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Abstract
The isothermal magnetization m(H) of the metamagnet FeCl2 is measured in
axial magnetic fields 0 � µ0Ha � 12 T at temperatures 34 � T � 53 K
above the Néel temperature, where the system is essentially a two-dimensional
Ising ferromagnet. The analysis of the data indicates experimental accessibility
of the critical exponent µ of the Yang–Lee edge singularities. They manifest
themselves in divergences of the density functions g(θ), which quantify the
distribution of the zeros of the partition function on the Lee–Yang unit circle
in the complex plane. In accordance with the hypothesis of universality, a
critical exponent close to the theoretical prediction for the two-dimensional
Ising ferromagnet, µ = −1/6, is found.

The polynomial representation of the partition function Z of an Ising system enables the
complete determination of its thermodynamic behaviour from the knowledge of the complex
zeros of Z(z) = 0. Here the variable z = exp(−2gSµBµ0H/kBT ), whose powers build up
the polynomial Z, contains the magnetic moment gSµB of the Ising spin S = ±1 with Landé
factor g, the complex magnetic field H and the temperature T . In their profound analysis of
the Ising model, Lee and Yang [1] discovered a fundamental rigorous result which is known
as the ‘circle theorem’ and later turned out to be applicable to much wider classes of model
systems [2, 3]. It predicts that the zeros of the partition function of an Ising ferromagnet (or a
lattice gas) are distributed on a unit circle, z = exp(iθ), in the complex z-plane. Within this
description the density function of the zeros, g(θ), is a crucial quantity. Above the critical
temperature Tc of the Ising ferromagnet, a gap angle θg > 0 separates all complex zeros from
the real axis of the z-plane; hence g(θ) = 0 for |θ | < θg . The gap angle θg depends on
temperature and becomes zero at T = Tc, where complex zeros touch the real axis.

The zero density g(θ = 0) which evolves at T < Tc determines the spontaneous
normalized magnetization I = m/ms of the Ising ferromagnet according to I = 2πg(0).
Here m and ms denote the absolute and saturation magnetization, respectively. At the critical
temperature the dependence of the magnetization on small fields is given by m ∝ H 1/δ [4]. In
the case of δ > 1, this scaling behaviour generates a singularity of the magnetic susceptibility
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χ = ∂m/∂H at H = 0. The non-analytic behaviour of the magnetization at T = Tc originates
from the accumulation of complex zeros on the real axis at z(H = 0) = 1 [5]. In analogy with
the non-analytic behaviour of m at T = Tc for H = 0, non-analyticity also arises at T > Tc

for the pure imaginary field H0(T ) = −iθgkBT /(2gSµBµ0), which defines the onset of the
density of zeros g(θ) > 0 at z(H = H0) = exp(iθg) [6]. On approaching θg from above, the
density function exhibits a power-law behaviour g ∝ (θ − θg)

µ, which is the manifestation of
the Yang–Lee edge singularity. In accordance with this singularity at θ = θg , the generalized
susceptibility also diverges at H = H0 in the case of µ < 1. Both µ < 1 and the universality of
µ are assumed to hold in general [7]. In the case of a two-dimensional (2D) Ising ferromagnet,
a rigorous theory predicts µ = −1/6 [8].

Only recently, we showed that the density functions of a 2D Ising ferromagnet on a
triangular lattice are experimentally accessible by analysing the isothermal magnetization data,
m versus H , of FeCl2 [9]. To the best of our knowledge, this is the only experimental work that
has been carried out up to now [10]. However, the limitation of the available magnetic field
strength of our superconducting quantum interference device (SQUID), µ0H = 5 T, prevents
us from revealing the details of the density function. In particular, the edge singularity was
smeared out into a barely pronounced maximum. Thus one of the most important predictions,
namely the power-law criticality, g ∝ (θ − θg)

µ, with the universal exponent µ < 1 [7],
remained unconfirmed. It is the aim of this letter to present and analyse new magnetization
data, which are obtained from vibrating-sample magnetometer (VSM) measurements in axial
magnetic fields up to µ0H = 12 T. The enlarged field range on the one hand and an appropriate
refinement of the ansatz function on the other hand indicate that the determination of the critical
exponent µ of the Lee–Yang edge singularity from experimental data is possible.

It should be noticed that the analysis is applicable only to a limited temperature range,
where the 2D ferromagnetic properties of FeCl2 are prevalent on the one hand and θg is
sufficiently small in comparison with the high-temperature limit, θg = π , on the other hand.
The latter condition ensures that the real experimental magnetization data are not too far away
from the singularity in the complex plane.

The experiments are carried out by VSM measurements (Oxford Instruments MagLabVSM)

on an as-cleaved square c-platelet with thickness t = 0.3 mm and areaA = 4 mm2. The sample
is mounted in a small gelatin capsule. The capsule is filled with cotton wool in order to prevent
any movement of the sample. The magnetic moment of the sample holder turns out to be less
than 0.2% of the magnetic moment of the sample at T = 50 K and µ0H = 12 T. Hence, no
background correction of the data has to be taken into account within the analysis.

Figure 1 shows the isothermal magnetization for T = 4, 34, 49, 50 (inset (a)), 51, 52
(inset (b)) and 53 K in internal axial magnetic fields 0 � µ0H � 12 T. At T = 4 K FeCl2
undergoes a field-driven metamagnetic transition at µ0H ≈ 1 T from its antiferromagnetic
ground state into the paramagnetic saturated state [11]. These m versus H data allow
us to determine the saturation magnetic moment ms as well as the demagnetizing factor
N = 1/(dm/dH) = constant. While ms is used for the normalization of the magnetization
isotherms at 34 K � T � 53 K, N allows us to convert the applied field Ha into the internal
field H = Ha − Nm. Note that the number of data points plotted in figure 1 is reduced by
a factor of 50 for T = 4 K and by a factor of 10 for the data sets at 34 K � T � 53 K with
respect to the total number of data points measured and analysed. Above the Néel temperature
TN = 23.7 K of FeCl2, the 3D antiferromagnetic long-range order is broken and the system
behaves essentially like a 2D Ising ferromagnet on a triangular lattice [12, 13]. The dominance
of the 2D character is ensured by the high ratio J/|J ′| ≈ 22 of the intraplanar ferromagnetic
interaction J and the antiferromagnetic interplanar interaction J ′. Hence, far above TN , 3D
antiferromagnetic FeCl2 is an appropriate model system in order to study 2D ferromagnetism.
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Figure 1. Isothermal magnetization data m/ms versus H for FeCl2 for temperatures T = 4, 34,
49, 50 (inset (a)), 51, 52 (inset (b)) and 53 K. The densities of data points plotted are reduced by a
factor of 50 for T = 4 K and by a factor of 10 for 34 K � T � 53 K. Best fits of equation (3) to
the data sets for T � 34 K are shown by solid lines.

As pointed out by Kortman and Griffiths [14], the ansatz function

m ∝ τ(τ 2 + tan2(θg/2))µ (1)

with τ = (1 − z)/(1 + z) implies a density function with an asymptotic behaviour of the
type g ∝ (θ − θg)

µ on approaching θg from above. It is, hence, a good candidate for
being an appropriate fitting function. Unfortunately, in the case of µ > −1/2 an artificial
singularity of the density function at θ = π originates from the divergence of the function
τ(z) at z = exp(iπ) = −1. Therefore, we modify the function τ(z) in such a way that the
singularity of g(θ) at θ = π is suppressed. However, the new function τ̃ (z) still has to conserve
both the basic property τ̃ (z = 1) = 0 and the essential condition limθ→θg τ̃ = −i tan(θg/2),
which reveals the physical singularity of g(θ) at θ = θg . It can be verified that these conditions
are fulfilled most easily by the expression

τ̃ = (1/2)(1 − z)

[
1 − tan(θg/2)

sin θg

(z − cos θg)

]
. (2)

Substitution of equation (2) into the proportionality (1) and normalization of the resulting
ansatz function with respect to the saturation magnetization ms yields

I = Kτ̃
(
τ̃ 2 + tan2(θg/2)

)µ
/
(
τ̃ (0)[τ̃ (0)2 + tan2(θg/2)]µ

)
. (3)

Equation (3) is fitted to the m/ms versus H data for 34 K � T � 53 K. In order to take
into account small errors which might be involved in the procedure of normalization of the
data, a proportionality constant K ≈ 1 is introduced as a fitting parameter in addition to the
physically essential parameters µ and θg . In accordance with our previous analysis of SQUID
data [9], the Landé factor, which enters equation (3) via the z-term of τ̃ , is given by g = 4.1.
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In order to improve the reliability of the parameters obtained from the fitting procedure,
the field range investigated has been extended from 5 T to 12 T with respect to the SQUID
measurements reported in reference [9]. The increased curvature of the isotherms in the
high-field regime increases the accuracy and stability of the fitting procedure. Hence, the
least-squares fit yields unambiguous sets of parameters within the framework of the ansatz
function of equation (3). At temperatures far above 50 K however, several factors prevent
the determination of a meaningful critical exponent. The ferromagnetic exchange energy
becomes small in comparison with the thermal energy and the system behaves essentially
paramagnetically. In that case all zeros of the ideal paramagnetic Ising system accumulate
at z = −1 which corresponds to a delta function of the density of zeros, peaking at θ = π

[9]. This gap angle quantifies the separation of the singularity from the real positive axis
of the complex plane. Hence, one cannot expect to obtain appropriate information about the
singularity in the high-temperature limit θg ≈ π from data which are expected to be outside the
critical region. Moreover, the Ising-type character of FeCl2 breaks down at high temperatures
according to the finite single-ion anisotropy of the S = 1 effective spin system.

The results of the best fits are shown in figure 1 as solid lines for all of the isotherms at
34 K � T � 53 K. Moreover, figure 2 shows two of the typical density functions for T = 34
and 50 K. They are calculated by using [9, 14]

g(θ) = (1/2π) lim
r→1−

Re I (r exp(iθ)) (4)

after substitution of the fitting parameters µ and θg into equation (3). As expected, both curves
exhibit a gap region of zero density and a pronounced singularity on approaching θg from above.
Moreover, the gap angle decreases from θg = 0.73 rad at T = 50 K towards θg = 0.63 rad
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Figure 2. Selected Lee–Yang zero density functions g(θ) for T = 34 and 50 K exhibiting the
temperature-dependent density gaps and the Yang–Lee edge singularities. The inset shows the
density functions g versus θ − θg(T ) for T = 49, 50, 51, 52 and 53 K on a log–log scale.
The slopes of the best-fitted power-law functions (solid lines) yield Yang–Lee edge exponents
µ = −0.15 ± 0.02.
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at T = 34 K. This reflects the expected gradual decrease of θg with decreasing temperature.
The T -dependence of θg determines the T -dependence of H0(T ), which defines the critical
line of the Yang–Lee edge singularity. Although these critical lines are not universal, a lot
of theoretical work has been done in order to determine details of their behaviour for various
systems [15, 16].

Despite the reasonable T -dependence of θg , there is a strong deviation of the Yang–Lee
edge exponent µ = −0.365 for T = 34 K from the value µ = −0.156 which originates
from the best fit at T = 50 K. As mentioned above, weak antiferromagnetic superexchange
J ′/kB = −0.18 K between Fe2+ ions on adjacent (111) layers of the rhombohedral FeCl2
crystal gives rise to a crossover into 3D long-range antiferromagnetic order. Although the
crossover takes place continuously, a rapid increase of the 3D fluctuations is expected when
decreasing the temperature from T = 49 K to T = 34 K. This precursor phenomenon indicates
the subsequent power-law divergence of the antiferromagnetic correlation length near TN . This
is corroborated by the inset of figure 2, which shows g versus θ − θg(T ) for T = 49, 50, 51,
52 and 53 K on a log–log scale. According to the asymptotic power-law behaviour of g(θ)

near to θg , all of the curves show linear behaviour with slopes µ = −0.15 ± 0.02, in good
agreement with the theoretical predictions for 2D Ising ferromagnets [7, 8].

In order to be truly convincing, we have to rule out the possible relevance of simpler
theoretical concepts providing satisfactory descriptions of the magnetization isotherms. As
an example we choose an exactly solvable model system, namely the linear Ising chain.
Here a mean-field approach yields a seemingly good fit to the exact magnetization data
which, however, ends up with the wrong gap exponent µ = +1/2 according to the ansatz.
Figure 3(a) shows the calculated isothermal magnetization (circles) of the linear Ising chain
for kBT /J = 100 [5]. In figure 3(c) these data are fitted to the well-known [17] mean-field
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Figure 3. (a) m/ms versus gSµBµ0H/kBT for the linear Ising chain for kBT /J = 100. The line
represents the best fit of equation (1) to the data. Inset (b) shows a log–log plot of the rigorous
density function [5] with the linear fit of slope µ = −1/2 in the asymptotic regime. Inset (c) shows
the magnetization data (squares) with the result of the best fitting of equation (5).
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equation of an S = 1/2 ferromagnet in arbitrary dimension:

tanh(gSµBµ0H/(kBT )) = (m/ms − tanh(mTc/(msT )))/(1 − m tanh(mTc/(msT ))/ms).

(5)

Although the fit appears quite satisfactory, two deficiencies become apparent on closer
inspection. First, a finite best-fitted value Tc/T = 0.02 is clearly at odds with the non-ordering
linear chain. Second, as shown elsewhere [14], the critical behaviour attributed to equation (5)
yields an exponent µ = +1/2 in extreme contrast with the exact one, µ = −1/2 [5]. On the
other hand, when fitting the data to equation (1) we readily obtain µ = −0.50 and θg = 2.74
(figure 3(a), solid line). Figure 3(b) shows a log–log plot of the density function which is
known from reference [5]. The linear fit (line) of slope µ = −0.5 indicates the asymptotic
critical behaviour of the rigorous expression.

The above example demonstrates that the simplicity of an approach cannot in general be
a guideline for the choice of a theoretical description. It is well known from the analysis of
critical behaviour that in particular a mean-field analysis will rarely provide correct critical
exponents although it may sometimes fit the data with sufficient accuracy.

In conclusion, we pointed out that isothermal VSM high-field magnetization data for the
prototypical 2D Ising ferromagnet FeCl2 can be used in order to determine the Yang–Lee
edge exponent µ. The analysis is based on a modified ansatz function originally suggested
by Kortman and Griffiths [14]. It generically contains the possibility of non-analyticity of
the magnetization in a purely imaginary field. From best fits of this ansatz function to the
magnetization data m versus H we obtain the edge exponent µ = −0.15 ± 0.02 for all
isotherms investigated at 49 K � T � 53 K, in good agreement with the theoretical prediction
[7, 8]. Note, however, that the accuracy of µ refers to the limited temperature interval where
two-dimensionality, Ising anisotropy and FM exchange are optimized. Moreover, the gap
angle θg exhibits a reasonable temperature dependence. Thus we have pointed out a route
which seems to provide experimental access to the theoretical concept of non-analyticity of
the magnetization for T > Tc(H = 0) in a purely imaginary magnetic field which is, of course,
experimentally not realizable.

In order to study the criticality of g(θ ) closer to Tc, future experiments should focus on
‘real’ 2D Ising ferromagnets as represented by ultrathin layers with uniaxial anisotropy [18].
Possible candidates are, e.g., Co monolayers on Cu(111) substrates [19] and Ni(111) layers
consisting of less than six monolayers on W(110) [20, 21]. Note that the microscopical details
of the uniaxial anisotropy are crucial for the selection of an appropriate model system in order
to ensure that the anisotropy is maintained at T > Tc. This cannot be straightforwardly
deduced from the phenomenological anisotropy constants which are expected to vanish above
Tc [22]. Moreover, while investigating m versus H in the temperature range T > Tc, care has
to be taken that the magnetic properties of the film–substrate system are not spoilt by thermal
interdiffusion [23]. Hence, systems with sufficiently low values of Tc have to be chosen.

Ch Binek would like to thank K Katsumata for fruitful discussions and kind hospitality enjoyed
while carrying out the experiments at RIKEN.
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