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Three-Dimensional Incompressible Flow Calculations 
with MacCormack's Method 

Robert S. Bernard and Michael L. Schneider1 

Abstract 

MAC3D is a finite-volume computer code that uses 
MacCormack's method to calculate three-dimensional 
incompressible flow on staggered Marker-and-Cell grids. 
The code accepts nonuniform, nonorthogonal grids for any 
curvilinear domain that can be mapped onto a single 
rectangular block. It is applicable for free-surface flow 
at low Froude number, and for confined flow in general. 
Computed results from MAC3D are presented for laminar flow 
in channels with internal obstacles and curved boundaries. 

Introduction 

Incompressible fluids with constant density lack a 
time derivative in the equation for conservation of mass, 
which is given by 

V' g = 0 ( 1) 

where u is the velocity and V is the gradient operator. 
Equation 1 is quite different from the momentum equation, 

where v is kinematic viscosity, 
pressure, t is time, and d/dt 
derivative a/at + g.V . 

(2) 

p is density, p is 
is the SUbstantive time 

The absence of d/dt in Equation 1 demands a method 

lHydraulics Laboratory, US Army Engineer waterways 
Experiment station, 3909 Halls Ferry Road, Vicksburg, MS 
39180-6199. 

219 

Published in Hydraulic Engineering: Saving a Threatened Resource—In Search of Solutions: 
Proceedings of the Hydraulic Engineering sessions at Water Forum ’92. 
Baltimore, Maryland, August 2–6, 1992. Published by American Society of Civil Engineers.



220 HYDRAULIC ENGINEERING 

of solution different from that for Equation 2. The only 
exception is when vertical acceleration is neglected for a 
flow with a free surface. In that case p is hydrostatic 
and proportional to the height h of the surface, and 
Equation 1 then gives way to an equation for dh/dt. 

MacCormack's method is an explicit numerical scheme 
for solving partial differential equations with time 
derivatives (MacCormack 1969). It has been used quite 
often for compressible flow, and occasionally for hydro­
static free-surface flow. with minor alterations, it can 
also be used for confined incompressible flow (Bernard 
1986, 1989). In the latter case, staggered Marker-and-Cell 
(MAC) grids are needed to achieve finite-volume discreti­
zation, with pressure and velocity defined at the cell 
centers and cell faces, respectively. 

In the conventional MacCormack scheme, velocity incre­
ments are calculated from Equation 2, with the pressure 
obtained from an equation of state that relates p to p 
or to h. In the altered scheme, however, the velocity 
increments are first computed without a pressure gradient, 
and then corrected with a pressure gradient obtained from 
the solution of a Poisson equation, 

(3) 

which is discretized in a way that forces the incremented 
velocity y + dy to satisfy Equation 1. The altered Mac­
Cormack scheme is the algorithm used in the two-dimensional 
(2-D) STREMR code (Bernard 1989). 

The MAC3D code is a three-dimensional (3-D) extension 
of STREMR. It accepts nonuniform, nonorthogonal grids for 
curvilinear domains that can be mapped onto a single 
rectangular block, with internal obstacles mapped onto sub­
blocks (cutouts). The code starts with potential flow and 
marches forward in time, allowing the flow to develop 
subject to the boundary conditions and the governing equa­
tions. At the discretion of the user, MAC3D imposes any of 
four different boundary conditions for velocity. For solid 
boundaries, it offers either a slip condition (zero normal 
component) or a no-slip condition (zero normal and tan­
gential components). For inflow/outflow boundaries, it 
offers either a fixed-flux condition (fixed normal com­
ponent) or a radiation condition (extrapolated normal 
component). The radiation condition, originally devised by 
Orlanski (1976), allows internal disturbances to propagate 
out of the flow field with negligible reflection at the 
radiation boundaries. 
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Flow Past a Cylinder 

The circular cylinder offers a simple test problem for 
laminar flow calculations. When the Reynolds number uOD/v 
is greater than 40, vortex sheddi~g occurs for,cyl~nders 
with height H and diameter D 1n channels w1th 1nflow 
velocity uo' depth H» D ,width W» D , and l~ng7h 
L » D. This gives rise to a 2-D vortex stree~ (per1od1c 
vortex shedding) normal to the axis of the cyl1nder. 

In two separate calculations with uOD/v = 100 and 
time-step ~t = 0.05 D/UO ' MAC3D was run 2000 time-steps 
for a cylinder centered 2D downstream from the entrance 
of a rectangular channel with H ~ W = 4D ,and ~ = 13D . 
The flow was from left to right 1n plan v1ew, (F1gure ~). 
uniform inflow was imposed at the entrance, w1th a rad1a­
tion condition at the exit and a no-slip condition on the 
cylinder. The computational grid (not shown) was 60 cells 
long, 30 cells wide, and 30 cells deep; the cuto~t for the 
cylinder was bounded by four surfaces, each of wh1ch was 10 
cells wide (or long) and 30 cells deep. 

In the first case (Figure 1a), a slip conditi~n was 
imposed on the channel sides, top, and bottom. Th1S re­
moved the effects of sidewall and bottom resistance, but 
not channel confinement. The result was a 2-D vortex 
street normal to the axis of the cylinder. 

In the second case (Figure 1b), a slip condition was 
imposed on top, with a no-slip condition on the sides and 
bottom. The result was a steady 3-D wake that was sym­
metric about the vertical plane of symmetry of the channel. 
Apparently the proximity of the no-slip bottom prevented 
vortex shedding at low Reynolds number. If the channel had 
been much deeper, or the Reynolds number much larger, then 
perhaps vortex shedding would have occurred. 

Flow in a Bendway 

Curved channels offer another class of test problems 
for laminar flow. Here the interaction between curvature 
and vorticity generates a helical secondary flow that 
transports momentum toward the outside of channel ,bends. 
For open channels, the vorticity that lea?s to th1s phe­
nomenon is caused by resistance along the s1des and bottom. 
without this resistance, there would be no secondary flow 
and no outward transport of momentum. 

In two separate calculations with uOH/V = 272 , MAC3D 
was run to steady state for a 90-degre? bendway (Figure,2) 
with a uniform trapezoidal cross sect10n and a centerl1ne 
depth H. In multiples of H, the width of the channel 
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was 12.46 at the upper surface and 8.46 at the bottom. 
Likewise in multiples of H, the inner radius of the bend 
was 30.43 at the upper surface, and the lengths of the 
straight entrance and exit sections were 25 and 50, respec­
tively. The computational grid (not shown) was 91 cells 
long, 25 cells wide, and 15 cells deep. The flow was from 
bottom to top in plan view (Figure 2), and the boundary 
condi tions were the same as those for the rectangular 
channel in the previous example. 

with a slip condition on the top, bottom, and sides of 
the channel (Figure 2a), the highest velocities remained 
near the inside of the bend. with a slip condition on top, 
and a no-slip condition on the bottom and sides (Fig­
ure 2b), the highest velocities migrated toward the outside 
of the bend. 

Conclusion 

The computed results in Figures 1 and 2 offer pre­
liminary evidence that MAC3D reproduces observed trends for 
laminar flow, but further testing will be necessary to de­
monstrate code reliability for diverse configurations and 
flow conditions. since most of the prospective applica­
tions involve turbulent flow, much of the code's practical 
utility will depend on the implementation of an adequate 
turbulence model. That will be the next step in MAC3D 
development. 
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