
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

1-1-2007

Software Pattern Communities: Current Practices
and Challenges
Scott Henninger
University of Nebraska - Lincoln, scotth@cse.unl.edu

Victor Corrêa
University of Nebraska - Lincoln, vcorrea@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Henninger, Scott and Corrêa, Victor, "Software Pattern Communities: Current Practices and Challenges" (2007). CSE Technical
reports. Paper 52.
http://digitalcommons.unl.edu/csetechreports/52

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/52?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages

 TR-UNL-CSE-2007-0015

Software Pattern Communities: Current Practices and
Challenges

Scott Henninger, Victor Corrêa
Computer Science and Engineering

Univ. of Nebraska-Lincoln
Lincoln, NE, 68588-0115

+1 402-472-8394

{scotth, vcorrea}@cse.unl.edu

Abstract
Software pattern users, software developers creating high-quality software systems, have few
resources available to support pattern-based development practices. Patterns are currently
disseminated in disjoint collections in various publishing mediums with little or no technology
support. As the number of patterns and diversity of pattern types continue to proliferate,
potential pattern users are faced with difficulties of understanding what patterns exist and when,
where, and how to use them. This defeats the very purpose of patterns as a medium to
encapsulate and disseminate recurring design experiences. In this paper, an initial study is done
among a set of pattern collections in order to alert for the difficulties related to the use patterns in
an effective manner to support software development activities. Based on the empirical survey,
challenges are identified that define impediments to the federation of software patterns into an
interconnected body of knowledge. A Semantic Web ontology is presented as an initial attempt
to solving some of these issues through the use of Web-based ontologies.

1. Software Patterns in Practice
Software patterns encapsulate proven solutions extracted from the experiences of software
developers that address recurring problems within a context [25]. The concept of using patterns
to disseminate and document design knowledge derives from Alexander’s notion of design
patterns for Architecture [4]. The main intention of design patterns has dual connotations: 1)
provide a common vocabulary by which people can succinctly communicate well-known
solutions to recurring problems; and 2) create a systematic language for developing holistic
solutions by composing patterns at different levels of abstraction [3]. While the former concept
of patterns as vocabulary has been widely embraced by the software patterns community, far less
attention has been paid to meeting the challenge of achieving pattern languages for systematic
design. While this problem has been recognized for some time [2, 35], little progress has been
reported to date.

It can be argued that the informal use of software patterns have become ubiquitous in software
development research and practice [24], at least with respect to an awareness of the topic and
collective knowledge of a few well-known patterns. Current design pattern practices have
focused on identifying and describing patterns and patterns collections, where pattern collection
is defined as a set of patterns addressing a fairly cohesive problem domain (often referred to as a
pattern “language”) and are stored in a common location such as a Web site, book or conference
paper.

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2007-0015
Issued 2/18/2007

 2

Currently, software patterns are designed for human consumption alone – pattern users (software
designers, etc.) are expected to study patterns in a collection and hold their cognitive repertoire
of techniques. This representation must be preserved, as most pattern collections are described at
a level of abstraction that requires human interpretation of pattern contents and adaptation to the
implementation context. But free text representations severely limit the potential of tool support
for pattern-based design methods. More formal specifications for pattern languages enhance
machine processing capabilities [18, 32], such as search and automated translation to code or
models, but lose the human readability aspects that are critically important to the utility of
software patterns. Representations and tools are needed that both retain human readability while
enhancing automated processing capabilities.

Patterns now exist for a wide range of software development topics, from process patterns to
code pattern at various levels of abstraction to maintenance patterns. The scale of published
software patterns is reaching appoint where it is becoming infeasible to know all potentially
relevant patterns, let alone understand when a given pattern should be applied to a specific
context. The need for tools to help people find, understand, and apply patterns is becoming a
critical need.

The overall objective of this research is to describe the current state of software patterns and
enumerate existing barriers for using patterns as a more effective software development tool. We
begin by surveying currently available pattern collections, focusing on the scale, diversity, and
other factors that characterize current software pattern practice. Drawing on this empirical data,
we then identify a number of challenges for transitioning from current practices to realizing the
potential of patterns as a unified (federated) body of knowledge. We conclude by briefly
describing our plans to utilize Semantic Web technologies as a promising technical solution that
meets many of the challenges we identify.

2. Surveying Software Pattern Collections
The overall goal of the software pattern community has been to build a body of literature to
support general design and development efforts. This culture of focusing on documenting sound
design principles and cataloging best practices are a first step toward codifying software design
knowledge. Therefore, the processes of discovering, describing, verifying, and reaching a degree
of consensual agreement, and disseminating patterns has taken precedent for design pattern
research [17].
This has in turn led to the development of a number of patterns across a wide range of topics. To
better understand the scope and content of current patterns, we have conducted a survey of
currently published patterns. Thus far, we have sampled 170 pattern entities (collections and
individual patterns not in a collection) with a total of 2,241 patterns. Although “patterns” (in the
Alexandrian sense) have been created for a number of disciplines, we focused solely on those
related to software development and the software development process, including topics such as
software project management. The patterns we surveyed ranged widely from those that were
closely related to programming activities and could potentially be used in automated code
development to the process and management patterns that are strictly informational. The
following sections explains our findings in detail, but we should be clear that our purpose is not
to simply enumerate the different patterns available, but to analyze our findings to find current

 3

Figure 1: Number of Patterns Created, 1994 - 2007.

trends in pattern practices. The focus is largely on “collections”, sets of collection gathered in a
single location, and the types of patterns these collections contain.

2.1 Patterns and Pattern Collections
The definitions we used are as consistent as possible with current software pattern literature.
Patterns are considered as structured entities that address a commonly recurring problem within
a context. For this study, we do not make any value judgments on the validity or quality of
patterns, whether they have been properly vetted, or whether they were duplicates (although See
Section 2.4). Pattern collections are loosely coupled patterns located in a common location
(repository, paper, book, Web site). Most collections address a fairly homogeneous set of topics
and consistently use a common pattern form, a set of attributes used to describe the collection’s
pattern, although pattern form vary widely between collections. Examples of pattern collections
include the well-known Gang-of-Four (GoF) design patterns [25], the five volume Pattern-
Oriented Software Architecture (POSA) series [10-12, 28, 39], the van Welie usability collection
[45], the Portland Pattern Repository [16] etc.

Many collections are referred to as pattern languages. It can be argued that many of these
languages, which in Alexander’s vision were connected by a kind of “grammar” that supported
the composition of patterns from large to small scale [4], lack the means to systematically
compose patterns into holistic design and therefore are not “languages”. Again, we do not at this
time want to make these distinctions, leaving it instead as a topic for further debate in the
community. We have opted to use the term “collection” to refer to any body of patterns, whether
considered a language or not. The overall criteria we want to communicate is that individual
patterns should be seen as just piece of a larger puzzle that together sheds light on a body of
design knowledge. Indeed, the objective of our future work is to provide the means to put these
pieces together in a meaningful way.

2.2 Scale and Availability of Software Patterns
Even before 2000, when Rising published a catalog of over 1000 patterns [38], it was stated that
“...there are now so many patterns it is very difficult to remember them all” [14] and that “the
increase in the number of Design Patterns makes a common vocabulary unmanageable” [1].
Since then, the number of patterns has doubled and have been created for an increasing diverse
set of software development
topics. Figure 1 shows our
current sampling in terms of
the year they were created (we
could not determine the year
of origin for 9 patterns).
Appendix A shows a listing of
all pattern collections we
used. This should be seen as
an underestimate of the actual
number of patterns available,
as it is a daunting task to find
all patterns in various printed
and electronic sources. In
alignment with Risings

 4

Figure 2: Number of Patterns within Collections.

Table 1: Pattern Diversity by Technical Domain

Type #Collections #Patterns

User Interface 14 425
Programming Languages 14 243
Architecture 11 231
OO Design 33 161
Workflow 11 149
Systems 14 140
Communication 11 91
Database 5 54
Frameworks 4 51
Components 3 47
Parallelization 3 35
Security 2 16
Management 2 12
Concurrency 7 11
Networking 3 11
Information Integrity 1 10
Fault Tolerance 1 8

publication, we found 1142
patterns up to and including
the year 2000. Since that
time, including the partial
year 2007, we found
another 1092 patterns,
evidence that the rate of
pattern creation remains
steady. Although
somewhat inconsistent over
the years, 2002 – 2007 are
amongst the most prolific
years, with the exception of
a low year in 2006.

The size of collections
ranges from 1 (which really isn’t a collection) to 146. Figure 2 reveals that collections tend to be
small. Excluding the 46 individual patterns, 70 of 121 collections (58%) have between 2 and 10
patterns. The mode is 5 patterns in a collection and the average is 18, being skewed by a
collection with 146 and two with over 90 patterns. The pattern listing in Appendix A are sorted
by the number of patterns in the collection.

2.3 Types of Software Patterns
The development of pattern languages addressing holistic solutions for software requires patterns
that address a wide variety of topics. Table 1 shows a subset of these topics that are related to
technical (software-oriented) domains. Although the largest number of patterns are in User
Interface, Programming Languages, and Architecture, the largest set of collections are oriented
toward OO Design, ala the GoF patterns. Not all patterns address software development

technologies. Fourty-one of the
collections, with 546 patterns, we
surveyed do not fall under the 17
categories shown in Table 1. Many of
these patterns address specific application
domains, which define an even larger set
of topics.
Another measure is the ability to address
various software development issues,
both process and lifecycle. Figure 3
shows the distribution of patterns across
types of software development activities.
Design and Architecture patterns
constitute a majority of the types of
development patterns (65%). The types
of patterns available is quite broad
although Testing patterns, in particular,
seem underrepresented relative to the

 5

Figure 3: Types of Software Development Patterns.

amount of effort that
goes into testing
methodologies and
techniques. Thirty of
the collections,
containing a total of 315
patterns, were not
classified s software
development patterns
and do not appear in
Figure 3.

2.4 Variants and Duplicates
In our investigations, we have found few instances of direct duplication. For example, there are
four instances of the “Breadcrumbs” usability pattern [40, 45, 46], one of which uses the (more
appropriate) name “Homeward Bound” [13] (which includes a study showing that Breadcrumbs
does not solve the problem – enhancing navigation in Web sites). But pattern variants are much
more common. For example, Dyson and Anderson split the GoF State pattern into a set of intra-
related patterns forming a language of the overall GoF State pattern [5]. Variants of the GoF
Observer pattern include the “Extended Observer” [44] and “The Middle Observer” [27]. GoF
Patterns have also been combined to make new aggregate patterns such as the Managed
Observer, which combines the Observer and Mediator patterns [32].
There are many other examples that seem to be valid by Alexander’s definition that a good
pattern describes “the core of the solution to that problem in such a way that you can use the
solution a million times over without doing it the same way twice” [3], there are instances in
which valid pattern variants exist and should be documented. Others are more oriented toward
specific implementation. For example, the GoF Iterator pattern has documented variants
including patterns that follow the Iterator and Enumeration classes in Java [19]. Some of these
implementation-oriented patterns may not be considered as valid by many pattern experts.

There are often good reasons for these variants, and they therefore not only need to be embraced,
but represented in terms of how and when the variants should be used. This also adds a
dimension of semantic complexity to the problem of finding appropriate patterns. I.e. once
appropriate patterns are found, a secondary task arises to choose which variant is best suited to
the task at hand.

2.5 Pattern Relationships
Perhaps most concerning for the development of systematic pattern-based methodologies is that
patterns tend to be defined in isolation from other pattern collections, having no inter-collection
links or relationships. While many pattern collections either have explicit references to “related
patterns” or embed pattern relationships within pattern descriptions, most relationships are intra-
collection, i.e. between patterns within the collection. Cross-collection (inter-collection)
relationships are rarely found, and most references are to a minority of collections, notably the
GoF or POSA patterns. Out of 170 collections, we were able to find only one instance that lists
URL references to patterns in other collections, the Web patterns collection [40]. However, the
URLs in this collection are listed in plain text and not hyperlinks.

 6

Figure 4: Types of Electronic Accessibility.

Table 2: Mappings Between Three Pattern Forms.
GoF POSA PLML

name name name
author author author
implementation implementation implementation
consequences consequences
known uses known uses
structure structure
motivation problem problem
applicability context context
related patterns see also related-patterns
intent
collaborations
participants
sample code
also known as alias
 summary synopsis
 solution solution
 example example
 example resolved
 dynamics
 variants
 forces
 evidence
 diagram
 rationale
 literature
 confidence
 management
 illustration
 pattern-link
 creation-date
 credits
 last-modified
 revision-number

Even within pattern collections, intra-
collection relationships are not always
represented explicitly through a “related
patterns” or other attributes. Even rarer are
instances in which machine-processable links,
such as URLs, are used. As stated, some links
between patterns in the collection are found in
the pattern text, a reasonable way to describe a
pattern and its overall context with other
patterns. Nonetheless, the lack of explicit links
between patterns to define relationships
between patterns, whether inter- or intra-
collection, remains an impediment for
computation pattern language support.

2.6 Pattern Forms
One issue that may contribute to the lack of
cross-reference (inter-collection) relationships
is the lack of consistency between pattern
forms. Most pattern collections use a common
pattern form, consisting of a set of named
attributes that describe collection patterns, to
describe all patterns within the collection,
although some collections use a flat-text

format. Almost every pattern collection we surveyed used a different pattern form. Table 2
shows some of the complexities involved through three example pattern forms. Even where the
attributes have the same meaning, different terms are used, such as “also known as” and “alias”.
Others are more subtly similar, such as “motivation” (GoF) and “problem” (POSA), which may
be misaligned enough to not be used in the same category.

Standard formats have been proposed to incorporate a wide variety of pattern forms. PLML is
specified as a DTD schema where none of the elements are required so that free-text forms can
be accommodated [22]. This allows flexibility, but still does not accommodate all pattern forms,
as shown in Table 2. Not all pattern form attributes are appropriate for all pattern types. For
example, the GoF ‘collaborations’ and ‘participants’ attributes refer to specific object-oriented
design constructs and will not be appropriate for other design methodologies or other pattern
types. Any standard form will need to
be both flexible and able to
accommodate a wide variety of pattern
types while retaining a degree of
formal representation for
computational queries and browsing.

2.7 Pattern Distribution
Mediums

Patterns are available in a number of
publishing mediums, from books to

 7

proceedings to Web sites. Figure 4 shows the distribution of patterns across these mediums.
Much of the distinction is between printed and electronic mediums. Although 31% of the
patterns are locked in book format (proceedings, journal, book), 69% are electronically
accessible in the Web. However, less than half (44%) of the Web-accessible patterns are
represented using structured text such as HTML (10% of patterns), or XML (1 collection of 120
patterns). The other 57% are available through PS/PDF/Word files. In Figure 4 , “Hardcopy”
means any printed form, such as books, proceedings, and journals. Patterns in the “Hardcopy &
PS/PDF/Word” category means that the patterns were published in hardcopy and all patterns in
that publication are also available in a download able form. For example, the GoF patterns are
available in book (hardcopy) form only and therefore appear in the “Hardcopy only” category.
PLoP proceedings are hardcopy but can be downloaded in PDF format. Therefore, they are
placed in the “Hardcopy & PS/PDF/Word” category. The same is true for the “Hardcopy &
HTML”, although some Web pages for books have only a subset of their patterns online. These
are divided into their respective categories. For example, suppose we have a printed collection
of 24 patterns, 10 of which appear on the publication’s Web page. Then 10 would be used for
the “Hardcopy & HTML” category, and 14 (24-10) would appear in the “Hardcopy only”
category.

3. Towards Patterns as a Unified Body of Knowledge
Three is a great potential for software patterns to become a medium for defining knowledge
about best practices for software development and about domains of expertise in software
development. In many respects, this is already happening. The process of vetting patterns
through shepherding processes is a peer review process that ensures a degree of quality. In
addition, most patterns define structured knowledge representations (pattern forms) that can be
utilized to search for relevant patterns by different attributes – problem, solution, context, author,
etc.
But software patterns have yet to receive the widespread use commensurate with the potential of
the technique. As shown in our study, the scale and diversity of patterns has reached the point
where tools are needed to help pattern users and developers find and discover potentially relevant
patterns. Critical to the issue of tool support is utilizing existing patterns and defining the
infrastructure for new pattern development and refinement. Given the haphazard way in which
patterns have been created thus far, many issues need to be addressed before software patterns
become an integral part of software development practices.

3.1 Six Challenges for Federating Software Patterns
Through our empirical work, we have identified a set of challenges for federating the currently
disconnected realm of pattern collections into a more integrated and interconnected body of
knowledge. Our challenges are heavily biased toward federating currently heterogeneous
patterns in a distributed electronic format utilizing Web technologies. In addition, the
development of communities that build on their collective intelligence in a “network effect” [9]
is crucial to the realization of this vision. To achieve these goals, the following challenges must
be met:
1) Electronic Accessibility. A wide variety and large number of software patterns are available

in electronic form. While all of these can be accessed through the Web, about a quarter of
these are available in HTML and XML, a total of 537 patterns in the collections we surveyed.

 8

Many more are available in PDF or other txt-based document formats. The challenge is to
turn these patterns into formats that can be searched and browsed through pattern attributes.
XML formatting is most amenable to this and other forms of machine computation. HTML
and other file formats will either need to be converted into some XML or database form or
have some kind of wrapper that supports attribute-based querying. While this involves some
effort, the benefit of interconnecting the patterns may prove worthwhile.

2) Lack of Standard Pattern Forms. The pattern forms in Table 2 are indicative not only of
the heterogeneous pattern forms available, but also the complexities involved in reconciling
the attributes of forms to support querying and browsing. The lack of formal and widely
adopted standards adds a rather cumbersome barrier to develop patterns in a way that can be
meaningfully communicated and inter-linked. However, it is neither possible nor desirable to
create a single pattern form that meets the needs of all types of patterns. Different pattern
types may require different types of attributes. Techniques are needed to create relationships
between pattern attributes such that different collections in different forms can be used as a
federated whole while accommodating necessary differences for different pattern types.

3) Inter-Pattern Relationships. Defining intra-pattern relationships within collections, which
is not a universal practice for pattern collections, is clearly only a first step towards
understanding how patterns can and should be used together. Defining inter-pattern
relationships is far less common, to the point that the practice does not exist at all. Not only
does this make it difficult to federate pattern collections, but larger, more damaging,
implications can be found when considering the severe paucity of knowledge about the
interrelationships of patterns – for novices and experts alike. Software patterns and
collections tend to be written to solve specific problems with little to no regard about how the
pattern could or should be used with other patterns. This makes it all the more difficult to
understand the interdependencies, potential side-effects, or benefits of using pattern
combinations.

There have been some attempts to define standard relationship types between patterns.
Noble defined three “Primary Relationships”, Uses, Refines, and Conflicts, and a number of
“Secondary Relationships” (expressed in terms of the primary relationships), Used by,
Refined by Variant, Variant Uses, Similar, Combine, Requires, Tiling, Sequence of, and
Elaboration [34]. These are a good starting point for defining pattern relationship semantics,
but are by no means a complete list, and has certainly not become an integral part of defining
patterns. The lack of infrastructure (relationships types, semantic links, etc.) for defining
inter-collection relationships makes it extremely difficult to devise a true pattern “languages”
that integrate different kinds of knowledge for a holistic solution.

4) Software Pattern Validation. Very little work has been done to capture pattern validation
efforts. With the exception of the “confidence” and “evidence” attributes in PLML [22],
pattern forms, much less patterns themselves, do not explicitly represent information about
pattern validation. While patterns in PLoP proceedings undergo a rigorous shepherding
process through Writer’s Workshops [36], this and subsequent validation information is lost.
Information associated with validation and empirical evaluation efforts for patterns and
issues associated with the patterns need to be captured and associated with the patterns to
help designers make informed decisions on how and when to use the pattern. Pattern usage
information is also crucial to the effective application and evolution of patterns. Information

 9

such as how a pattern was applied to different context, caveats, etc., are all critical
information for the pattern user.

5) Tracking Software Pattern Variants and Duplicates. Closely related to pattern validation
and the need for community-based control of pattern creation is the need to track pattern
variants and duplicates. Duplicates should be allowed – people may want to express the
patterns different and should be allowed a certain degree of expression. Variants are more
difficult, as there are may types of valid variants, some examples of which were described in
Section 2.4. There is currently no mechanism for tracking such variants. Some means is
needed by which a community of experts can comment on and arrive at a consensus on
whether a pattern is a duplicate, an implementation, a refinement, specialization, etc.
Tracking these types of variants will not only provide the means to browse and query
distributed patterns, it will provide the means for a greater understanding of the knowledge
behind the patterns for both pattern creators and users alike.

6) Updating Software Pattern Knowledge. Patterns are currently written and disseminated in
a static form. Once the pattern is created, no changes are expected or allowed, with the
possible exception of edits performed by the authors of patterns disseminated in Web
mediums. In some respects, this is expected, as the pattern should be “timeless”. But with
the rapid pace of change in technology in the software field, this rule may not hold. Better
patterns could be created, refinements may become more useful that the original or other
variants, etc. Allowing these refinements, to whatever extent for formal change request
desired, can lead to more accurate and up-to-date knowledge. Usage data, instances where
one or more patterns are used can also be captured, leading to information on how useful a
pattern is would also be a valuable source of validation information.

All of these issues involve viewing patterns not as isolated collections of information, but as an
interconnected corpus of patterns. Furthermore, the creation of pattern languages will be
facilitated to the extent that patterns are defined with meaningful relationships between them.

4. Utilizing Interconnected Software Patterns
Our survey leads to the inevitable conclusion that the volume, diversity, and disconnected nature
of current software pattern practices have become significant barriers to the effective use of
software patterns in the software development process. A central contention of our research is
that loosely coupled and isolated collections of patterns, however well specified and/or
catalogued, cannot alone provide significant improvement for software design productivity and
quality. Current informally practiced techniques, particularly given the failure to include cross-
collection relationships, fall far short of the original vision of pattern languages as organized
collections of patterns informed by their context of use [4].
Widely adopted standards are necessary but face significant problems with reconciling diverse
pattern forms, many of which have domain-specific attributes that are necessary to properly
define patterns of that type. An alternative approach is to construct formal models of software
patterns that support translations and/or transformations between forms. In addition, formal
specification of design patterns can enhance the understanding of their semantics [43], for
example by explicitly showing how a pattern solution is associated with a design problem
(perhaps via explicit forces) within a context. This can help users decide which patterns are most
appropriate for a given design problem and how the patterns can be combined. Formalization

 10

can also support a wide range of pattern-based tools, from finding instances of patterns in
programs and fine-tuning them to meet pattern specifications [21] to helping designers find and
adapt relevant patterns.

4.1 Web-Based Ontologies
Building on our survey results, we are investigating the use of Semantic Web ontologies [8, 33]
to formally define patterns and semantic relationships between patterns that can be distributed
across collections in the World-Wide Web. The use of ontologies to represent pattern languages
is a marriage of two complementary philosophies. An objective of pattern languages is to
provide the means for professionals to use a common vocabulary about design and other issues
[25]. An ontology, often defined as a “formal, explicit specification of a shared
conceptualization” [26, 42], consists of a vocabulary of concepts, relationships, and axiomatic
definitions. Ontologies are therefore a natural extension to the essential design pattern goal of
providing a common vocabulary to communicate design concepts. Ontologies are therefore a
natural choice for formally representing shared vocabularies that can be used as a framework for
pattern languages.
We are in the early stages use a semi-formal approach that defines pattern relationships using
formal Description Logic implemented in the Web Ontology Language (OWL) recommendation
from W3C. OWL defines a frame-based knowledge representation language with axiomatic
constructs for logic-based expressivity that can be distributed over multiple files in the World-
Wide Web [31]. OWL includes vocabulary for describing properties and classes that support the
construction of class taxonomies and relationships between class properties and class instances.
OWL Description Logic (OWL-DL) is founded on decidable fragments of first order logic and
axiomatic definitions that can be used by Reasoners to infer new facts and to check the
consistency of resulting ontologies [7]. OWL properties are predicates that operate on subjects
(domains) and map to objects (range). Range values can be restricted through various axiomatic
class construction operators.

4.2 Ontology-Based Pattern Languages
Figure 5 shows a screen images from the OWL ontology editor Protégé [41] displaying very
early work in creating Web-based ontologies for pattern forms. The figure shows set of pattern
forms arranged in an inheritance hierarchy, including the Pattern Forms in OWL (PFOWL –
pronounced fowl) form, our ontology-based pattern form derived from the PLML standard [22].

OWL is design to be compatible with XML technologies. The plm:, gof:, posa: and pfowl:,
prefixes that appear in the left-hand window of and elsewhere are XML namespace abbreviations
[29]. These indicate that the constructs come from different OWL files that can be distributed
across the WWW and federated into a single location for computational purposes (search,
reasoning, etc.). In our example, the namespaces represent common pattern forms located in
different files and federated through the OWL import mechanism into our PFOWL file. The
plm: namespace defines our essential form, the Coplien form [15], and the “canonical” form [6].
The gof: namespace defines the original software design pattern form from the book whose
authors are commonly referred to as the Gang of Four [25]. Note that the plm: namespace build
on each other by inheriting properties, while the gof:GoF_Form starts from the base (empty)
PLForm (“Pattern Language” Form). The posa: namespace represents the Pattern-Oriented

 11

Figure 5: Pattern forms in PFOWL.

Software
Architecture [39]
form. This form
inherits from the
EssentialForm
and adds new
properties as
defined by the
POSA form.
The
EssentialForm
pattern form
properties (pattern
form attributes) is
shown in the top-
left window of
Figure 5 (follow
①). This defines
three main types
of properties,
Problem,
Solution, and Context, along with the pattern name and author. The UsabilityPatternCollection
specializes the PFOWL form for use in usability patterns (see ②). This form builds on the other
forms (note the namespaces – for example, hasImplementation comes form the gof: namespace)
to add a number of properties defined in the PLML standard. In addition, the universal
quantifiers restricts the range of values for a property to a class. This enables consistency
checking and inferencing while allowing reuse of concepts.
Note that each of the concepts representing pattern forms are intermixed within the inheritance
hierarchy. This is a degree of flexibility not afforded with other computational formats such as
XML and provides a powerful distributed framework for defining and maintain ontologies. For
example, another pattern collection designer may want to create a hybrid form that adds
inCollection, hasKnownUse, and hasImplementation to the EssentialForm. This can be easily
done through an ontology editor that imports the EssentialForm and PFOWL ontology files. The
new pattern form would be created by constructing a subtype of plm: EssentialForm and adding
the properties pfowl:inCollection, pml:hasKnownUse, and gof:hasImplementation
A key element of our approach to pattern representation is the ability to federate distributed
pattern collections. Pattern designers retain local control over their patterns while continuing to
use pattern forms that are convenient for them. Federating distributed pattern collections
involves two distinct problems that are addressed by Semantic Web technologies: 1) patterns can
be located on different machines distributed throughout the Web while retaining unique
identities; and 2) different pattern forms can be used together as a unified whole to the extent that
semantic matches exist between attributes in the forms.

Due to space constraints and the objectives of this paper, we are only able to provide this small
glimpse into how OWL and Semantic Web technologies can be utilized to federate
heterogeneous and distributed patterns. This continues to be ongoing work and future papers

 12

will provide further details on how this approach works and how it can be utilized to create an
infrastructure for creating semantically interconnected pattern languages.

4.3 Related Work
This approach is similar in scope to some formal approaches for specifying patterns. Previous
research in this area all build on formal specification of object-oriented languages and have
focused on a subset of the GoF design patterns. LePUS (LanguagE for Pattern Uniform
Specification) uses first-order logic to describe structural properties of design patterns [20]
through formula-based mechanisms and visual representations. LePUS is based on ‘fragments’,
which are abstractions of design elements, such as classes, patterns, methods, and code that
contain roles or slots which are filled by other fragments to produce an interconnected
architecture [23]. An extension of LePUS (extended LePUS or eLePUS) broadened the range of
patterns that can be specified by modifying the syntax of LePUS constructs, adding new
constructs, and extending representations to include specifications of intent, applicability, and
collaborations [37]. DisCo (Distributed Co-operation) uses a form of Temporal Logic of Actions
(TLA) [30] to formally describe constraint interactions for reactive systems [32]. Therefore,
while LePUS efforts focus on the static aspects of patterns, DisCo is primarily concerned with
the behavioral aspects. BPSL (Balanced Pattern Specification Language) combines both
approaches into a language designed to specify the ‘solution’ element of GoF design patterns
[43].
All of these formal methods are based on models of object-oriented systems and therefore do not
scale to other types of patterns such as process or usability patterns. In addition, while these
approaches all have reasonable formal representations of patterns, none have been explicit about
the types of rigorous reasoning enabled by their techniques. Nor have they been particularly
clear on why the formal descriptions are needed and how the benefits of formally defined
patterns can be utilized to outweigh the obvious costs of describing patterns using formal
notations.

5. Future Work
A survey such as this one is only a representative example of the actual data that exists. In our
case, there are many patterns were probably not able to find, and absolute completeness will run
into a point of diminishing returns that will make further efforts infeasible. Our central claim is
that we have captured a sufficient breadth and depth of the currently available patterns to make
valid statements about current pattern practices.

Nonetheless, the data presented here is seen only as the beginning of a dialog to both inform the
community of existing patterns and allow the community to tell us what collections and patterns
have been missed. We plan to develop a simple interface to the overall data built on OWL data
and integrated into a Wiki structure for collaborative editing. The objective would be to
continuously refine our knowledge of existing patterns by drawing on the collective knowledge
of the community while providing a search-and-browse interface to explore pattern collections
and some of the data presented here.
The ontology-based pattern forms is in its formative stages. We believe that Web-based
ontologies have the potential to address the challenges presented in this paper and will work to
address each of the challenges. Work will continue to both refine the ontology and add pattern

 13

collections as instances in the federated data. Some pattern collection owners have agreed to
allow us to represent their collections in our ontology. Through these efforts, we will refine and
build the ontologies to suit different patterns and pattern forms while creating the added value of
semantically interconnected patterns.

Relationships between patterns in different collections currently do not exist, much less semantic
relationships. We will continue to explore refinements to Noble’s pattern relationship types [34].
In addition, relationship between pattern instances must be researched and crated. We hope to
pen a dialog with the patterns community on this issue, which ahs barely been explored thus far.
Again, Wiki structures and cultivating a community interested in creating inter-collection pattern
relationships will be critical to ensure accuracy and approach completeness.

6. Conclusions
The dual goals of pattern languages, to provide a common vocabulary of succinct
communication concerning design problems and the creation of a systematic language for
composing holistic design problems, has the potential for significant impact on software
development practices. Unfortunately, significant barriers exist for the realization of these goals.
With over 2200 patterns available, no coordination between isolated pattern collections, complex
pattern variants and a lack of standards (flexible or otherwise) for creating patterns, patterns risk
being lost in a babble of disconnected voices.

As an initial inquiry into the current state of software pattern practices, we have surveyed
published pattern collections to draw conclusions on current challenges for taking patterns to the
next level as a viable software development practice. The good news is that the body of
knowledge collectively represented by patterns is vast and increasing. The bad news is that it
has reached the point where it is difficult to find and select relevant design patterns, particularly
when the difference between the patterns is subtle.

While a focus on tools has astutely been avoided in favor of creating pattern content, the problem
is reaching, or has already reached, the point where we can no longer require software
professionals to read a couple of books on software patterns and expect that their “cognitive
toolbox” will sufficiently cover a sufficient range of known patterns. Tools are needed, not just
to search for patterns, but to create an awareness of existing patterns, browse pattern collections,
collect relevant patterns for a given development effort, create systematic pattern languages for
design, etc.
By explicitly enumerating the challenges currently facing software patterns, we hope to begin a
dialog that addresses patterns at a “meta” level – from patterns as an entity to how patterns can
be used together as a medium for coordinating software development knowledge and becoming a
significant software development technique. Future research will investigate the use of Semantic
Web technologies as a medium for federating and disseminating heterogeneous, distributed
pattern collections, while providing a flexible medium for new standards for not only pattern
creation, but also for systematic pattern languages that computationally assist larger design
problems.
Acknowledgments. This research is funded by CCF 0613985 of the National Science
Foundation.

 14

7. References
[1] E. Agerbo, A. Cornils, "How to preserve the benefits of Design Patterns," OOPSLA '98, Vancouver,

Canada, pp. 134-143, 1998.
[2] C. Alexander, "The Origins of Pattern Theory: the Future of the Theory, and the Generation of a

Living World," OOPSLA 1996 Keynote Address,
http://www.patternlanguage.com/archive/ieee/ieeetext.htm, 1996.

[3] C. Alexander, The Timeless Way of Building. Oxford Univ. Press, New York, 1979.
[4] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns, Buildings, Construction.

Oxford University Press, New York, 1977.
[5] P. Anderson, P. Dyson, "State Patterns," Pattern Languages of Program Design 3, R. Martin, D.

Riehle, F. Buschmann, Ed(s). pp. 125-142, 1998.
[6] B. Appleton, "Patterns and Software: Essential Concepts and Terminology,"

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html, Updated: Feb., 2000.
[7] F. Baader, I. Horrocks, U. Sattler, "Description Logics as Ontology Languages for the Semantic

Web," in Lecture Notes in Artificial Intelligence, vol. LNCS 2605, D. Hutter, S. Werner, Eds.,
Springer, 2003, pp. 228-248.

[8] T. Berners-Lee, "Semantic Web Roadmap," W3C Semantic Web Vision Statement,
http://www.w3.org/DesignIssues/Semantic.html, 1998.

[9] T. Berners-Lee, M. Fischetti, M. L. Dertouzos, Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web. Harper Business, 2000.

[10] F. Buschmann, K. Henney, D. C. Schmidt, Pattern-Oriented Software Architecture, Volume 4: A
Pattern Language for Distributed Computing. Wiley & Sons, 2007.

[11] F. Buschmann, K. Henney, D. C. Schmidt, Pattern-Oriented Software Architecture, Volume 5: On
Patterns and Pattern Languages. Wiley & Sons, 2007.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, 1996.

[13] A. Clemens, "the Diemen Repository of Interaction Design Patterns,"
http://www.visiblearea.com/cgi-bin/twiki/view/Patterns/Home_, Updated: April 28, 2007.

[14] M. P. Cline, "The pros and cons of adopting and applying design patterns in the real world," Comm.
of the ACM, 39(10), pp. 47-49, 1996.

[15] J. O. Coplien, Software Patterns. SIGS Press, 1996.
[16] W. Cunningham, "Portland Pattern Repository," http://c2.com/ppr/, Updated: Sept., 2006.
[17] W. Cunningham, "Shephearding Guidelines," PLop 98, http://c2.com/w4/ploptory/, 1998.
[18] J. Deng, E. Kemp, E. G. Todd, "Managing UI pattern collections," Proc. 6th ACM SIGCHI New

Zealand Chapter's Int'l Conf. on Computer-Human Interaction (CHINZ '05), pp. 31-38, 2005.
[19] J. Dietrich, C. Elgar, "Towards a Web of Patterns," Proc. Semantic Web Enabled Software

Engineering (SWESE), 117-132, Galway, Ireland, 2005.
[20] A. Eden, A. Yehudai, J. Gil, "Precise specification and automatic application of design patterns,"

Proc. Automated Software Engineering Conference, pp. 143–152, 1997.
[21] A. H. Eden, Y. Hirshfeld, "Principles in formal specification of object oriented architectures,"

CASCON '01, 2001.
[22] S. Fincher, "CHI 2003 Workshop Report - Perspectives on HCI patterns: concepts and tools

(introducing PLML)," Interfaces, 56, pp. 26-28, 2003, http://www.bcs-hci.org.uk/interfaces.html.

 15

[23] G. Florijn, M. Meijers, P. van Winsen, "Tool support for object-oriented patterns," 11th European
Conf. on Object Oriented Programming - ECOOP’97, Springer-Verlag, 1997.

[24] E. Gamma, "Design Patterns Ten Years Later," in Software Pioneers: Contributions to Software
Engineering. New York, Springer-Verlag, 2002, pp. 688-700.

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[26] T. Gruber, "Towards principles for the design of ontologies used for knowledge sharing," Int'l
Journal of Human-Computer Studies, 43, pp. 907-928, 1995.

[27] P. Iaria, Chenini, "Refining the Observer Pattern: The Middle Observer Pattern," PLoP 98,
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/, 1998.

[28] M. Kircher, O. Jain, Pattern-Oriented Software Architecture, Volume 3: Patterns for Resource
Management. Wiley, 2004.

[29] M. Klein, "XML, RDF, and Relatives," IEEE Intelligent Systems, 15(2), pp. 26-28, 2001.
[30] L. Lamport, "The temporal logic of actions," ACM Trans. Programming Languages and Systems,

16(3), pp. 872-923, 1994.
[31] D. L. McGuinness, F. van Harmelen, "OWL Web Ontology Language Overview," W3 Consortium,

http://www.w3.org/TR/owl-features/, Updated: February 10, 2004.
[32] T. Mikkonen, "Formalizing Design Patterns," Int'l Conf. Software Engineering, pp. 115–124, 1998.
[33] E. Miller, J. Hendler, "Web Ontology Language (OWL)," W3 Consortium,

http://www.w3.org/2004/OWL/, Updated: April 24, 2007.
[34] J. Noble, "Classifying relationships between object-oriented design patterns," Australian Software

Engineering Conference (ASWEC), pp. 98-107, 1998.
[35] J. Noble, "Towards a Pattern Language for Object-Oriented Design," Proc. of Technology of

Object-Oriented Languages and Systems (TOOLS Pacific), 28, IEEE Comp. Soc., pp. 2-13, 1998.
[36] PLoP, "PatternLanguagesOfPrograms," Hillside.net, http://hillside.net/plop/, 2005.
[37] S. Raje, S. Chinnasamy, "eLePUS—A Language for Specification of Software Design Patterns,"

Proc. 2001 ACM Symp. Applied Computing, pp. 600–604, 2001.
[38] L. Rising, The Pattern Almanac 2000. Addison-Wesley, 2000.
[39] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software Architecture,

Volume 2: Patterns for Concurrent and Networked Objects. Wiley, 2000.
[40] K. Snow, M. Marks, D. Hong, T. Dennis, "Web Patterns Project," U.C. Berkeley School of

Information,
http://harbinger.sims.berkeley.edu/ui_designpatterns/webpatterns2/webpatterns/home.php, 2006.

[41] Stanford Univ., "Protégé Project," Stanford Medical Informatics, http://protege.stanford.edu/.
[42] R. Studer, V. R. Benjamins, D. Fensel, "Knowledge Engineering: Principles and Methods," Data

and Knowledge Engineering, 25, pp. 161-197, 1998.
[43] T. Taibi, D. C. Ling Ngo, "Formal Specification of Design Patterns - A Balanced Approach,"

Journal of Object Technology, 2(4), pp. 127-140, 2003.
[44] UIUC, "Pattern Stories Wiki," Univ. of Illinois at Urbana-Champaign,

http://wiki.cs.uiuc.edu/PatternStories, 2005.
[45] M. van Welie, "Patterns in Interaction Design," http://www.welie.com/, Updated: June 27, 2006.
[46] Yahoo!, "Yahoo! Design Pattern Library," http://developer.yahoo.com/ypatterns/, 2006.

Appendix A
Title Source # of

Patt. Year

Patterns in Interaction Design http://www.welie.com/ 146 2005
"Analysis Patterns: Reusable Object Models" "Analysis Patterns: Reusable Object Models" 95 1996
"Designing Interfaces: Patterns for Effective
Interaction Design" http://www.mit.edu/~jtidwell/common_ground_onefile.html 94 2005

Ajax Design Patterns http://ajaxpatterns.org 70 2006
"Requirements Patterns and Antipatterns: Best (and
Worst) Practices for Defining Your Requirements" http://www.tabletuml.com/RPandAP/default.aspx 69 2007

"Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions" http://www.eaipatterns.com/toc.html 65 2003

Yahoo! Design Pattern Library http://developer.yahoo.com/ypatterns/ 63 2005
"Agile Documentation: A Pattern Guide to Producing
Lightweight Documents for Software Projects"

"Agile Documentation: A Pattern Guide to Producing Lightweight Documents for
Software Projects" 55 2004

"J2EE Antipatterns" "J2EE Antipatterns" 52 2003
"Patterns of Enterprise Application Architecture" http://www.martinfowler.com/eaaCatalog/ 51 2002
"Object Oriented Reengineering Patterns" http://www.iam.unibe.ch/~scg/OORP/book.html 49 2002
A Generative Development-Process Pattern
Language http://users.rcn.com/jcoplien/Patterns/Process/index.html 48 1995

UML Pattern Language http://www.ncc.up.pt/~zp/aulas/0607/es/geral/bibliografia/UML%20Pattern%20Lan
guage.pdf 46 2000

"Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems" Addison Wesley Professional 44 2002

"AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis" John Wiley & Sons 42 1998

WikiPatterns http://www.wikipatterns.com/ 42 2007
"Patterns for Effective Use Cases" Addison Wesley Professional 32 2002
"Enterprise Solution Patterns Using Microsoft .NET
Version 2.0: Patterns & Practices" Microsoft Press 32 2004

"Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object
Middleware"

 John Wiley & Sons 32 2004

XML Design Patterns http://www.xmlpatterns.com/ 28 2000
Hypermedia Design Patterns Repository http://www.designpattern.lu.unisi.ch/index.htm 28 1997
Embedded Design Patterns http://www.eventhelix.com/RealtimeMantra/Patterns/ 28 2004
"Small Memory Software: Patterns for Systems with
Limited Memory" http://hillside.net/patterns/books/Details/056.htm 27 2001

A Pattern Language for Pattern Writing http://hillside.net/patterns/writing/patternwritingpaper.htm 26 1997
Experiences -- A Pattern Language for User
Interface Design http://www.maplefish.com/todd/papers/Experiences.html 26 2003

Data Access Patterns: Database Interactions in
Object-Oriented Applications" http://helloworld.siteburg.com/content/databases/db2/0131401572_toc.html 25 2003

GoF Patterns http://www.vico.org/pages/PatronsDisseny.html 23 1995
Caterpillar's Fate: A Pattern Language for the
Transformation from Analysis to Design http://c2.com/ppr/catsfate.html 21 1995

User Interface Design Patterns http://www.cs.helsinki.fi/u/salaakso/patterns/index.html 21 2003
Workflow Patterns http://www.workflowpatterns.com/patterns/index.php 21 2000
Patterns for System Testing "Pattern Languages of Program Design 3" 20 1997

Web Design Patterns Library http://harbinger.sims.berkeley.edu/ui_designpatterns/webpatterns2/webpatterns/h
ome.php 20 2006

A Pattern Language for Writers' Workshops users.rcn.com/jcoplien/Patterns/WritersWorkshop/ 19 1999
"Patterns for Parallel Programming" 19 2004

"Microsoft Integration Patterns" http://download.microsoft.com/download/a/c/f/acf079ca-670e-4942-8a53-
e587a0959d75/IntPatt.pdf 18 2004

Patterns Systems for Hypermedia http://www-di.inf.puc-rio.br/schwabe//papers/PloP97.pdf 18 1997
POSA 1 Patterns http://www.vico.org/pages/PatronsDisseny.html 17 1996

POSA 2 Patterns "Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and
Networked Objects " 17 2000

RAPPeL: A Requirements-Analysis-Process Pattern
Language for Object-Oriented Development http://www2.umassd.edu/SWPI/ATT/pattern/rapel.html 17 1995

Understanding and Using the ValueModel
Framework in VisualWorks Smalltalk http://c2.com/ppr/vmodels.html 17 1994

An Input and Output Pattern Language: Lessons
from Telecommunications http://hillside.net/plop/plop98/final_submissions/P31.pdf 17 1999

New Clients with Old Servers: A Pattern Language
for Client/Server Frameworks http://citeseer.ist.psu.edu/156837.html 16 1995

Lazy Optimization: Patterns for Efficient Smalltalk
Programming "Pattern Languages of Program Design 2" 16 1996

EPISODES: A Pattern Language of Competitive http://c2.com/ppr/episodes.html 16 1996

17

Development
"Data Model Patterns: Conventions of Thought" http://www.tdan.com/i005fe03.htm 15 1995
"Core J2EE Patterns: Best Practices and Design
Strategies" http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html 15 2003

Prioritizing Forces in Software Design "Pattern Languages of Program Design 2" 13 1996
C++ Idioms www.laputan.org/pub/sag/coplien-idioms.pdf 13 1999
Capable, Productive, and Satisfied: Some
Organizational Patterns for Protecting Productive
People

http://hillside.net/plop/plop98/final_submissions/P54.pdf 11 1999

SCRUM: A Pattern Language for Hyperproductive
Software Development http://citeseer.ist.psu.edu/397129.html 11 1999

"Use Cases: Patterns and Blueprints" http://www.awprofessional.com/articles/article.asp?p=353171&seqNum=2&rl=1 11 2004
POSA 3 Patterns "Pattern-Oriented Software Architecture: Patterns for Resource Management" 10 2004
G++: A Pattern Language for Computer-Integrated
Manufacturing http://citeseer.ist.psu.edu/134161.html 10 1995

The CHECKS Pattern Language for Information
Integrity http://c2.com/ppr/checks.html 10 1994

Selecting Locking Designs for Parallel Programming http://citeseer.ist.psu.edu/493802.html 10 1996
A Pattern Language for Improving the Capacity of
Reactive Systems "Pattern Languages of Program Design 2" 10 1996

Customer Interaction Patterns http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P11/P11.htm 10 1999
"Java Testing Patterns" 10 2004

Patterns of Cooperative Interaction http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.ht
ml 10 2001

Process Patterns "Process Patterns" 10 1998
A Generative Pattern Language for Distributed
Processing "Pattern Languages of Program Design 1" 9 1995

Patterns for Evolving Frameworks http://st-www.cs.uiuc.edu/~droberts/evolve.html 9 1997
Tropyc: A Pattern Language for Cryptographic
Object-Oriented Software http://citeseer.ist.psu.edu/62190.html 9 1999

Finite State Machine Patterns "Pattern Languages of Program Design 4" 9 1999
"Analysis Patterns 2" http://www.martinfowler.com/ap2/index.html 9
Evolving Frameworks: A Pattern Language for
Developing Object-Oriented Frameworks http://st-www.cs.uiuc.edu/users/droberts/evolve.html 9 1996

Patterns for Software Architectures http://citeseer.ist.psu.edu/shaw96some.html 8 1995
MOODS: Models for Object-Oriented Design of
State http://www.soberit.hut.fi/tik-76.278/alex/plop95.htm 8 1996

Crossing Chasms: A Pattern Language for Object-
RDBMS "Pattern Languages of Program Design 2" 8 1996

Transactions and Accounts http://c2.com/cgi-bin/wiki?TransactionsAndAccounts 8 1996
Some Patterns for Software Architecture http://www.cs.cmu.edu/afs/cs.cmu.edu/project/vit/ftp/pdf/PLoP95.pdf 8 1996
Fault-Tolerant Telecommunications System Patterns http://users.rcn.com/jcoplien/Patterns/PLoP95_telecom.html 8 1996
Accessing Relational Databases http://citeseer.ist.psu.edu/90550.html 8 1997
High-Level and Process Patterns from the Memory
Preservation Society: Patterns for Managing Limited
Memory

http://jerry.cs.uiuc.edu/plop/plopd4-submissions/P54.doc 8 1999

A Collection of History Patterns hillside.net/plop/plop98/final_submissions/P63.pdf 8 1999
Display Maintenance: A Pattern Language hillside.net/plop/plop98/final_submissions/P15.pdf 8 1999
More Process Patterns "More Process Patterns" 8 1999
A Pattern Language for Tool Construction and
Integration Based on the Tools and Materials
Metaphor

http://www.riehle.org/computer-science/research/1994/plop-1994-tools.pdf 7 1995

Stars: A Pattern Language for Query-Optimized
Schemas http://c2.com/ppr/stars.html 7 1994

Reusability Through Self-Encapsulation "Pattern Languages of Program Design 1" 7 1995
Partitioning Smalltalk Code into ENVY/Developer
Components http://c2.com/ppr/envy/ 7 1996

State Patterns http://citeseer.ist.psu.edu/396622.html 7 1997
The Selfish Class http://www.joeyoder.com/papers/patterns/Selfish/selfish.html 7 1997
Architectural Patterns for Enabling Application
Security st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/yoder.pdf 7 1999

Big Ball of Mud http://www.laputan.org/mud/ 7 1999
The Diemen Repository of Interaction Design
Patterns http://www.visiblearea.com/cgi-bin/twiki/view/Patterns/Patterns_repository 7 2003

Implementation Patterns for the Observer Pattern "Pattern Languages of Program Design 2" 6 1996
Accountability and Organizational Structures "Pattern Languages of Program Design 2" 6 1996
Smalltalk Scaffolding Patterns "Pattern Languages of Program Design 4" 6 1999
Parallel Patterns for Synchronization on Shared-
Memory Multiprocessors http://c2.com/ppr/mutex/mutexpat.html 6 1995

Lifecycle and Refactoring Patterns That Support
Evolution and Reuse http://www.laputan.org/Lifecycle.html 5 1995

Discovering Patterns in Existing Applications "Pattern Languages of Program Design 1" 5 1995

18

Patterns for Encapsulating Class Trees http://citeseer.ist.psu.edu/riehle95patterns.html 5 1996
Decision Deferral and Capture Pattern Languages "Pattern Languages of Program Design 2" 5 1996
Organizational Patterns for Teams "Pattern Languages of Program Design 2" 5 1996
Object-Oriented Design Patterns in Reactive
Systems http://citeseer.ist.psu.edu/426489.html 5 1996

A Pattern Language for Developing Form-Style
Windows "Pattern Languages of Program Design 3" 5 1997

The Points and Deviations Pattern Language of Fire
Alarm Systems www.cs.wustl.edu/~schmidt/PLoP-96/molin.ps.gz 5 1997

Patterns for Designing in Teams http://www.charlesweir.com/papers/teamwork.pdf 5 1997
Basic Relationship Patterns http://citeseer.ist.psu.edu/38872.html 5 1999
Creating Reports with Query Objects http://www.joeyoder.com/papers/patterns/Reports/ 5 1999
Patterns for Designing Navigable Information
Spaces www.inf.puc-rio.br/~schwabe/papers/PLoP98.pdf 5 1999

Composing Multimedia Artifacts for Reuse http://hillside.net/plop/plop98/final_submissions/P38.pdf 5 1999
Patterns for Designing Navigable Information
Spaces http://www-di.inf.puc-rio.br/schwabe//papers/PLoP98.pdf 5 1998

Patterns for Adding Search Capabilities to Web
Information Systems http://www-di.inf.puc-rio.br/schwabe//papers/Europlop99.pdf 5 1999

Patterns for E-commerce Applications http://www-di.inf.puc-rio.br/schwabe/papers/Europlop00.pdf 5 2000
The Risk Management Catalog http://members.aol.com/acockburn/riskcata/risktoc.htm 5 1996
Patterns for Generating a Layered Architecture "Pattern Languages of Program Design 1" 4 1995
Pattern-Based Integration Architectures "Pattern Languages of Program Design 1" 4 1995
Patterns of Events "Pattern Languages of Program Design 1" 4 1995
Organizational Multiplexing: Patterns for Processing
Satellite Telemetry with Distributed Teams http://citeseer.ist.psu.edu/berczuk96organizational.html 4 1996

Improve Responsiveness in Interactive Applications
Using Queues "Pattern Languages of Program Design 2" 4 1996

Bridging Patterns: An approach to bridge gaps
between SE and HCI Information and Software Technology, 48, pp 69-89 4 2005

Localized Ownership: Managing Dynamic Objects in
C++ "Pattern Languages of Program Design 2" 3 1996

Evolution, Architecture, and Metamorphosis http://www.laputan.org/metamorphosis/metamorphosis.html 3 1996
Patterns for Logging Diagnostic Messages www.cs.wustl.edu/~schmidt/PLoP-96/harrison.ps.gz 3 1997

Business Patterns of Association Objects http://www.riehle.org/computer-science/programming/patterns/association-
objects/index.html 3 1997

Temporal Patterns hillside.net/plop/plop98/final_submissions/P09.pdf 3 1999
Design Patterns for Object-Oriented Hypermedia
Systems http://www.cs.colorado.edu/~kena/classes/7818/f99/patterns.pdf 2 1996

Default and Extrinsic Visitor "Pattern Languages of Program Design 3" 2 1997
A Pattern Language of Transport Systems (Point
and Route) www.cs.wustl.edu/~schmidt/PLoP-96/zhao.ps.gz 2 1997

Functionality Ala Carte "Pattern Languages of Program Design 1" 1 1995
Flexible Command Interpreter: A Pattern for an
Extensible and Language-Independent Interpreter
System

"Pattern Languages of Program Design 1" 1 1995

Half-object + Protocol [HOPP] "Pattern Languages of Program Design 1" 1 1995

The Master-Slave Pattern http://www.vico.org/pages/PatronsDisseny/Pattern%20Master%20Slave/index.ht
ml 1 1995

Account Number: A Pattern http://citeseer.ist.psu.edu/wake95account.html 1 1995
A Systems of Patterns "Pattern Languages of Program Design 1" 1 1995
Implementing Patterns http://www.codefarms.com/publications/papers/patterns.html 1 1995
Streams: A Pattern for "Pull-Driven" Processing "Pattern Languages of Program Design 1" 1 1995
The Pipes and Filters Architecture http://www.vico.org/pages/PatronsDisseny.html 1 1995
Client-Specified Self "Pattern Languages of Program Design 1" 1 1995
A Pattern for Separating Assembly and Processing http://citeseer.ist.psu.edu/berczuk95pattern.html 1 1995
Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler
Dispatching

http://citeseer.ist.psu.edu/schmidt95reactor.html 1 1995

Command Processor http://vico.org/pages/PatronsDisseny/Pattern%20Command%20Processor/index.
html 1 1996

The Proxy Design Pattern Revisited "Pattern Languages of Program Design 2" 1 1996
Shopper "Pattern Languages of Program Design 2" 1 1996
Detachable Inspector/Removable cout: A Structural
Pattern for Designing Transparent Layered Services http://citeseer.ist.psu.edu/201036.html 1 1996

Backup Pattern: Designing Redundancy in Object-
Oriented Software "Pattern Languages of Program Design 2" 1 1996

Reflection http://www.vico.org/pages/PatronsDisseny/Pattern%20Reflection/index.html 1 1996
Half-Sync/Half-Async: An Architectural Pattern for
Efficient and Well-Structured Concurrent I/O http://www.cs.wustl.edu/~schmidt/PDF/PLoP-95.pdf 1 1996

Resource Exchange: A Behavioral Pattern for Low-
Overhead Concurrent Resource Management "Pattern Languages of Program Design 2" 1 1996

19

The Client-Dispatcher-Server Design Pattern http://www.vico.org/pages/PatronsDisseny/Pattern%20ClientDispatcherServer/ind
ex.html 1 1996

Active Object: An Object Behavioral Patterns for
Concurrent Programming http://citeseer.ist.psu.edu/lavender96active.html 1 1996

Null Object http://www.cs.oberlin.edu/~jwalker/nullObjPattern/ 1 1997
Manager www.cs.wustl.edu/~schmidt/PLoP-96/sommerlad.ps.gz 1 1997

Product Trader http://www.riehle.org/computer-science/research/1996/plop-1996-product-
trader.pdf 1 1997

Type Object http://citeseer.ist.psu.edu/133930.html 1 1997
Sponsor-Selector http://cns2.uni.edu/~wallingf/patterns/sponsor-selector.html 1 1997
Extension Object http://citeseer.ist.psu.edu/160815.html 1 1997
Acyclic Visitor http://www.objectmentor.com/resources/articles/acv.pdf 1 1997
Recursive Control http://citeseer.ist.psu.edu/181638.html 1 1997

Bureaucracy http://www.riehle.org/computer-science/research/1996/europlop-1996-
bureaucracy.html 1 1997

Acceptor and Connector http://www.cs.wustl.edu/~schmidt/PDF/Acc-Con.pdf 1 1997
Bodyguard http://ei.cs.vt.edu/~cs6704/bodyguard.ps 1 1997
Asynchronous Completion Token www.cs.wustl.edu/~schmidt/PDF/ACT.pdf 1 1997
Object Recovery www.cs.wustl.edu/~schmidt/PLoP-96/silva.ps.gz 1 1997
Serializer http://www.riehle.org/computer-science/research/1996/plop-1996-serializer.pdf 1 1997
Double-Checked Locking www.cs.wustl.edu/~schmidt/PLoP-96/DC-Locking.ps.gz 1 1997
External Polymorphism http://citeseer.ist.psu.edu/181874.html 1 1997
Abstract Class st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/woolf.pdf 1 1999
Role Object st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/riehle.pdf 1 1999
Essence hillside.net/plop/plop98/final_submissions/P10.pdf 1 1999
Object Recursion www.industriallogic.com/patterns/P21.pdf 1 1999
Prototype-Based Object System "Pattern Languages of Program Design 4" 1 1999
Abstract Session: An Object Structured Pattern www.doc.ic.ac.uk/~np2/patterns/session.ps.gz 1 1999
Object Synchronizer http://citeseer.ist.psu.edu/216930.html 1 1999
Proactor http://www.cs.wustl.edu/~schmidt/PDF/proactor.pdf 1 1999
Feature Extraction: A Pattern for Information
Retrieval micro-workflow.com/PDF/plop98.pdf 1 1999

Identify the Champion: An Organizational Pattern
Language for Program Committees http://hillside.net/plop/plop98/final_submissions/P07.pdf 1 1999

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2007

	Software Pattern Communities: Current Practices and Challenges
	Scott Henninger
	Victor Corrêa

