). Thus, when investigating thresh-
old effects in photodetachment photoelectron (PDPE) spec-
troscopy, VE, and resonance lifetimes (I'), the physical di-
poleZ: moment (PDM) predicts they would be proportional to
|ao*.

As stated in Sec. III we use the Bulirsch-Stér [11] tech-
nique to integrate Eq. (3). This equation has very smooth
coefficients and no difficult points in the region &> 1. Start-
ing with values and slopes determined with Egs. (11) and
(13), we have successfully carried out, with complete stabil-
ity, integrations up to &=~ 10°, which is around 8 X 107 m
for p=1.5 A. Technically, carrying a numerical integration
out to a finite point and then matching the result to Eq. (15)
is equivalent to breaking off the potential function at that
point, turning it into what is really a short-range potential.
The distance above is, however, deemed large enough to ig-
nore this effect for our purposes [14].

As the outward integration is continued, after a threshold
distance is reached, values of C’ and the phase shift are
determined approximately in every wavelength, and four
(third degree) or six (fifth degree) of these values were ex-
trapolated to 1/&=0. Standard polynomial extrapolation
techniques were used [15], and the differences between the
third or fifth degree polynomial versions were insignificant.
The values so calculated are subjected to a number of analy-
ses in the next sections.

B. Free particle

As a test of our procedure, we calculate the phase shift
and threshold behavior for the ellipsoidal representation of
the solution of the Helmholtz equation, a plane wave. This is
easily done by setting D=0. We use

ay=E“b + cE + dE?) (16)

to represent the threshold behavior. Figure 1 shows a graph
of this function for our calculated points. Using a standard
least square criterion, the values we arrived at were a
=0.250 00, »=0.520 68, c=-0.004 27, and d=0.000 04. The
phase shift is —0.000 001. As far as a and the phase shift are
concerned, this is considered satisfactory agreement with the
known exact values for the energy normalized plane wave.

C. Phase shifts and threshold behavior as a function
of D

In both Egs. (2) and (3) E and p appear only in the com-
bination €=p?E/2=(pk/2)?. Therefore, in giving a survey of
results for different D values, it is useful to use the dimen-
sionless k=pk/2= Ve in giving results.

We have fitted two formulas to the threshold data that are
determined numerically. Both to satisfy various theoretical

PHYSICAL REVIEW A 80, 012511 (2009)
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FIG. 1. (Color online) D=0.0D. The a, values as a function of
energy. The value of the a exponent in Eq. (16) is shown in the
graph.

results and to obtain the best fits by a least square criterion,
one formula works better for moments in the point-dipole
subcritical range and the other for moments in the point-
dipole supercritical range. The subcritical form is

ap=arx*(1+bk?). (17)

For supercritical cases we adapt a form given by Fabrikant
[16,17]

1
" a+bcos[2¢ In(k) +d]’

ag (18)
where, in this case, the ¢ parameter is to be optimized in the
fitting procedure. This is done in an attempt to compensate
for the variability of \ since, in these equations, A=A(x) and
is energy dependent.

Table I gives the results for the coefficients in Eq. (17) for
the subcritical range, and Table II provides the same for Eq.
(18) in the other range. The phase shifts have been collected
for these calculations, and are presented both in Table III and
as a pseudo-three-dimensional graph in Fig. 2. From their
calculations, Takayanagi and Itikawa [5] give a graph of the
phase shift as a function of D for two energies. Qualitatively,
their curves are completely consistent with Fig. 2.

The entries in Tables I and II are suitable for interpolation
for other dipole moments. Because of its greater interest, this
has been done for the supercritical case to produce a pseudo-

TABLE 1. Parameters for subcritical fits. See Eq. (17).

D a X b
0.25% 0.84012 0.49352 —-0.04488
0.50 0.83982 0.47380 -0.03613
0.75 0.83673 0.43988 -0.00721
1.00 0.82620 0.38983 0.07240
1.25 0.80013 0.32001 0.26619
1.50 0.74529 0.22376 0.69806
1.62389 0.81129 0.17796 1.09624
“Debye.
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TABLE II. Parameters for supercritical fits. See Eq. (18).
D
(a.u.) a b ¢ d 3 Amp. VIN+1/4] €
0.7 0.93442 1.25271 0.13393 1.40636 8.699¢-03 0.50219 0.21303
0.75 0.87407 0.83232 0.18837 1.25383 9.445¢-03 0.40037 0.29137
0.8 0.99414 0.49319 0.26820 1.29025 9.243e-03 0.32757 0.35525
0.85 1.05239 0.30730 0.38376 1.46937 1.386e—-02 0.27465 0.41134
0.9 1.03035 0.23666 0.48631 1.61464 1.620e—-02 0.23398 0.46235
0.95 1.00443 0.19493 0.55311 1.56394 1.155¢-02 0.20162 0.50973
1.0 0.98588 0.16401 0.60814 1.46454 1.062¢-02 0.17526 0.55433
1.1 0.97406 0.12825 0.67155 1.01760 1.020e-02 0.13508 0.63721
1.2 0.96821 0.10357 0.72504 0.63462 1.050e-02 0.10622 0.71374
1.3 0.96205 0.08215 0.78544 0.34899 1.421e-02 0.08978 0.78546
1.4 0.95745 0.06588 0.84898 0.10428 4.068¢—-02 0.06850 0.85332
1.5 0.95473 0.05367 0.91290 —-0.10766 3.055¢-02 0.05592 0.91797
1.6 0.95338 0.04415 0.97988 -0.27209 1.152¢-02 0.04604 0.97987
1.7 0.95234 0.03638 1.03991 —-0.46058 4.666¢—-03 0.03818 1.03939
1.8 0.95156 0.03028 1.09754 —-0.65150 1.319¢-03 0.03188 1.09681
1.9 0.95105 0.02546 1.15262 -0.83972 1.063¢-03 0.02677 1.15234
2.0 0.95073 0.02145 1.20573 -1.02719 1.038¢-03 0.02261 1.20617
2.1 0.95050 0.01820 1.25875 -1.20609 9.204e-04 0.01918 1.25846
22 0.95034 0.01557 1.31004 —-1.38346 1.298¢-03 0.01635 1.30933
23 0.95021 0.01331 1.35951 -1.56172 9.438e—-04 0.01399 1.35890
24 0.95014 0.01145 1.40784 -1.74021 1.660e—-03 0.01202 1.40726
2.5 0.95006 0.00986 1.45548 -1.91368 8.990e—-04 0.01036 1.45451
2.6 0.95004 0.00857 1.50203 —2.08278 3.671e-03 0.00896 1.50072

*Average relative standard deviation of fit.
®See text.
“Point dipole value.

three-dimensional graph of a; values in Fig. 3.

Some trends in the numbers in Table II may be com-
mented upon. The constant term in the denominator is not far
from one over the range of values. The amplitude of the
logarithmic oscillations falls rapidly with increasing D. In
the last two columns of Table II we give the point-dipole
predictions (see Ref. [17]) for the amplitude of the oscilla-
tions and the imaginary part of the exponents of r in spheri-
cal coordinates. These may be compared to the fitted values
of ¢ in the third and fourth columns. For the range of D
values calculated, the ¢ values are smaller but the difference
appears to be decreasing as D becomes larger. This is rea-
sonable since the energy term in Eq. (2) will become rela-
tively less important as D becomes larger. Nevertheless,
these values from the PDM are qualitatively very similar to
those from point-dipole analyses. The differences can be at-
tributed to the octopole and higher multipoles present in the
physical dipole potential, see Sec. II.

D. Passage from spheroidal to spherical coordinates
at zero energy

An examination of Eq. (13), the recursion relation, shows
that it is satisfactory for all finite values of E and p. For

simplicity, let us consider the E=0 case. Equation (3) be-
comes

(E-1)S"+2&8" —\S=0. (19)

At the same time, the p=0 (holding D fixed) Schrodinger’s
equation is

28" +2rS' = \S=0. (20)

The value of \ is the same in Egs. (19) and (20).
We modify Eq. (19) to

(&-58)8"+2&5" —\S=0, (21)
which is equivalent to

[(£=08)%+28(é=6)]S"+2[(£=0) + 5]S' = \S =0,
(22)

and examine the behavior of the solution as 6—0, & being
real and positive. Inserting the power-series solution

S(&) = X a(é- o), (23)
k

we obtain the indicial equation,

012511-4
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TABLE III. Table of phase shifts

PHYSICAL REVIEW A 80, 012511 (2009)

for a range of dipole moments and «.

Phase shifts

D/k 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.01038181 0.01015504 0.00992836 0.00970707 0.00947455 0.00923156 0.00902526 0.00880258 0.00858155 0.00843558 0.00824576
0.2 0.04207301 0.04102542 0.04001947 0.03904897 0.03808742 0.03714023 0.03624566 0.03528308 0.03437164 0.03337850 0.03270279
0.3 0.09667498 0.09382386 0.09121982 0.08874518 0.08643018 0.08408750 0.08177587 0.07971880 0.07748294 0.07536929 0.07313627
0.4 0.17777023 0.17108020 0.16542490 0.16030931 0.15548922 0.15090703 0.14660423 0.14227340 0.13802368 0.13434526 0.13009522
0.5 0.29253451 0.27746658 0.26599417 0.25604299 0.24709693 0.23892921 0.23118704 0.22368885 0.21684679 0.20991170 0.20392353
0.6 0.45618410 0.42124032 0.39835621 0.37991313 0.36421063 0.35011598 0.33724518 0.32552071 0.31412433 0.30383680 0.29317981
0.7 0.70317417 0.61732364 0.57121276 0.53772815 0.51037659 0.48706532 0.46667324 0.44808626 0.43039572 0.41483539 0.40036869
0.8 1.11570843 0.89018696 0.79693293 0.73613588 0.69026511 0.65294691 0.62038799 0.59283501 0.56684066 0.54421014 0.52348910
0.9  1.81369550 1.27108779 1.08970553 0.98325401 0.90798091 0.84911513 0.80083422 0.75996015 0.72381617 0.69099030 0.66160102
1.0 2.58781598 1.75913899 1.45183094 1.28016612 1.16408700 1.07703137 1.00705106 0.94990462 0.89955173 0.85571725 0.81582739
1.1 3.12056426 2.26549949 1.85544820 1.61404030 1.45156937 1.33063026 1.23530373 1.15788893 1.09189551 1.03463373 0.98320887
1.2 3.50290765 2.69450983 2.24757476 1.95683518 1.75265429 1.59929888 1.47849011 1.37901692 1.29640792 1.22466146 1.16075383
1.3 3.83735405 3.03942222 2.59218153 2.27980116 2.04805693 1.86832417 1.72598080 1.60636108 1.50719477 1.42201597 1.34464851
1.4 416970125 3.33128090 2.88778836 2.56903867 2.32327411 2.12776354 1.96736054 1.83326642 1.71712727 1.61796400 1.53077921
1.5 4.51703155 3.59716034 3.14780862 2.82676119 2.57390406 2.36791202 2.19516811 2.04984710 1.92389298 1.81275732 1.71539118
1.6 4.87914407 3.85222994 3.38559120 3.05977214 2.80231539 2.59092877 2.41149952 2.25513228 2.12141822 2.00144140 1.89562439
1.7 5.24433843 4.10598369 3.61199374 3.27578230 3.01341212 2.79556164 2.61223907 2.45063717 2.30931507 2.18376588 2.06973461
1.8 5.59829476 4.36196446 3.83275511 3.48246923 3.21211399 2.98977610 2.79989271 2.63304749 2.48770340 2.35672347 2.23700516
1.9 5.93279961 4.62000601 4.05024666 3.68145533 3.40244790 3.17372986 2.97771808 2.80859214 2.65753783 2.52199238 2.39749011
2.0 6.24766328 4.87846299 4.26811962 3.87891933 3.58736666 3.34993673 3.15156784 2.97685313 2.82011959 2.68044831 2.55171699
857 =0, (24) § = 2 (26)
Although the circle of convergence becomes smaller as &
and the two-term recursion relation — 0, the determination of s changes discontinuously with the
appearance of the 1/7> singularity. At that point the charac-
teristic possibly complex powers of r appear.
20ay, HE+1) 2 )\ak’ (25)
(k+1) V. NEGATIVE ENERGIES

and the series will converge while |¢- 8/ <26. These rela-
tions hold so long as §>0. When & becomes 0, Eq. (24) no
longer determines s, and the recursion formula degenerates
into one term, giving the two solutions

Phase Shift

FIG. 2. (Color online) “Three-dimensional” plot of the phase
shift versus D and . Numerical values are in Table III.

01

Apparently, only Wallis et al. [6] have studied the DBS
energies of the PD model, giving tabular presentations of
DBS energies. They used the analytical approach of Baber
and Hasse [2], and give energies for a number of states as-
suming two |e| magnitude charges at various distances. Ap-
propriate scaling can, in principle, provide for other physical

0.25

K

FIG. 3. (Color online) Three-dimensional plot of a, versus D
and «. Interpolated values from Table II.
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TABLE IV. The EPDL for the four pyrimidine bases. The column headed “q/e” is the equivalent charge

of the dipole in electrons.

DE D (debye) EPDL

(eV) Theor.” Exp.° (A) qle Pu
Uracil® 0.093 4.4295 47 0.1992 4.633 0.0301
Thymine® 0.069 4.3929 4.6 0.2197 4.165 0.0262
Cytosine-(0x0)° 0.230 6.5021 6.6-8 0.6712 2.018 0.0442
Cytosine-(hydroxo)® 0.085 4.7260 6.5-8 0.2911 3.382 0.0321

36-311G(spd)MP2.
PReferences [18,19].
“Reference [19].

situations. Nonetheless, we repeat their calculations because
we require values from difficult to interpolate regions of their
tables.

A. Fitting solutions of the model potential to experiment

One independent parametrization of the energies of DBSs
depends upon the dipole moment, the dipole length, and the
quantum number. In line with the normal convention of
Sturm-Liouville theory, we take the quantum numbers n
=0,1,... to be the number of nodes in the solution interior to
the boundaries. In general, with the dipole potential, one
finds the formula,

E,=E, exp(-an), (27)

to give a reasonably accurate representation of the energies.
E, and a in Eq. (27) are parameters that depend upon the
model. When we wish to fit our model to a molecule with a
known dipole moment and a known DBS energy, we find
that the solution is not unique because both the dipole length
and the quantum number are unknown. There are several
dipole length-n pairs that can be obtained. We will find that,
however, only one of these pairs will be physically reason-
able. When the dipole moment of a molecule is calculated
using the dipole operator, the value obtained is that seen
from an asymptotic distance. Thus the value is the distance
between the centroids of positive and negative charges times
the sum of the atomic numbers of the atoms, or, alternatively,
using the atomic number total 2;Z;, the “asymptotic” dipole
length is p,=D/2;Z;. Therefore, when we do our fitting, we
should look for an empirical p that is not shorter than p, but
also not substantially larger than the molecule. There is also
a computational criterion. Direct calculations of the DBS or-
bital in molecules show that it is likely to correspond to the
n=1 state of the model. For the cases we examine this gives
us a unique solution.

With the molecules we are treating there is near coinci-
dence between the centroid of positive charge and the cen-
troid of mass because the principle isotopes of C, N, and O
have a mass number twice their atomic number. Only H is
different, and, indeed, would be the same for the deuterated
versions. Thus, we expect the asymptotic PD to be located in
the molecule essentially on top of the mass centroid. The
results using these criteria and this point of view are given in
the next section.

B. Comparisons to experiment

There has been experimental and theoretical interest in
some of the pyrimidine bases comprising the DNA codes.
Hendricks et al. [18] have measured the PDPE spectra of the
dipole bound states (DBSs) of uracil and thymine. More re-
cently, Schiedt ef al. [19] have remeasured uracil and thym-
ine, and have given new results for two isomers of cytosine.
The experimental detachment energies are in Table IV.

Our calculations again use the numerical approach for
negative-energy states, and the Bulirsch-Stor approach easily
provides solutions by connecting inward integrations with
the analytic inverse log derivative obtained with Egs. (11)
and (13), thereby determining the energy. In this section we
compare our calculated DBS binding energies with experi-
ment for the pyrimidine bases uracil, thymine, and two iso-
mers of cytosine. This allows us to determine a semiempir-
ical equivalent physical dipole length (EPDL) to associate
with each base. These and the associated wave functions
yield important physical information about the nature of the
DBS.

In Sec. VC we examine in more detail the results for
thymine as an example. The structures and dipole moments
were calculated at the 6-311G(spd)MP2 level using the
GAMESS computation package [20]. Figure 4 shows graphi-
cally the frameworks and dipole moments resulting from
these calculations.

Our PD potential will not match the actual potential in the
close regions of molecules in general, particularly larger
molecules such as those under discussion. It does, however,
provide a model potential that is physically reasonable in
having, as is true for a real molecule, no parts more singular
than a Coulomb singularity. As such, it will allow us to cal-
culate from experimental results an EPDL for each of these
molecules. These are presented in Table IV along with the
experimental binding energies, experimental and calculated
dipole moments, the equivalent charge at the positive end of
the dipole, and that headed p,, is the asymptotic dipole length
given in Sec. V A.

The four bases fall roughly into two categories, the oxo-
cytosine being in one and the remainder in the other. Wallis
et al. [6] have already pointed out that a DBS for a given
dipole moment will be more stable the shorter the PD. Be-
cause of the scaling laws of Egs. (2) and (3), we see that the
PD moment predicts that the oxoisomer would have a stabil-
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Four Pyrimidine Bases
o]

0 N
Uracil

o N

Cytosine-Oxo Cytosine-Hydroxy

FIG. 4. (Color online) Pyrimidine base frameworks showing
dipole vectors. The head of the arrow represents the positive end of
the dipole moment. The stick figures are coded to represent differ-
ent atoms as H: white, C: green, N: blue, and O: red. Atoms other
than C and H, which should be obvious, are explicitly marked with
N or O.

ity around 1.223 eV if its EPDL were the same length as that
of the hydroxy isomer.

In these molecules the C=0O group is one of the main
contributors to the total dipole moment, and Fig. 4 shows
that the negative end of the dipole moment is closer to the
C-O portion of the molecule for cytosine isomers than in the
others, where the moment is roughly half way between the
two C=0 bonds.

C. Nature of the DBS orbital in thymine

In this section we give for thymine a detailed analysis of
the manner in which our PD model represents the DBS or-
bital. Many workers including the present author [21,22]

FIG. 5. An extended view of the DBS orbital in thymine. The
solid contours indicate positive amplitude and the dashed contours
indicate negative amplitude.
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FIG. 6. The valence region of the DBS orbital in thymine. The
solid contours indicate positive amplitude and the dashed contours
indicate negative amplitude.

have made numerous calculations using quantum chemical
computer programs to study DBSs. Our studies [22] also
used GAMESS, and we repeat the DBS orbital contour map in
Figs. 5 and 6, which show both the extended region and the
valence region. The contours of positive amplitude are solid
lines and those of negative amplitude are dashed. Perhaps the
most noteworthy detail of this orbital function is the obvious
node (more obvious in Fig. 6) between its valence part and
its extended part. In its simplest approximation, one expects
the DBS function to be a linear combination between valence
virtual orbital (VOs) and the Gaussians representing the ex-
tended part, and there appears no reason the bonding rather
than the antibonding combination should not be the lower
energy. Nor is it obvious that orbital orthogonality should
require this node. In the next few paragraphs we give an
argument, based upon the PD model, which suggests that this
node is required by the physical and geometric constraints of
the system, the relatively large dipole moment, the relatively
small size of the system, and the small binding energy.

Table V shows details of these calculations, the first three
rows of which are the first three PDPEs for thymine’s mo-
ment and EPDL given in Table IV. It is clear that only the
first-excited DBS of the PD model can provide a close rep-
resentation of the physical situation.

The last line of Table V shows the required dipole length
if the PD model is to reproduce the experimental PDPE en-
ergy for a nodeless radial function. The length is over 200

TABLE V. A table giving various combinations of PD model
parameters and detachment energies related to thymine.

PDPE EPDL
n (eV) (A)
2 -0.00014861 0.2197
1 -0.069* 0.2197
0 -26.6486 0.2197
0 -0.069* 4.418
*Experimental.
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FIG. 7. (Color online) A semilog plot of Dg(£) [see Eq. (28)] for
the first-excited DBS from the PD model of thymine. See line 2 of
Table V.

times the p, length, and is roughly the size of the molecule.
In addition, the PD model itself is, in this case, essentially an
exotic H-like atom of nuclear charge of 0.391|e| with an
embedded —0.391|e| charge at some distance. Such a struc-
ture is clearly unrelated physically to molecular thymine. We
conclude that only the DBS with one node can produce, with
the PD model, the large moment, the relatively small valence
region where the moment is produced, and the small PDPE
energy. It appears that exchange has relatively little influence
on the DBS orbital.

This result is perhaps in one way surprising. One gener-
ally finds that the lowest energy state of a potential has no
nodes. The complexities of these large molecule DBSs ap-
pear to cause one to find an exception to expectations. In any
event the PDM provides an explanation for the apparent
anomalous behavior.

We add some other information about the model DBS
orbitals by giving graphs of the ellipsoidal analog to the
spherical radial distribution function. This is obtained with

Dg(8) = (&€ —(TI77|T)S(9?, (28)

where the expectation value of 77 is 0.494 219 for the thym-
ine case. Figure 7 shows D¢(£) for the physically appropriate
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FIG. 8. (Color online) A semilog plot of Dg(é) [see Eq. (28)] for
the ground DBS from the PD model of thymine. See line 3 of Table
V.

PHYSICAL REVIEW A 80, 012511 (2009)

0.3

0.25 | 1

0.2 1

0.15 1 1

Ds(&)

0.1 1

0.05 J

O L
10 100
g

FIG. 9. (Color online) A semilog plot of Dg(£) [see Eq. (28)] for
the ground DBS from the large EPDL PD model of thymine. See
line 4 of Table V.

DBS.

In Figs. 8 and 9 we show semilog graphs corresponding to
lines 3 and 4 of Table V. These are surprisingly similar only
because plotting versus ¢ hides the extreme difference be-
tween the p values in the two cases.

We have also calculated the next-higher state of our PD
model (line 1 of Table V). The S(¢) eigenfunctions both for it
and for the physical state are shown together in Fig. 10. If a
nonrotating thymine actually had a state with energy near
this, it would almost certainly be quenched by rotations at
normal temperatures.

Finally, we note that the three energies for thymine that
we have obtained are accurately given by Eq. (27), where
Ey=-26.6486 (eV), a=5.956 39.

D. Asymmetry parameter for uracil

Schiedt er al. [19] also reported on the photoelectric
asymmetry parameter for uracil at the optical wavelength of

1
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04l 1
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0.2 - R

1 10 100 1000

FIG. 10. (Color online) The second and third eigenfunctions for
the EPDL parameters corresponding to thymine. (See lines 2 and 3
of Table V.) It is seen that the two functions are virtually indistin-
guishable out to £~ 30 since, inside this region, the potential domi-
nates the energy.
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1064 nm. The corresponding electron kinetic energy is 1.027
eV, which, with the value of p (EPDL) from Table IV, gives
€=0.0387. As stated in Sec. I, the equation for the 7 function
is

(1) = 2 di'NpyyP (1), (29)
l

and the values of d? are 0.8072, —0.5708, and 0.1490 for [
=0, 1, and 2. This provides an estimate of the o— o contri-
bution for the current PD model potential. For 8 in

99 1 + BP,(cos 0) (30)
—x cos ),

dQ :

we obtain 1.30 compared to the experimental value of 1.4.
The present theoretical value would be expected to be too
small since it ignores any o — 7 contributions.
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APPENDIX: MEIXNER’S TREATMENT OF EQ. (3)

As noted in Sec. I, Flammer [10] has given a brief review
of the history of treatments of the “angular” and “radial”
equations arising out of ellipsoidal coordinates. As far as this
author is aware, the only discussions in the literature of the
positive-energy solutions to Eq. (3) are in the context of
solutions to the time-independent classical wave equation,

Viy+ Kip=0. (A1)

In this special case, it develops that the two ellipsoidal dif-
ferential equations are the same, the only difference being
the range of the variable appropriate to the # and & spaces.
Many of the previous discussions utilize this, and can write
the S(&) solution as a simple transform of the T(#) solution.
This has the unfortunate result of producing an expansion
form for S(&) inappropriate for our case. The difficulty arises
because the relation between the separation constants \ and €
is not right for the rather special expansion possible when
solving Eq. (Al).

Meixner [9] makes an alternative approach. Flammer
gives references to Meixner’s work but does not point out
that the latter uses a different expansion for the two equa-
tions independently and then later shows that in the special
case of Eq. (A1) they become equal. Not surprisingly, they
are more difficult but Meixner’s formulation would be appro-
priate for our need, a treatment of Eq. (3) for arbitrary real A
values. We give here a very brief outline of the treatment.

In the m=0 case it starts with a double infinite sum

PHYSICAL REVIEW A 80, 012511 (2009)

S = 2 b)),

k=—

(A2)

wher:: the j,.;({) are generalized spherical Bessel functions,
{=Ve¢, and v may be complex for our PD potential. This
form is different from that usually used when Eq. (Al) is
treated directly. It is a two-sided infinite series, and the or-
ders of the spherical Bessel functions are not integers.

If Eq. (A2) is substituted into Eq. (3), a second-order
difference equation may be derived for the b(v),; coefficients,

GD(V) i = Pi0(V) i + 1iD(V) s, (A3)
where
(v+k+2)(v+k+5)
PR=€ 0y v 2k 5) Qv+ 2k +3) (A4)
_ (k- 4@+k-1)
rk—f(2y+2k—l)(21;+2k_3)’ (A5)
and
=W+ +k+1)—(\-¢€)
2 —
2v+k)P?+2(v+k) -1 o

T v 2k- 1) 2v+k+3)

Meixner shows that Eq. (A3) has a convergent solution
such that |b(v);| —0 as k— * % so long as v has the correct
relation to A, i.e., v is sort of an eigenvalue of the difference
equation. We note that, in the set of equations, Eq. (A3)
collapses to one term when e=0. When this happens because
E=0, it shows that an “infinite-wave-length electron” cannot
distinguish between a point dipole and a physical dipole of
the same moment. At this point S({) in Eq. (A2) collapses to
one term and v attains the value predicted from a point di-
pole. This collapse here is, of course, related to that giving
Eq. (26).

When the doubly convergent solution of Eq. (A3) is com-
bined with the spherical Bessel functions, Meixner shows
that S({) of Eq. (A2) is only convergent for {> Ve, ie.,
&>1, and is quite slowly convergent close to this. Thus
Meixner’s basic form is in general contaminated with the
logarithmically singular solution at é=1. This would require
determining two independent solutions to eliminate the sin-
gularity. In addition, pilot calculations indicate that Meix-
ner’s treatment is subject to numerical difficulties when us-
ing normal precisions.

All of this may be contrasted with the direct numerical
integration of Eq. (3). As stated in Sec. IV, the integration is
very stable at normal precisions and requires only real arith-
metic. We feel these considerations justify the use of the
numerical technique.

012511-9



G. A. GALLUP

[1] G. Jaffe, Fortschr. Phys. 87 535 (1934).

[2] W. B. Baber and H. R. Hasse, Proc. Cambridge Philos. Soc.
31, 564 (1935).

[3] D. R. Bates, K. Ledsham, and A. L. Stewart, Philos. Trans. R.
Soc. London, Ser. A 246, 215 (1953).

[4] . V. Komorov, L. I. Ponomarev, and S. Yu. Slavyarov, Sphe-
roidal and Coulomb Spheroidal Functions (Nauka, Moscow,
1976), in Russian.

[5] K. Takayanagi and Y. Itikawa, J. Phys. Soc. Jpn. 24, 160
(1968).

[6] R. W. Wallis, R. Herman, and H. W. Milnes, J. Mol. Spectrosc.
4, 51 (1960).

[7] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards (U.S. Government
Printing Office, Washington, DC, 1970).

[8] L. Y. Wilson and G. A. Gallup, J. Chem. Phys. 45, 586 (1966).

[9]J. Meixner, National Advisory Committee for Aeronautics
Technical Memorandum No. 1224, 1944 (unpublished).

[10] C. Flammer, Spheroidal Wave Functions (Stanford University
Press, Stanford, California, 1957).

[11]J. St6ér and R. Bulirsch, Introduction to Numerical Analysis,
2nd ed. (Springer-Verlag, New York, 1992).

[12] P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953).

[13] T. F. O’Malley, Phys. Rev. 137, A1668 (1965).

[14] It is of interest to note that, at room temperature, an average
distance between molecules of 8 wum corresponds to a pres-

PHYSICAL REVIEW A 80, 012511 (2009)

sure of 6 1078 torr. It is well known that, physically, long-
range multipole potentials are damped out at distances compa-
rable to the average intermolecular distance. Thus our
calculations are carried past any such point in typical experi-
ments. When considering real experimental data, effects of
molecular rotation will be more dramatic than this damping
effect.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes, 2nd ed. (Cambridge University
Press, Cambridge, 1992).

[16] L. I. Fabrikant, Sov. Phys. JETP 46, 693 (1977).

[17] L. L. Fabrikant, J. Phys. B 11, 3621 (1978).

[18]J. H. Hendricks, S. A. Lyapustina, H. L. le Clercq, J. T. Sn-
odgrass, and K. H. Bowen, J. Chem. Phys. 104, 7788 (1996).

[19]J. Schiedt, R. Weinkauf, D. M. Neumark, and E. W. Schlag,
Chem. Phys. 239, 511 (1998).

[20] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M.
S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A.
Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Mont-
gomery, J. Comput. Chem. 14, 1347 (1993).

[21] C. Desfrangois, H. Abdoul-Carime, and J.-P. Schermann, Int. J.
Mod. Phys. B 10, 1339 (1996), a review with many refer-
ences.

[22] P. D. Burrow, G. A. Gallup, A. M. Scheer, S. Denifl, S. Pta-
sinska, T. Mark, and P. Scheier, J. Chem. Phys. 124, 124310
(2006).

012511-10



	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2009

	Scattering and bound-state solutions to the wave equation for one electron in the presence of a physical dipole
	Gordon A. Gallup

	tmp.1259874748.pdf.zBzUb

