Pyruvate, Orthophosphate Dikinase in Leaves and Chloroplasts of C₃ Plants Undergoes Light-/Dark-Induced Reversible Phosphorylation

Chris J. Chastain
Jason P. Fries
Julie A. Vogel
Christa L. Randklev
Adam P. Vossen

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/usdaarsfacpub
Part of the Agricultural Science Commons

Chastain, Chris J.; Fries, Jason P.; Vogel, Julie A.; Randklev, Christa L.; Vossen, Adam P.; Dittmer, Sharon K.; Watkins, Erin E.; Fiedler, Lucas J.; Wacker, Sarah A.; Meinhover, Katherine; Sarath, Gautam; and Chollet, Raymond, "Pyruvate, Orthophosphate Dikinase in Leaves and Chloroplasts of C₃ Plants Undergoes Light-/Dark-Induced Reversible Phosphorylation" (2002). Publications from USDA-ARS / UNL Faculty. Paper 51.
http://digitalcommons.unl.edu/usdaarsfacpub/51

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Pyruvate, Orthophosphate Dikinase in Leaves and Chloroplasts of C₃ Plants Undergoes Light-/Dark-Induced Reversible Phosphorylation


Department of Biology, Minnesota State University, Moorhead, Minnesota 56563 (C.J.C., J.P.F., J.A.V., C.L.R., A.P.V., S.K.D., E.E.W., L.J.F., S.A.W., K.C.M.); and Department of Biochemistry, George W. Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664 (G.S., R.C.)

Pyruvate, orthophosphate (Pi) dikinase (PPDK) is best recognized as a chloroplastic C₄ cycle enzyme. As one of the key regulatory foci for controlling flux through this photosynthetic pathway, it is strictly and reversibly regulated by light. This light/dark modulation is mediated by reversible phosphorylation of a conserved threonine residue in the active-site domain by the PPDK regulatory protein (RP), a bifunctional protein kinase/phosphatase. PPDK is also present in C₃ plants, although it has no known photosynthetic function. Nevertheless, in this report we show that C₃ PPDK in leaves of several angiosperms and in isolated intact spinach (Spinacia oleracea) chloroplasts undergoes light-/dark-induced changes in phosphorylation state in a manner similar to C₄ dikinase. In addition, the kinetics of this process closely resemble the reversible C₄ process, with light-induced dephosphorylation occurring rapidly (≤15 min) and dark-induced phosphorylation occurring much more slowly (≥30-60 min). In intact spinach chloroplasts, light-induced dephosphorylation of C₃ PPDK was shown to be dependent on exogenous Pi and photosystem II activity but independent of electron transfer from photosystem I. These in organello results implicate a role for stromal pools of Pi and adenylates in regulating the reversible phosphorylation of C₃-PPDK. Last, we used an in vitro RP assay to directly demonstrate ADP-dependent PPDK phosphorylation in desalted leaf extracts of the C₃ plants Vicia faba and rice (Oryza sativa). We conclude that an RP-like activity mediates the light/dark modulation of PPDK phosphorylation state in C₃ leaves and chloroplasts and likely represents the ancestral isoform of this unusual and key C₄ pathway regulatory "converter" enzyme.

Link to full text:
http://www.plantphysiol.org/cgi/content/abstract/128/4/1368

© 2002 American Society of Plant Physiologists