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The peak power that could be delivered to the heating tape 
through this system was about 1830 W.

To begin an experiment, the data acquisition software was 
initiated, and 120  s of data were acquired and displayed on-
screen to ensure that all thermocouples read room tempera-
ture. Both Variacs were then adjusted, with the aid of the dig-
ital multi-meters, to produce the maximum possible power 
output without exceeding their operational limits. Thermo-
couple data was acquired for 36 h at a sampling rate of 64 Hz 
(i.e., 64 Samples/s), and the data was averaged every 30 s to 
produce smoother temperature profiles.

The temperature histories of the wheel tread and bearing 
cup for Tests 5 and 4 are shown in Figure 7 and Figure 8, re-
spectively. In both Figure 7 and Figure 8, each curve is ob-
tained by averaging the profiles of all the thermocouples as-
signed to monitor each object’s temperature, i.e.; the wheel 
tread temperature curve is the arithmetic mean of thermocou-
ples 1 through 10, and the bearing cup temperature curve is 
the mean of thermocouples 11 through 16.

By looking at both Figure 7 and Figure 8, it can be seen that 
in both tests, the wheel tread reaches steady state conditions 
much faster than the bearing cup, which is to be expected 
since the heat input is applied to the wheel tread which then in 
turn heats up the bearing. Furthermore, the effect of radiation 
exchange between the hot wheel and the bearing is minimal. 
The plots show only a 2.2 °C (4 °F) rise in the bearing cup tem-
perature when body-to-body radiation is allowed. Another 
indicator that conduction heat transfer is dominant is that 
throughout each transient experiment, the spatial distribution 
of temperature shows a monotonic decrease from wheel tread 
to wheel web to axle to bearing as expected along a heat con-
duction path (see [20]).

3. Finite element model

While the experiments were being carried out, finite-ele-
ment (FE) modeling was used to analyze the steady temper-
ature in the wheel set. Two simulations focused on replicat-
ing the two experimental setups described earlier, where 
the wheel tread temperature reached approximately 135  °C 
(275 °F). To this effect, a computer solid model of the wheel-

bearing assembly was created. Once the model was com-
pleted, it was imported to ALGORTM 20.3 software and dis-
cretized into 5297 elements with a mesh size of 0.02515 m. A 
combination of bricks, wedges, pyramids and tetrahedral ele-
ments were used to successfully mesh the model; surface knit-
ting was used in order to properly apply convection loads.

The materials used for the analysis were taken from the 
ALGORTM material library. For the wheel steel, AISI 1080 with 
a thermal conductivity of 47.7 Wm–1K–1 was used; for the axle 
steel, AISI 1060 with a thermal conductivity of 51.9 Wm–1K–1 
was chosen; and for the bearing steel, AISI 8620 with a ther-
mal conductivity of 46.6  Wm–1K–1 was selected. The surface 
heat transfer coefficient for convection from the wheel to the 
air was taken to be 5.3 Wm–2K–1 using free-convection corre-
lations (see for example [21]). The heat delivered to the model 
was distributed uniformly over the wheel area covered by the 
heating tape, and power delivered was set equal to the mea-
sured value from the test run to be simulated.

The FE model was used to simulate the conditions of Tests 
4 and 5 which were aimed at quantifying the effect of body-to-
body thermal radiation exchange between the wheel and the 
bearing. The simulation results for Test 5, in which thermal ra-
diation exchange between the wheel and bearing was allowed, 
are shown in Figure 9. The simulation results for Test 4 were 
very similar to those shown in Figure 9 since, as explained ear-
lier, the effect of thermal radiation exchange is minimal when 
the wheel tread temperature is at about 135 °C (275 °F).

Looking at Figure 9, it can be seen that it is an accurate de-
piction of the experimental test as shown by the fact that the 
lower portion of the heated wheel is cooler than the rest of the 
wheel because this represents the area of the wheel tread that 
was not covered by the heating tape. Furthermore, the other 
wheel is entirely cold since no heat was applied to its tread 
and it lies relatively far from the heat source.

By comparing the results of the FE model to those of the 
experimental testing, the temperature values corresponded 
very well for all tests conducted, with the percent error be-
ing within 6%. A plot comparing the experimental tempera-
ture distribution along the radius of the wheel to that pro-
duced by the FE model is provided in Figure 10 for Test 5. In 
Figure 10 the small difference in the temperature of the wheel 
tread results from applying the average heat input of each test  

Figure 7.  A plot of the transient temperature profiles for the wheel 
tread and bearing cup for Test 5, in which body-to-body radia-
tion between the wheel and the bearing was allowed (total heat 
input = 1834 W).

Figure 8.  A plot of the transient temperature profiles for the wheel 
tread and bearing cup for Test 4, in which body-to-body radiation be-
tween the wheel and the bearing was blocked via a cone-shaped radia-
tion shield (total heat input = 1815 W).
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in the FE model. Agreement between Test 4 data and the FE 
results were comparable, however these results are not shown 
for the sake of brevity. The very good agreement between the 
FE model results and the acquired experimental temperature 
data provides validation for the developed FE model, and in-
dicates that the assumptions made during the development of 
the model and the correlations used to calculate the free-con-
vection coefficients were appropriate.

4. Steady-analytical model

The steady heat transfer through a railroad wheel is de-
scribed in this section with an analytical model. The analyti-
cal model captures a few features of the heat transfer, and 
through a systematic comparison with experimental data via 
regression analysis, the experimental wheel-to-air convection 
coefficient can be determined. The steady-analytical model is 
needed because the finite-element model, constructed as it is 

with a commercial software package, is not readily adapted 
for regression analysis.

The steady model includes heat transfer by conduction 
through the web of the wheel and convection heat transfer 
from exposed surfaces. The web of the wheel is the thin re-
gion between the wheel tread (outer radius) and the hub (in-
ner radius). For simplicity, the web is treated as an annular 
disk of uniform thickness, connected to the wheel tread and 
hub by contact conductances, and transferring heat to the 
surroundings by convection. Refer to Figure 11. The steady-
analytical geometry, then, is a fin in the shape of a uniform 
annular disk.

The steady temperature in the uniform annular disk satis-
fies the following equations:

(1)

at r = a,    (2)

at r = b,    (3)

Figure 9. A graphic of the simulation that was performed utilizing the finite-element model devised to match the results of Test 5, in which body-
to-body radiation exchange between the hot wheel and the bearing was allowed. The surface heating applied to the area of the wheel tread cov-
ered by the heating tape was set equal to that measured for Test 5, 1834 W.

Figure 10.  A plot comparing the temperature distribution along the 
radius of the wheel obtained experimentally from Test 5 to that pro-
duced by the FE model.

Figure 11. Wheel geometry and steady heat transfer model of wheel 
web as a uniform annular disk, a < r < b, connected to hub and wheel 
tread by contact conductances h1 and h2 and with side losses described 
by heat transfer coefficient h∞.
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Here m2 = 2 h∞/k/w where h∞ is the heat transfer coefficient for 
convection loss from the sides. The contact conductances pro-
vide a simplified description of the heat transfer at the tran-
sition between the hub and web (h1) and the wheel tread and 
web (h2). Quantities T1 and T2 are the hub temperature and 
wheel tread temperature, respectively, that communicate with 
the wheel web through contact conductances h1 and h2.

Next, the temperatures will be normalized to put the above 
equations into a standard form. For θ=T(r)-T∞, θ1=T1-T∞, 
θ2=T2-T∞, the above temperature equations may be written

(4)

at r = a,   (5)

at r = b,   (6)

The above temperature problem is challenging because the 
general solution takes the form of modified Bessel functions 
and because of the type 3 non-homogeneous boundary condi-
tions (contact conductance). The method of Green’s functions 
(GF) was used to solve for the temperature, as this method 
is systematic and readily handles the two non-homogeneous 
boundaries. The temperature solution has the following form

(7)

where G(r,r′) is the GF. The specific GF for this case is given in 
Appendix A. For a full discussion of the GF method see [22, 
chap. 3].

Next, results of the steady-analytical model are presented 
in comparison with two experiments. For the purposes of 
comparison with the steady model, thermocouples 17 and 18 
were averaged to provide the wheel tread temperature, T2, 
thermocouples 27–29 were averaged to provide the hub tem-
perature T1, and thermocouples 20–25 on the wheel web were 
compared with the steady thermal model. The geometric val-
ues and material properties used and given quantities in the 
thermal model are given in Table 1. The comparison with ex-
perimental data was carried out by coding the steady-analyt-
ical model in a general-purpose computer language (Matlab) 
and performing a non-linear regression analysis to determine 
the unknown heat transfer quantities B∞, B1, and B2.

The results of the curve fit are given in Table 2, along with 
some experimental temperatures, for comparison with Tests 
4 and 5. The most important value in Table 2 is the Biot num-
ber for external heat loss, B∞, and the close agreement be-
tween Tests 4 and 5 suggests that the addition of the radiation 
shield for Test 5 did not change the external heat loss environ-
ment for the wheel. Figure 12 shows a representative compari-
son between the experimental temperature from Test 4 and the 
fitted temperature values. The values from Test 5 (not shown 
for brevity) are also in close agreement. The fact that the steady 
model provides a close fit to the steady data provides evidence 
that the simple uniform-thickness description of the wheel web 
is adequate. This uniform-thickness wheel web has been incor-
porated into the transient model, discussed in the next section.

5. Transient model

In this section a transient model is developed for the heat 
transfer in the wheel heated at the outer rim. The transient 
model contains energy storage in the wheel tread, in the hub/
axle, and in the bearing. The energy storage in the wheel web 
is neglected because of its small mass relative to the mass of 
the wheel tread. That is, the web temperature is expected to 
follow the wheel tread temperature in a quasi-steady fashion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thermal radiation is not included in the transient model, as the 
experiments show that conduction heat transfer is dominant. 
With these assumptions, the temperature in the wheel tread, 
the hub/axle, and bearing satisfy the following equations:

wheel tread:                                                                            (8)

hub:                                                                                         (9)

bearing:                                                                                 (10)

Table 1. Geometric and material properties for the steady-ana-
lytical model and transient model of the railroad wheel. 

a/b	 0.52568
b	 0.3664 m
A0	 0.03246 m2

AB	 0.1265 m2

AH	 0.1977 m2

AT	 0.6753 m2

c	 480 J kg–1 K–1

k	 47.7 W m–1 K–1

V2	 0.032938 m3

V0	 0.004680 m3

w/b	 0.09266
α	  1.274 × 10–5 m2 s–1

ρ	 7800 kg m–3

Table 2. Biot numbers (Bi=hib/k) found from fitting between 
steady model and experimental data; some experimental tem-
peratures are also given. 

	   Test 4	              Test 5	                     Avg.

B∞	 0.1412	 0.1423	 0.1418
B1	 10.0312	 11.5317	 10.7815
B2	 9.0818	 9.4882	 9.2850

T∞ (C)	 31.13	 31.73	 31.43
T1 (C)	 59.54	 58.95	 59.24
T2 (C)	 133.70	 131.38	 132.54

Figure 12.  Comparison between experimental temperatures on the 
wheel web (Test 4) and temperature values computed from the steady 
model.
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See Figure 13 for a schematic of the transient model. The 
wheel tread is heated externally at rate P, loses heat to the web 
at rate Q2, and loses heat by convection through surface area 
AT. The hub/axle gains heat from the web at rate Q1, loses heat 
to the bearing at rate Q0, and loses heat by convection through 
surface area AH. The bearing gains heat from the hub/axle at 
rate Q0 and loses heat by convection through area AB. Next 
quantities Q0,Q1 and Q2 may be stated in terms of contact con-
ductances h0, h1 and h2 according to

Q0 = h0A0 (θ1 - θ0)                                                        (11)
Q1 = h1A1 (θ(a) - θ1)                                                     (12) 
Q2 = h2A2 (θ2 - θ(b))                                                     (13)

Here web temperatures θ(a) and θ(b) are given by Equation (7) 
evaluated at r = a and r = b:

(14)

(15)

The preceding five equations may be substituted into the 
first-order differential equations listed above to give three 
equations for unknown temperatures θ0, θ1, and θ2:

(16)

(17)

(18)
Next the equations will be normalized with the following 
variables:

Using these variables, and dividing by P, the above differen-
tial equations may be written

(19)

(20)

(21)

These equations can be stated compactly by consolidating the 
coefficients of the temperature terms on the left side in the form

(22)

(23)

(24)

where

The above coupled first-order ordinary differential equa-
tions were solved numerically with a Runga-Kutta method. 
The numerical solution was checked against an analytical so-
lution for the special case h0=0 (a two-lump version of the 
model). The numerical and analytical solutions agreed to four 
significant digits.

If the geometry and the constriction resistances are known, 
then temperatures θ0

+, θ1
+, and θ2

+ (for the bearing, hub and 
wheel tread, respectively) may be found as functions of time. 
Once these temperatures have been found, then the tempera-
ture in the wheel web may be found from Equation (7).

6. Transient model results

The transient model was systematically compared with 
data from Test 4 to determine certain model parameters. The 
model parameters that were found are mass ratio M1, and Biot 
numbers B0, B1, B2, and B∞. Parameter M1 represents the effec-
tive mass of the hub/axle, that is, the portion of the hub/axle 
mass that is actively storing heat during the experiment. The 
Biot numbers B0,B1,B2 are associated with heat flow Q0, Q1, Q2, 
respectively, in the model (refer to Figure 13). Biot number B∞ 
describes the heat loss to the air from all exposed surfaces of 
the wheel set.

The raw thermocouple values were adjusted before compari-
son with the model, as follows. First, the size of the data set was 
reduced by selecting every 20th time record. In this way about 
4000 data records at intervals of 30 s were reduced to about 200  

Figure 13. Transient heat transfer model with thermal masses for the 
wheel tread and hub connected by quasi-steady web. Convection to 
the surroundings is described by heat transfer coefficient h∞.
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data records at intervals of 600  s. This reduction did not visi-
bly change the plots of the data while greatly reducing the stor-
age space and computation time involved with the data analy-
sis. Second, each measured temperature value was normalized 
by subtracting the time-varying ambient-air temperature. This 
adjusted data represents the temperature rise above the ambi-
ent, and can be directly compared to the θi values in the model.

The comparison between model and data took the form of 
minimizing the sum-of-squared errors with a subroutine from 
a widely-available programming environment (Matlab). A typ-
ical curve fit of test data is shown in Figure 14 for a subset of 
the data for time range t = 0 to t = 60,000 s. Data for the wheel 
tread, hub/axle, and bearing were fit simultaneously for all 
cases under discussion. The wheel tread values for the model 
agree very closely with the data over the whole time range. The 
hub/axle and bearing values closely agree in the second half of 
the time range. However in the first half of the time range, the 
model values for the hub/axle and bearing are slightly above 
the experimental data. This is caused, in part, by the rise in 
room-air temperature (see Figure 14) during the early part of 
experiment. This occured because the building air condition-
ing system could not compensate for the continuous addition 
of over 1800 W to the room from the heated wheel set, and the 
room temperature rose to a higher level over several hours.

As the transient model is non-linear in the parameters, 
starting values of the parameter (guesses) are needed as an in-

put to the fitting routine. A wide range of guessed values was 
explored, and in every case the results were very close. This 
suggests that the curve fit is robust, that the minimum sum-of-
squares found is a global minimum, and that the best parame-
ter values have been found.

Parameter values for the curve fit shown in Figure 14 are 
given in Table 3 along with parameter values for several other 
curve fits carried out on different subsets of the data with differ-
ent data record durations. The parameter values in Table 3 are 
very consistent over all the data subsets listed. These multiple 
curve fits allow for calculation of an average and standard de-
viation for each parameter value. The greatest variability is with 
parameter B0 which has a standard deviation of about 10% of 
the average value. For all the other parameters the standard de-
viation is less than 4% of the parameter value, which indicates 
that the uncertainty in the parameter values is small.

7. Discussion

There are several issues about the model fitting procedure 
that will be discussed next. The transient curve fits reported 
here were carried out with small data sets constructed by se-
lecting every 20th data record. Other selections of the data 
were also studied including every 10th, 5th, and the entire 
data record. The parameter values found from these larger 
data sets were in complete agreement with the curve fits re-
ported, within the observed tolerances.

In the steady curve fit, temperature data from different ra-
dial locations along the wheel web were included. However for 
the transient curve fit, data only from the wheel tread, hub/axle, 
and bearing were included. There was some effort to carry out 
transient curve fits including transient web temperatures, how-
ever these fits tended to match the wheel web temperatures 
closely while degrading the agreement at the wheel tread and 
bearing. Since the main thrust of the research has been to link 
bearing temperatures to wheel tread temperatures, the web tem-
peratures were dropped from the transient fits. Exploring how 
to include the web temperatures, with an appropriate level of 
weighting in the curve fits, could be included in future studies.

For the contact-conductance Biot numbers that appear in 
both the steady-analytical and the transient models, we find that 
fitted values for B1 and B2 are not in close agreement between 
the two models. The value for B∞, representing convection loss 
to the surrounding air, is in closer agreement (within 30%). We 
suggest that the steady-analytical model, which does not include 
the bearing, should not be expected to agree with the transient 
model in all particulars. The discussion of the steady-analytical 
model was included here as a means to show that the uniform-
disk description of the wheel web was a simple and effective 
way to include the wheel web in the transient model.

Figure 14. Best fit between Test 4 data and the three-lump model for 
maximum time 60,000 s. The ambient temperature is also shown. Pa-
rameter values for this fit are given in Table 3.

Table 3. Parameter fits for different subsets of Test 4 data, for different maximum time values (and different number of data 
points). The last two lines give the average and standard deviation for each parameter over the nine subsets listed. 

Maximum time (s)	 # pts	 M1	 B0	 B1	 B2	 B∞

48,000	 80	 0.24481	 0.47814	 1.41820	 0.21301	 0.18614
51,000	 85	 0.24246	 0.49466	 1.42327	 0.21054	 0.18619
54,000	 90	 0.24193	 0.51108	 1.42897	 0.20945	 0.18636
57,000	 95	 0.24172	 0.52660	 1.43487	 0.2088	 0.18660
59,400	 99	 0.24132	 0.53802	 1.43908	 0.20849	 0.18680
72,000	 120	 0.23113	 0.58073	 1.45944	 0.20183	 0.18760
84,000	 140	 0.23200	 0.60260	 1.45885	 0.20441	 0.18769
108,000	 180	 0.23200	 0.60260	 1.45885	 0.20441	 0.18769
120,000	 200	 0.21452	 0.62419	 1.46862	 0.19778	 0.18812

Average	 (80–200)	 0.23577	 0.55096	 1.44335	 0.20652	 0.18702
Std. dev.	 (80–200)	 0.00957	 0.05292	 0.01841	 0.00479	 0.00076
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The analytical models presented here do not include radi-
ation heat transfer, because the experiments show it is a mi-
nor contribution compared to heat conduction for transmit-
ting heat to the bearing; recall that Tests 4 (radiation blocked) 
and Test 5 (radiation allowed) show only a 2.2  °C difference 
in the bearing temperature. For these tests the wheel rim was 
heated to about 135  °C. Radiation could be important, how-
ever, if the wheel rim was heated to higher temperatures. We 
have recently begun using our FE model with both conduction 
and radiation heat transfer included to make predictions for 
wheel rim temperatures at 315  °C. In future work we intend 
to include radiation heat transfer in the analytical models in 
order to improve our confidence in the FE predictions as we 
study these higher heat loads at the wheel rim, which (at pres-
ent) cannot be created in our laboratory.

8. Summary

During rail operations, the temperature of a wheel tread 
can rise to high levels by normal events such as braking or 
by problem events such as wheel flats. The effect of such el-
evated temperatures on the bearing, which is the part of the 
assembly that is scanned by the trackside infrared detectors, 
has not been thoroughly investigated or documented in the lit-
erature. With this motivation, carefully planned experiments 
were conducted with the purpose of exploring and quan-
tifying the effect of heat transfer to the bearing from a rail-
road wheel heated to 135 °C at the rim. Three thermal models 
were also presented. A finite-element model produced results 
that matched steady temperatures observed in the heated 
wheel within 6%. A steady-analytical model was introduced 
and used to determine, via non-linear regression, the wheel-
to-air convection coefficient in the experiment. A transient 
lumped-capacitive model was presented that matches the ob-
served wheel temperatures very closely over the whole time 
range (within 4 %) and reproduces the maximum temperature 
reached by the bearing. The analytical models presented here 
are based on conduction heat transfer which the experiments 
indicate is the dominant mechanism; future work may include 
adding thermal radiation to the models for prediction of be-
havior produced by higher wheel temperatures.
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Appendix A. Green’s function for the annular disk

In this appendix the solution for the temperature in the an-
nular disk fin is discussed. This fin geometry was first dis-
cussed by Harper and Brown [23] with boundary conditions of 
type 1 and 2 to describe air-cooling fins on engine cylinders. In 
the present work both boundaries are of type 3. The GF associ-
ated with the temperature problem, Equations (1), (2), and (3), 
satisfies the following equations

(25)

(26)

(27)

The GF is the response at r to a localized heat source at loca-
tion r ′ in the annular disk with homogeneous boundary condi-
tions of the third kind (contact conductance). Note that the GF 
has homogenous boundary conditions of the third kind, just as 
in the original temperature problem.
The GF may be found by beginning with the homogeneous so-
lution to Equation (25),

G0 = C1K0(mr) + C2I0(mr)                                      (28)

where K0 and I0 are modified Bessel functions. The particu-
lar solution may be found by variation of parameters (see for 
example [24, chap. 1]). After considerable algebra, the GF is 
given by

(29)
where

(30)

This GF may also be deduced from a recent collection of so-
lutions in the cylinder [25] for which parameter m is a com-
plex number. In the present application parameter m is a real 
number.

Now that the GF is known, the temperature is constructed 
by superposition of the GF in the annular disk (a < r < b) at 
such locations and with such strength as to reproduce the 
causative effects in the original temperature problem. In the 
present instance, the temperature is given by superposition of 
two terms [22, chap. 3]:

(31)

This relation is used to find the steady temperature at any lo-
cation in the annular disk.
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