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Grain-Boundary Micromagnetism
R. Skomski, H. Zeng, and D. J. Sellmyer

Abstract—Continuum and layer-resolved calculations are used
to investigate the spin structure in the vicinity of grain boundaries.
Reduced exchange in the grain-boundary region gives rise to a
quasidiscontinuity of the magnetization and yields a perturbation
which decays exponentially inside the grains. An effective inter-
granular exchange is obtained as a micromagnetically well-defined
function of the grain-boundary exchange, and it is discussed how
grain boundaries affect the hysteresis loops of nanostructures.

Index Terms—Anisotropy, grain boundaries, intergranular ex-
change, thin films.

I. INTRODUCTION

T HE micromagnetic spin structure at grain boundaries is of
interest in the areas of permanent magnetism, magnetic

recording, soft magnets, and spin-dependent transport. For ex-
ample, inter-granular exchange tends to reduce the storage den-
sity of magnetic recording media but may be favorable in per-
manent magnets [1]–[7].

In permanent magnetism, the rationale is to expand the
limited variety of suitable natural compounds [2], [4], [5], [8].
Based on the assumption of ideal interfaces between hard and
soft grains, record energy products have been predicted in [2],
but in practice it is difficult to realize the theoretical predictions
[4], [5]. One reason is reduced exchange at grain boundaries
[2], [5], [8], because a strong intergranular exchange coupling
is required to synergize the advantages of the phases involved.
On the other hand, the theoretical predictions are very well
satisfied in single-crystalline DyFe/YFe multilayers, which
are characterized by nearly ideal interfaces [9].

Ideal interfaces give rise to a variety of phenomena [8]. First,
the effect of the interface is not limited to the adjacent atomic
layers but extends well into the grain. In hard-magnetic grains,
the penetration depth of the magnetic perturbation is given by
the Bloch-wall width whereas in soft grains
it extends throughout the grain. The effective coupling constant
for two grains of arbitrary anisotropies and

(1)

whereas is the grain size and is the exchange stiffness. For
adjacent hard and soft grains, the coupling energy is delocalized
and stored nearly entirely in the soft grain.

This paper focuses on the mesoscopic spin structure in the
vicinity of nonideal grain boundaries. The basic idea is shown
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Fig. 1. Top view of a granular thin film (schematic). The arrows show the
magnetization in the middle of each grain, and the no local easy axes may be
aligned (oriented) or random.

Fig. 2. Two neighboring grains. Far away from the boundary, the
magnetizationM is parallel to the grain easy axesn(r).

in Fig. 1: semihard or hard grains are embedded in an interac-
tion matrix. The intergranular exchange, mediated by the ma-
trix, leads to random-anisotropy correlations (shadowed area)
whose size depends on the strength of the effective in-
tergranular exchange.

The aim of this work is to determine the spin structure in the
vicinity of the grain boundaries and to derive effective intergran-
ular exchange constants from atomic parameters.

II. I NTERGRANULAR EXCHANGE

The model is shown in Fig. 2: two adjacent but misaligned
grains, characterized by the bulk exchange, are separated by
a boundary region of exchange and thickness. (In the con-
tinuum approximation, and must be replaced by the respec-
tive exchange stiffnessesand .) The anisotropy constant of
the two grains is , and their easy axes are given by the units
vectors and . To calculate the local magnetization ,
which in general deviates from the easy-axis direction, one has
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to minimize the total magnetic energy. The calculation is very
similar to that used in [8].

In the continuum limit [2],

(2)

Here we have ignored the influence of the magnetic field, be-
cause and are the leading energy contribution in hard mag-
nets. Similarly, the spin structure at grain boundaries is only
weakly perturbed by dipole interactions [10].

The constraint complicates the minimization
of (1), but for small grain misalignment one can linearize the
problem [10]:

(3a)

where the easy-axis misorientation , and

(3b)

where the perpendicular magnetization component .
Putting (2) into (3a) and (3b) and minimizing the energy with
respect to yields

(4)

Since is discontinuous, we must use the boundary conditions
[2] .

Solving (4) for in the boundary region yields a
magnetization contribution decaying exponentially inside the
grains and a quasidiscontinuity (magnetization jump) in the
grain-boundary region. The fraction of the magnetization
change realized in the grain boundary is

(5)

For , the quasidiscontinuity vanishes (= 0), whereas
zero intergranular exchange yields .

The energy stored in the grain-boundary region is a mea-
sure for the exchange coupling between the grains. Dividing
by the product . , which describes the degree of grain mis-
alignment, we obtain

(6)

This equation is a grain-boundary analog to the hard-soft result
(1).

The magnetic continuum approximation breaks down on an
atomic length scale [11]. In alayer-resolvedanalysis, (4) must
be replaced by

(7)

where is the thickness of the atomic layers. However, layer-
resolved and continuum calculations yield very similar results.
Fig. 3 shows a spin structure obtained by solving (7).

Fig. 3. Spin structure in the vicinity of the grain boundary. The jump�m
amounts to a quasidiscontinuity of the magnetization at the grain boundary.

III. D ISCUSSION ANDCONCLUSIONS

The effect of the grain-boundary exchange on the magne-
tization depends on whether one considers magnetic equilib-
rium (domains) or nonequilibrium (hysteresis). For example,
random-anisotropy magnets exhibit both ground-state domains
(virgin curve at ) and “dynamic” domains during mag-
netization reversal (corresponding to the major hysteresis loop).
However, the domain size during reversal may be much larger
or much smaller than-dimensional prediction

(8)

where is the grain volume. This equation, which describes the
equilibrium of strongly interacting grains, is obtained by com-
bining well-known random-anisotropy scaling relations with the

calculations presented in this work.
Another case is granular thin films characterized by a

common easy-axis direction and a switching-field distribu-
tion. In this case, which is of some relevance in magnetic
recording, there are no ground-state random-anisotropy do-
mains , but micromagnetic localization [12] leads
to the formation of domains during reversal.

It is well-known that intergranular exchange affects the
hysteretic behavior of nanomagnets and leads, for example, to
remanence enhancement. For grain sizes larger thanone
can show that sharp interfaces yield an enhancement
scaling as , whereas the smooth boundaries considered in
[10] yield .

In conclusion, we have investigated the effect of reduced in-
teratomic exchange at grain-boundaries. Both the continuum
and layer-resolved calculations, which can be considered as ana-
lytic complements to full-scale micromagnetic simulations [13],
yield a quasidiscontinuity of the local magnetization. Other re-
sults are the derivation of a micromagnetically well-defined ef-
fective intergranular exchange constant and scaling rela-
tions for the remanence enhancement.
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