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Coercivity of Titanium-Substituted High-Temperature
Permanent Magnets

Jian Zhou, Ralph Skomski, and David J. Sellmyer

Abstract—The temperature dependence of the coercivity of
Sm–Co based magnets is investigated by magnetization measure-
ments and model calculations. The Zr-free titanium-substituted
Sm–Co material exhibits a positive temperature coefficient

of the coercivity (TCC) above room tempera-
ture, a reasonable hysteresis-loop shape, and an appreciable
coercivity of 12.3 kOe at 500 C for the nominal composi-
tion Sm(Co6 2Cu0 8Ti0 3). The samples were produced by
heat-treating the disordered 1 : 5 alloy commonly referred to as
the TbCu7 (or 1 : 7) phase. X-ray diffraction analysis shows that,
upon annealing at 1165 C, the starting material segregates into
more-or-less stoichiometric 1 : 5 and 2 : 17 phases. The TCC is
explained by taking into account that two-phase Sm–Co magnets
are of the pinning type, that is the coercivity is realized by cap-
turing (or repelling) domain walls at 1 : 5/2 : 17 phase boundaries.
Starting from a planar-defect approach, the TCC is modeled as a
function of the anisotropy constants of the involved phases. The
present approach yields a fair agreement between theory and
experiment, and explains the existence of a coercivity maximum
in terms of the Cu concentration.

Index Terms—Domain wall pinning, high-temperature perma-
nent magnets, Sm–Co based permanent magnets, temperature de-
pendence of coercivity.

I. INTRODUCTION

V ERY recently, permanent magnets with operating temper-
atures above 450C have become an area of worldwide

scientific and industrial interest. Sm–Co based magnets are
the most promising candidates for the high-temperature
applications because of their high Curie temperature and
good magnetic properties. Conventional Sm(Co,Fe,Cu,Zr)
permanent magnets provide large coercivity and energy product
at room temperature, but the negative temperature coefficient
of coercivity (TCC) makes the 2 : 17 magnets unsuitable for the
high temperature usage since the drops sharply to less than
5 kOe at 450 C. Efforts on improving the high temperature
coercivities of the 2 : 17 magnets have been made by adjusting
the composition and the heat treatment conditions and some
good results have been obtained. In this context an abnormal
temperature dependence of intrinsic coercivity has been found
in the Sm(Co,Fe,Cu,Zr) magnets by several groups [1]–[3].
Recently, we reported a Sm–Co–Cu–Ti high-temperature
permanent magnet with the positive temperature coefficient of
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coercivity [4]. In this paper we will present further improve-
ments of the magnets performance of the material and give an
explanation of the positive TCC behavior.

II. SAMPLE PREPARATION

A series of Sm(Co Cu Ti ) ( , 0.5, 0.6, 0.65,
0.7, 0.8, 0.9) samples were prepared by arc-melting the starting
elements materials with purity of at least 99.9% under flowing
argon. The samples were sealed in a quartz tube filled with argon
and heat-treated in the following way: solutionized at 1165C
for 3 hrs, then cooled to 825C and annealed for 8 hrs, followed
by slowly cooling with a rate of 1C/min down to 550 C for an-
other 8 hrs. X-ray diffraction was used to determine the crystal
structure. Hysteresis-loop measurements at room temperature
and at elevated temperatures (up to 600C) were performed by
VSM and SQUID.

III. STRUCTURAL AND MAGNETIC PROPERTIES

The x-ray diffraction pattern show that the as-melted samples
have the disordered CaCu(1 : 5) structure which is commonly
referred to as TbCu(1 : 7) structure. After heat-treatment, the
samples segregate into two phases: a nearly stoichiometric 1 : 5
grain-boundary phase and a main ThZn (2 : 17) phase. Trans-
mission electron microscopy shows that the microstructure is
cellular and reminiscent of that of industrial 2 : 17 magnets. De-
tails about the crystal structure and the microstructure can be
found in our previous work [4]. The thermal-magnetic analysis
confirmed the existence of this two-phase mixture.

Fig. 1 shows the typical hysteresis loops of a
SmCo Cu Ti sample at different temperatures. The
intrinsic coercivity of this sample increases as the temperature
goes up, from 0.1 kOe at the temperatures below 300C
to a maximum value of 3.8 kOe at 550C. This coercivity
change is reversible, i.e., the coercivity drops back to almost
zero when the temperature goes back to room temperature
after high temperature measurement. The magnets exhibit
a positive temperature coefficient of the coercivity. Fig. 2
shows the temperature dependence of coercivity of five
Sm(Co Cu Ti ) bulk samples with , 0.5, 0.6,
0.65 and 0.8. It can be seen that with increasing Cu content, the
intrinsic coercivity of the samples increase and the temperature
coefficient of coercivity decreases gradually to almost zero
( ). When Cu content is higher ( ), the TCC
goes to negative value ( and 0.9 are not shown in the
figure). A maximum value of 10.0 kOe coercivity at 500C
was obtained in the Sm(Co Cu Ti ) sample. To reach
a higher , we changed the composition of above sample
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Fig. 1. Hysteresis loops of a Sm(Co Cu Ti ) sample at different
temperatures.

Fig. 2. Temperature dependence of intrinsic coercivities of
Sm(Co Cu Ti ) bulk samples withx = 0:4–0.8.

slightly by adjusting the Ti amount to 0.3. After same heat
treatment condition, this Sm(CoCu Ti ) sample showed
a coercivity of 12.3 kOe at 500C (Fig. 3 shows a typical loop).
Further investigations on the Ti content effect are under work.

IV. ORIGIN OF THEPOSITIVE TEMPERATURECOEFFICIENT

To explain the TCC we take into account that two-phase
Sm–Co magnets are of pinning type [5], that is the coercivity is
realized by capturing (or repelling) domain walls at 1 : 5/2 : 17
phase boundaries. There are two aspects: the interaction of
a plane domain wall with the grain boundary [6] and the
effect of the domain-wall curvature [7]. The pinning inter-
action of a plane wall is characterized by two effects. First,
the domain-wall energy , where is the domain-wall
position, acts as an attractive or repulsive potential which pins
the wall. Second, the domain-wall fine structure of the wall
changes on pinning. For example, if the grain-boundary region
is soft-magnetic, then the domain-wall width increases.

Fig. 3. Hysteresis loop of Sm(Co Cu Ti ) at 500 C.

A simple variational approach is to use a trial function for the
magnetization

(1)

where is a wall-width parameter and is the position of the
wall. After some calculation, we obtain the following expression
for the pinning energy

(2)

where
and are the indices which refer to the main and boundary

phases, respectively,
is the thickness of the boundary phase, and

.
Minimizing the total energy with respect to and yields

two coupled nonlinear and field-dependent equations, and the
coercivity is determined by the condition . The
solution of this problem goes beyond the scope of this work,
but it can be shown that the coercivity can be approximated by
the well-known equation

(3)

where is the anisotropy field of the main phase. Essentially,
the corrections to this equation, which is exact for thin bound-
aries , amount to the replacement of the factor
by a weakly exchange and boundary-thickness dependent
function.

The domain-wall curvature, which reflects the geometry of
the cellullar structure of the magnet, has been outlined in [7]
and is automatically contained in full-scale simulations [8].
Plane walls in complicated structures may exhibit a very low
coercivity, because is largely averaged inside the wall,



2520 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001

Fig. 4. Schematic temperature dependencies of anisotropy for a main phase
(dashed line) and grain-boundary phases [9] having moderate Cu content (solid
line) and high Cu content (dotted line).

Fig. 5. Model calculation of the temperature dependence of the pinning
coercivity.

so that some wall curvature is necessary to locally plane walls
and to realize the coercivity (3). However, very high curvatures
indicate magnetic softness and reduce the coercivity by sup-
pressing . Note that the plane-wall pinning and curvature
effects are the main contributions to the pinning coercivity;
magnetic viscosity is a small coercivity-reducing correction to
these two effects [9].

Equation (3) shows that the pinning coercivity is essentially
proportional to the anisotropy difference
between the two involved phases. Fig. 4 shows typical tem-
perature dependencies for a main phase (dashed line) and a
grain-boundary phase (solid line), whereas the corresponding
temperature dependence of the coercivity is shown in Fig. 5. It is

important to note that exhibits a pronounced dependence
on the chemical composition. In particular, Cu strongly reduces
the anisotropy of the 1 : 5 grain-boundary phase [3]. This is the
origin of the composition dependence of the curves shown in
Fig. 2: moderate amounts of Cu yield dependencies sim-
ilar to the solid line in Fig. 4 and give rise to a coercivity max-
imum, whereas a further increase of the Cu content suppresses
the anisotropy at all temperatures (dotted curve in Fig. 4) and
the coercivity becomes a monotonously decreasing function of
the temperature. (Note that the low-temperature anisotropy of
Cu-free SmCo is much higher than that of SmCo .) For in-
termediate Cu contents it follows from Fig. 4 that there are
also temperatures at which . In this case, (3) predicts

, but in reality there are chemical concentration fluctua-
tions [10], so that the material is never truly homogeneous.

V. CONCLUSIONS

A Sm(Co Cu Ti ) ( –0.9) series of bulk sam-
ples were investigated and a positive temperature coefficient of
coercivity was found in low Cu content samples ( ).
When the Cu content is high ( ), the TCC changes to
negative value. A Sm(Co Cu Ti ) sample with positive
TCC reaches the maximum of 9.7 kOe at 500 C, while a
Sm(Co Cu Ti ) sample with negative TCC gives an of
12.3 kOe at 500C. This behavior is explained in terms of do-
main wall pinning mechanism in a two-phase magnet.
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