Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations

Noor Afzal
Aligarh Muslim University, India

A. Bushra
University of Nebraska-Lincoln

Abu Seena
Korea Advanced Institute of Science and Technology, Daejeon, Korea

Follow this and additional works at: http://digitalcommons.unl.edu/civilengfacpub

Part of the Hydraulic Engineering Commons

http://digitalcommons.unl.edu/civilengfacpub/54

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations

Noor Afzal, A. Bushra, and Abu Seena

1. Visiting Professor, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, and Faculty of Engineering, Aligarh Muslim University, Aligarh, India
2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
3. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea

Corresponding author - Noor Afzal, email prof_noor_afzal@yahoo.com

Abstract

The streamwise flow structure of a turbulent hydraulic jump over a rough bed rectangular channel has been investigated. The flow is divided into inner and outer layers, where upstream supercritical flow changes to downstream subcritical flow. The analysis is based on depth averaged Reynolds momentum equations. The molecular viscosity on the rough bed imposes the no slip boundary condition, but close to the wall the turbulent process in inner layer provides certain matching conditions with the outer layer, where molecular viscosity has no dominant role. It is shown that the bed roughness in the inner layer has a passive role in imposing wall shear stress during formation of hydraulic jump in the outer layer. The Belanger’s jump condition of rectangular channel has been extended to account for the implications of the drag attributable to channel bed roughness, kinetic energy correction factor, and coefficient of the Reynolds normal stresses. For depth averaged Reynolds normal stress, an eddy viscosity model containing gradient and wall shear stress during formation of hydraulic jump in the outer layer. The integrated bed shear stress is generally adopted as $F_r = \lambda(M_1 - M_2)$ where λ is bed shear force coefficient.

For a hydraulic jump over a smooth bed rectangular channel, Belanger (1940) proposed a sequent depth ratio $h_2/h_1 = \alpha + \varepsilon$ versus upstream Froude number F_1, which may be extended to a rough bed:

$$\frac{h_2}{h_1} = \frac{1}{2} \left[1 + \sqrt{1 + aF_1^2} \right], \quad a = 8(1 + \varepsilon) \tag{1}$$

where $a = 8$ corresponds to the channel of the smooth bed. Based on the experimental data, Govindarao and Ramaprasad (1966) proposed $a > 8$ for rough bed channels. The work of Leutheusser and Kartha (1972) adopted bed shear stress as $F_r = \lambda M_1$ and their prediction

$$\varepsilon = 0.0296 - \frac{0.0122}{\alpha(1 - \alpha)} \tag{2}$$

Introduction

The hydraulic jump in an open channel is formed when upstream supercritical flow changes into downstream subcritical flow. Hydraulic jumps have been extensively studied owing to their frequent occurrence in nature and have been widely used as energy dissipaters for hydraulic structures (Rajaratnam 1968; Hager 1992). The primary concern with jumps on rough beds is that the roughness elements located near upstream might be subjected to cavitation and possible erosion. In such cases, the end of the jump moves downstream, thereby causing erosion and possibly damage to the structure itself. The hydraulic jump over a natural rough bed is made up of rocks consisting of various ranges of relative roughness, where the relative roughness t is the ratio of the equivalent grain roughness k, to the effective flow depth.

A sketch of a hydraulic jump over a rough bed is shown in Figure 1, where k is the bed roughness, F_r is the rough bed shear stress imposed on the fluid, h_1 is the fluid depth at toe of the jump, h_2 is fluid depth at the end of the jump, L_r is the jump length, and L_o is the roller length. The application of the momentum conservation in a control volume bounded by upstream supercritical flow (marked 1) and downstream subcritical flow (marked 2) yields the equation $\Pi_1 + M_1 + N_1 = \Pi_2 + M_2 + N_2 + F_r$ where Π_1 and Π_2 are hydrostatic forces; M_1 and M_2 are the mean momentum fluxes; N_1 and N_2 are turbulent Reynolds normal momentum fluxes; and h_1 and h_2 are sequent depths, respectively, at the toe (Section 1) and exit (Section 2) of the hydraulic jump. The integrated bed shear stress is generally adopted as $F_r = \lambda(M_1 - M_2)$ where λ is bed shear force coefficient.
was bed roughness effects correlated

with bed roughness

tion (1), where

carried out by Ead and Rajaratnam (2002), Tokay (2005), Yadav and Ahmad (2007), and Abbspour et al. (2009), in which the height of corrugation from crest to trough and wave length of
corrugation play significant roles in the corrugated beds. Mohamed-Ali (1991), Negm (2002), Izadgoo and Bajestan (2005), and Bajestan and Neisi (2009) have considered the effects of roughened-bed stilling basin on the length of a hydraulic jump in a rectangular channel.

The objective of the present work is to analyze the axial flow structure of a turbulent hydraulic jump over a rough bed in a rectangular channel by using depth averaged Reynolds equations at large Reynolds numbers. The flow in the domain of the turbulent hydraulic jump is divided into two layers: inner and outer. In inner layer near the wall, molecular viscosity, bed roughness, and turbulent process play dominant roles, which satisfies the no slip boundary condition over the rough bed of the rectangular channel.

Because of three-dimensional transitional roughness in streamwise and cross streamwise directions, the roughness sublayer in the immediate neighborhood of the channel bed would produce a complicated three-dimensional mean flow pattern, but slightly above this roughness sublayer the mean turbulent flow would be two-dimensional and dominated by the oncoming stream velocity. The skin friction force is no greater and likely smaller than form drag owing to irregular random bed roughness. In a typical rough bed, the separation attributable to the irregular transitional bed surface is primarily confined in the roughness sublayer. The flow separation in the roughness sublayer does not directly affect the outer layer of flow, but implicitly imposes drag force owing to skin friction and foam drag referred as drag force. In fact, the foam drag that arises owing to separation is also caused by implications of molecular kinematic viscosity effects. In the roughness sublayer, a traditional no slip condition has been satisfied, implying small changes in velocity (compared to velocity of outer stream) and consequently the Froude number based on sublayer velocity and sublayer depth in the roughness sublayer would be much less than unity. The analogy of a hydraulic jump with a shock wave (Duncan et al. 1967) and analysis of the shock wave structure becomes relevant, which for laminar flow may be found in the work of Thompson (1972). Thus, in the outer layer, the turbulence, inertia of fluid, and imposed drag owing to bed roughness play a major role and the molecular viscosity has a negligible effect. The matching of the outer layer to the inner layer imposes the drag owing to bed roughness, which has a passive role in imposing the wall shear stress owing to transitional bed roughness in the formation of the hydraulic jump. Thus, supercritical flow $F_1 > 1$ at the toe of the jump changes to subcritical Froude number $F_1 < 1$ at the exit of the jump. In the present work, implications of the upstream Froude number, bed roughness drag, energy correction

Figure 1. Sketch of a hydraulic jump over a rough bed: k is the bed roughness, F_1 is the rough bed shear stress imposed on the fluid, h_1 is the fluid depth at toe of the jump, h_2 is fluid depth at the end of the jump, L_j is the jump length, and L_R is the roller length.
factor, and effective Reynolds normal stresses have been analyzed. The sequent depth ratio h_j/h_1 proposed expression leads to a rational choice of parameter e in Equation (1). The analytical solutions of the depth averaged Reynolds equation predicted velocity and jump depth profiles in the turbulent hydraulic jump. The dynamic similarity shows that the roller length L_j, and aeration length L_a are of the order of the jump length L_j, i.e., $L_R = n_1 L_j$ and $L_A = n_2 L_j$, where n_1 and n_2 the universal numbers for roller and aeration lengths, are explicitly independent of the channel shape. The analytical expressions for jump length, roller length, and aeration length have also been proposed. The proposed predictions compare well with the experiential data over rough bed rectangular channels.

Analysis of a Rough Bed Channel

The depth averaged equations of continuity and momentum for a hydraulic jump over a smooth or rough bed in a rectangular channel are (Afzal and Bushra 2002)

$$\frac{\partial}{\partial x} \int u dz = 0$$

$$\int \left(\frac{u^2 + p - \frac{1}{\rho} \tau_{nn}}{\rho} \right) dz - \frac{1}{\rho} \int \tau_{ww} dx = C$$

where $u = u(x, z)$ = velocity at a point in the streamwise direction; $p = p(h - z)$ = hydrostatic pressure distribution; $\tau_{nn} = \tau_{xx} - \tau_{yy}$ = effective normal Reynolds stress in the streamwise x direction; h = depth of flow in the z direction over a transitional rough bed channel; $g = g$ = acceleration attributable to gravity; τ_{ww} = bed roughness drag force owing to friction and foam drag per unit flow depth at the bottom surface; $A = bh$ = cross-sectional area of the flow; $b = width$ of the channel; and C = constant of integration. In Equation (7), the first term is the mean momentum flux, the second term is the hydrostatic pressure, the third term is the turbulent momentum flux, the fourth term is the molecular viscous stress, and the fifth term is the bottom shear stress. In terms of drag force coefficient, $\lambda = C_d/2 = \int \tau_{ww} dx/\rho u^2 b h$ the momentum Equation (7) becomes

$$\int \left[(1 - \lambda) u^2 + \frac{p}{\rho} - \frac{1}{\rho} \tau_{nn} \right] dz = C$$

where $p = p(h - z)$ hydrostatic pressure distribution. The upstream and downstream boundary conditions are $x \rightarrow -\infty$, $h \rightarrow h_U$, $U \rightarrow U_U$, $\tau_{nn} \rightarrow \tau_{nn1} x \rightarrow +\infty$, $h \rightarrow h_D$, $U \rightarrow U_D$, and $\tau_{nn} \rightarrow \tau_{nn2}$ respectively. The continuity Equation (6) and the momentum Equation (8) have been integrated to yield

$$U h = U_1 h_1$$

$$h \left[(1 - \lambda)(1 + \beta) U^2 + \frac{1}{2} gh - \epsilon T_{nn} \right] = h_1 \left[(1 - \lambda_1)(1 + \beta_1) U_1^2 + \frac{1}{2} gh_1 - \epsilon T_{nn1} \right]$$

where $U(x)$ = depth averaged velocity; and $T_{nn} = depth$ averaged effective Reynolds normal stress. The upstream and downstream boundary conditions are $x \rightarrow -\infty$, $h \rightarrow h_U$, $U \rightarrow U_U$, $T_{nn} \rightarrow T_{nn1}$, $x \rightarrow +\infty$, $h \rightarrow h_D$, $U \rightarrow U_D$, and $T_{nn} \rightarrow T_{nn2}$ respectively.

Jump Conditions

The continuity Equation (9) and momentum Equation (10) have been simplified, upstream and downstream of jump, as

$$U_1 h_1 = U_2 h_2$$

$$h_2 \left[(1 - \lambda_2)(1 + \beta_2) U_2^2 + \frac{1}{2} gh_2 - \epsilon T_{nn2} \right] = h_1 \left[(1 - \lambda_1)(1 + \beta_1) U_1^2 + \frac{1}{2} gh_1 - \epsilon T_{nn1} \right]$$

The momentum Equation (12) may also be expressed as

$$h_2 \left[(1 - \lambda_2)(1 + \beta_2) - \epsilon \right] U_2^2 + \frac{1}{2} gh_2 = h_1 \left[(1 - \lambda_1)(1 + \beta_1) - \epsilon \right] U_1^2 + \frac{1}{2} gh_1$$

The sequent depth Equation (15) may be represented as

$$\frac{h_2}{h_1} \left(\frac{h_2}{h_1} + 1 \right) \left(\frac{h_2}{h_1} - 1 \right) = \left[(1 - \lambda_1)(1 + \beta_1) - \epsilon \right] \frac{h_2}{h_1}$$

$$- \left[(1 - \lambda_2)(1 + \beta_2) - \epsilon \right] 2F_1^2$$

The solution to sequent velocity ratio from Equation (11) yields

$$\frac{U_1}{U_2} = \frac{1}{2} \left[-1 + \sqrt{1 + 8(1 + e)F_1^2} \right]$$

where e predicted here by Equation (17), which differs from Equation (2) after Leutheusser and Kartha (1972) and Leutheusser and Schiller (1975) and Equation (3) after Pagliara et al. (2008). The solution to sequent velocity ratio from Equation (11) yields

$$\frac{U_1}{U_2} = \frac{1}{2} \left[-1 + \sqrt{1 + 8(1 + e)F_1^2} \right]$$

Analysis of a Rough Bed Channel

The depth averaged equations of continuity and momentum for a hydraulic jump over a smooth or rough bed in a rectangular channel are (Afzal and Bushra 2002)

$$\frac{\partial}{\partial x} \int u dz = 0$$

$$\int \left(\frac{u^2 + p - \frac{1}{\rho} \tau_{nn}}{\rho} \right) dz - \frac{1}{\rho} \int \tau_{ww} dx = C$$

where $u = u(x, z)$ = velocity at a point in the streamwise direction; $p = p(h - z)$ = hydrostatic pressure distribution; $\tau_{nn} = \tau_{xx} - \tau_{yy}$ = effective normal Reynolds stress in the streamwise x direction; h = depth of flow in the z direction over a transitional rough bed channel; $g = g$ = acceleration attributable to gravity; τ_{ww} = bed roughness drag force owing to friction and foam drag per unit flow depth at the bottom surface; $A = bh$ = cross-sectional area of the flow; $b = width$ of the channel; and C = constant of integration. In Equation (7), the first term is the mean momentum flux, the second term is the hydrostatic pressure, the third term is the turbulent momentum flux, the fourth term is the molecular viscous stress, and the fifth term is the bottom shear stress. In terms of drag force coefficient, $\lambda = C_d/2 = \int \tau_{ww} dx/\rho u^2 b h$ the momentum Equation (7) becomes

$$\int \left[(1 - \lambda) u^2 + \frac{p}{\rho} - \frac{1}{\rho} \tau_{nn} \right] dz = C$$

where $p = p(h - z)$ hydrostatic pressure distribution. The upstream and downstream boundary conditions are $x \rightarrow -\infty$, $h \rightarrow h_U$, $U \rightarrow U_U$, $\tau_{nn} \rightarrow \tau_{nn1} x \rightarrow +\infty$, $h \rightarrow h_D$, $U \rightarrow U_D$, and $\tau_{nn} \rightarrow \tau_{nn2}$ respectively. The continuity Equation (6) and the momentum Equation (8) have been integrated to yield

$$U h = U_1 h_1$$

$$h \left[(1 - \lambda)(1 + \beta) U^2 + \frac{1}{2} gh - \epsilon T_{nn} \right] = h_1 \left[(1 - \lambda_1)(1 + \beta_1) U_1^2 + \frac{1}{2} gh_1 - \epsilon T_{nn1} \right]$$

where $U(x)$ = depth averaged velocity; and $T_{nn} = depth$ averaged effective Reynolds normal stress. The upstream and downstream boundary conditions are $x \rightarrow -\infty$, $h \rightarrow h_U$, $U \rightarrow U_U$, $\tau_{nn} \rightarrow \tau_{nn1}$, $x \rightarrow +\infty$, $h \rightarrow h_D$, $U \rightarrow U_D$, and $\tau_{nn} \rightarrow \tau_{nn2}$ respectively.

Jump Conditions

The continuity Equation (9) and momentum Equation (10) have been simplified, upstream and downstream of jump, as

$$U_1 h_1 = U_2 h_2$$

$$h_2 \left[(1 - \lambda_2)(1 + \beta_2) U_2^2 + \frac{1}{2} gh_2 - \epsilon T_{nn2} \right] = h_1 \left[(1 - \lambda_1)(1 + \beta_1) U_1^2 + \frac{1}{2} gh_1 - \epsilon T_{nn1} \right]$$

The momentum Equation (12) may also be expressed as

$$h_2 \left[(1 - \lambda_2)(1 + \beta_2) - \epsilon \right] U_2^2 + \frac{1}{2} gh_2 = h_1 \left[(1 - \lambda_1)(1 + \beta_1) - \epsilon \right] U_1^2 + \frac{1}{2} gh_1$$

The sequent depth Equation (15) may be represented as

$$\frac{h_2}{h_1} \left(\frac{h_2}{h_1} + 1 \right) \left(\frac{h_2}{h_1} - 1 \right) = \left[(1 - \lambda_1)(1 + \beta_1) - \epsilon \right] \frac{h_2}{h_1}$$

$$- \left[(1 - \lambda_2)(1 + \beta_2) - \epsilon \right] 2F_1^2$$

The solution to sequent depth ratio from Equation (11) yields

$$\frac{U_1}{U_2} = \frac{1}{2} \left[-1 + \sqrt{1 + 8(1 + e)F_1^2} \right]$$

where e predicted here by Equation (17), which differs from Equation (2) after Leutheusser and Kartha (1972) and Leutheusser and Schiller (1975) and Equation (3) after Pagliara et al. (2008). The solution to sequent velocity ratio from Equation (11) yields

$$\frac{U_1}{U_2} = \frac{1}{2} \left[-1 + \sqrt{1 + 8(1 + e)F_1^2} \right]$$
turbulent boundary layer and \(\delta^* \) is the displacement thickness of turbulent boundary layer displacement thickness, thus \(\nu_\tau = \epsilon U \delta^* \). From extensive experimental data, Clauser proposed \(\epsilon = 0.18 \), a universal number, and Townesend (1976) proposed \(\epsilon = 0.2 \). The dimensional eddy viscosity \(\nu_\tau \) in a hydraulic jump formed in the streamwise \(x \)-direction, was proposed by Afzal and Bushra (2002) on a smooth channel bed in a proper analogy with Clauser (1956) for a turbulent boundary layer formed in the normal \(y \)-direction. In a hydraulic jump, kinematic eddy viscosity \(\nu_\tau \) depends on drag owing to transitional bed roughness, kinetic energy correction factor, overall velocity jump \(\Delta U = U_1 - U_2 \), jump depth \(\Delta h = h_2 - h_1 \), and a universal number \(\epsilon \) independent of channel geometry and bed roughness. Thus kinematic eddy viscosity \(\nu_\tau \) may be expressed as

\[
\nu_\tau = \epsilon (1 - \lambda)(1 + \beta)(U_1 - U_2)(h_2 - h_1)
\]

The governing Equation (23) based on eddy viscosity models Eqs. (24) and (25) becomes

\[
\epsilon (1 - \lambda)(1 + \beta)(U_1 - U_2)(h_2 - h_1) h_1 \frac{\partial U}{\partial x} = (1 - \lambda)(1 + \beta) h_1 U^2 \left(1 - \lambda_1(1 + \beta)h_1 U_1^2 \right) \\
+ \frac{1}{2} g(h_2^2 - h_1^2) - \frac{h_1}{\rho} T_{nn1}
\]

Closed Form Solution

If the function \((1 - \lambda)(1 + \beta) - \Gamma \) remains invariant at two ends of the jump, then Equation (17) is simplified and the sequent depth ratio Equation (16) may be expressed as

\[
\frac{h_2}{h_1} \left(\frac{h_2}{h_1} + 1\right) = 2[(1 - \lambda)(1 + \beta) - \Gamma] F_1
\]

and solution becomes

\[
\frac{h_2}{h_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8[(1 - \lambda)(1 + \beta) - \Gamma] F_1}\right]
\]

In the present work, the variation of bed drag coefficient \(\lambda \), effective Reynolds normal stress coefficient \(\Gamma \), and kinetic energy correction factor \(\beta \) across the jump have also been neglected, i.e., \(\lambda \approx \lambda_1 \approx \beta_1 \approx \beta_2 \) and \(\Gamma \approx \Gamma_1 \approx \Gamma_2 \) first owing to the invariance of \(\epsilon \) at two ends (upstream and downstream of the jump), and second, because an additional condition across the jump was adopted for analytical integration of the hydraulic jump equation across the jump. In terms of effective upstream Froude number \(F_{1s} = [(1 - \lambda)(1 + \beta) - \Gamma]^{1/2} F_1 \), the sequent depth ratio Equation (28) becomes

\[
\frac{h_2}{h_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8 F_{1s}}\right]
\]

which is explicitly independent of bed roughness, analogous to the Belanger (1840) relation. The second invariant is the product of upstream and downstream velocities across the hydraulic jump:

\[
U_1 U_2 = U_c^2 = g h_c, \quad h_c = \frac{h_m}{(1 - \lambda)(1 + \beta) - \Gamma}, \quad h_m = \frac{1}{2}(h_1 + h_2)
\]

The turbulence level attributable to Reynolds normal stresses \(\Gamma \) may be neglected, and the sequent depth Equation (28) becomes
and the effective upstream Froude number becomes \(F_{\text{eff}} = \left[(1 - \lambda)(1 + \beta) \right]^{1/2} F_1 \). In this situation, the governing Equation (26) of the hydraulic jump in the axial direction velocity and depth profiles becomes

\[
\epsilon(U_1 - U_2)(h_2 - h_1)\frac{\partial U}{\partial x} = hU^2 - h_1U_1^2 + \frac{g}{2(1 - \lambda)(1 + \beta)}h^2 - h_1^2
\]

(32)

where \(Uh = U_1h_1 \). The flow at the toe of the jump is supercritical (upstream Froude number \(F_1 > 1 \)), and at the exit of jump is subcritical (downstream Froude number \(F_2 < 1 \)). The length of a hydraulic jump is often an important factor to know when considering the design of structures like settling basins. The length of a hydraulic jump is often hard to measure in the field and during laboratory investigations owing to the sudden changes in surface turbulence level and because of the formation of roller eddies. The jump length may be defined as the distance measured from the front face of the jump to the point on the surface immediately downstream of the rollers. The most common definition is by passing a tangent to the depth (of velocity) at the center and finding out where the theoretical upstream and downstream depth conditions are met. Thus, hydraulic jump length \(L = (h_2 - h_1)/\partial h/\partial x \) shown in Figure 2(a), and is defined as the ratio of the jump in fluid depth \(h_2 - h_1 \) to the slope of the jump depth profile \(\partial h/\partial x \). Likewise, the jump thickness based on the fluid velocity profile \(L_u = (U_1 - U_2)/\partial U/\partial x \) shown in Figure 2(b) if the ratio of the velocity jump \(U_1 - U_2 \) to the slope of the jump velocity profile \(\partial U/\partial x \) at mean velocity \(U = U_m = (U_1 + U_2)/2 \).

Velocity Distribution in the Jump

The jump Equation (32) is simplified in terms of the nondimensional axial velocity profile \(V = (U - U_1)/(U_2 - U_1) \) and the nondimensional streamwise coordinate \(X = x/h \) to provide

\[
\epsilon[1 + V(\alpha - 1)V] \frac{\partial V}{\partial X} = V(1 - V)\left(\frac{1 + 2\alpha}{1 - \alpha^2} - V \right)
\]

(33)

subjected to the upstream and downstream boundary conditions \(X \to -\infty, V \to 0, X \to \infty, \) and \(V \to 1 \), respectively. The closed form solution yields

\[
V^{-(2+\alpha)}(1 - V)^{1+2\alpha}\left(\frac{1 + 2\alpha}{1 - \alpha^2} - V \right)^{-1-\alpha}
\]

\[
= \exp \left[-\frac{(1 + 2\alpha)(2 + \alpha)X + L_u}{\epsilon} \right]
\]

(34)

The constant \(L_u \) in the jump profile Equation (34) is related to the origin of the hydraulic jump, and is left undetermined, which may be estimated from experimental data. The length of the hydraulic jump in terms of velocity \(U \) is shown in Figure 2(b). In terms of nondimensional \(V \), the jump length may be expressed as \(L_u = (V_2 - V_1)/\partial V/\partial x \), where \(\partial V/\partial x \) is the slope of surface profile at mean velocity \(V_m = (V_1 + V_2)/2 \). The length of jump \(L_u \) from Equation (33) becomes

\[
L_u = 4\epsilon(1 - \alpha)\frac{(1 + \alpha)^2}{1 + 4\alpha + \alpha^2}
\]

(35)

Depth Distribution in the Jump

Based on the nondimensional depth profile \(\eta = (h - h_1)/(h_2 - h_1) \), the jump Equation (32) may be expressed as

\[
\epsilon(1 + \alpha) \frac{\partial \eta}{\partial X} = \eta(1 - \eta)\left(\eta + \frac{1 + 2\alpha}{1 - \alpha} \right)
\]

(36)

subjected to upstream and downstream boundary conditions \(X \to -\infty, \eta \to 0, X \to +\infty, \) and \(\eta \to 1 \), respectively. The solution of the jump profile Equation (36) becomes

\[
\eta^{-(2+\alpha)}(1 - \eta)^{1+2\alpha}\left(\eta + \frac{1 + 2\alpha}{1 - \alpha} \right)^{-1-\alpha}
\]

\[
= \exp \left[-\frac{(1 + 2\alpha)(2 + \alpha)X + L_\eta}{\epsilon} \right]
\]

(37)

For a large effective upstream Froude number \(F_{\text{eff}} \), the parameter \(\alpha \to 0 \) and the asymptotic Equation (37) yield \(X + L_\eta \to 0.5 \ln[\eta^2/(1 - \eta^2)] \), which is independent of \(\alpha \) or \(F_{\text{eff}} \). In a classical hydraulic jump on the smooth bed of a rectangular channel. The constant \(L_\eta \) in the solution is related to the origin of the hydraulic jump and left undetermined in the analysis, but may be estimated from experimental data of the initial condition of the jump.
The length of the hydraulic jump \(L_j = (h_2 - h_1)/(\partial h/\partial x)_m \), (analogous to shock wave thickness) shown in Figure 2(a) estimated from jump profile Equation (36) becomes

\[
\frac{L_j}{h_2} = \epsilon \Lambda (1 - \alpha), \quad \Lambda = \frac{8}{3} \tag{38}
\]

Substitution of \(\alpha = h_1 / h_2 \) from sequent depth ratio Equation (27) yields

\[
\frac{L_j}{h_2} = \frac{8}{3} \epsilon \left(1 - \frac{1 + \sqrt{1 + 8(1 - \lambda)(1 + \beta)F_{S1}^2}}{4(1 - \lambda)(1 + \beta)F_{S1}^2} \right)
\]

where \(F_{S1} = [(1 - \lambda)(1 + \beta)]^{1/2}F_1 \) = effective upstream Froude number.

The roller length, \(L_R \), is the horizontal distance between the toe section with the flow depth \(h_1 \) and the roller end. The analysis of the depth averaged Reynolds equations of mean turbulent flow in a channel is sufficiently general. From the dynamic similarity, it is postulated that the length scale of the roller \(L_R \) is of the order of the jump length scale \(L_j \), i.e., \(L_R = n_1L_j \) and \(\epsilon_R = n_1\epsilon \), where \(n_1 \) is a universal number explicitly independent of channel shape. The roller length in view of this postulate yields

\[
\frac{L_R}{h_2} = \epsilon_R \Lambda (1 - \alpha) \tag{40}
\]

\[
\frac{L_R}{h_2} = \frac{8}{3} \epsilon_R \left(1 - \frac{1 + \sqrt{1 + 8F_{S1}^2}}{4F_{S1}^2} \right)
\]

The aeration length \(L_A \) is defined as the reach between the upstream end of the longer wing and the location at which air clouds have left the flow, according to the analysis of depth averaged Reynolds equations of mean turbulent flow in a channel of arbitrary cross section. From the dynamic similarity, it is also postulated that aeration length \(L_A \) is of the order of the length scale of the jump \(L_j \), i.e., \(L_A = m_1L_j \) and \(\epsilon_A = m_1\epsilon \), where \(m_1 \) for roller length is a universal number explicitly independent of channel shape. The expression for aeration length becomes

\[
\frac{L_A}{h_2} = \epsilon_A \Lambda (1 - \alpha) \tag{42}
\]

\[
\frac{L_A}{h_2} = \frac{8}{3} \epsilon_A \left(1 - \frac{1 + \sqrt{1 + 8F_{S1}^2}}{4F_{S1}^2} \right)
\]

Regarding the experimental data in a rectangular smooth channel for \(2 < F_1 < 15 \), Afzal and Bushra (2002) proposed \(\Lambda = \frac{8}{3} \), \(\Lambda = 6.9 \), and \(\epsilon = 2.58 \) for jump length, \(\epsilon_R \Lambda = 5.2 \) and \(\epsilon_R = 1.95 \) for roller length, and \(\Lambda = 3.90 \) and \(\epsilon_A = 2.58/0.66 \) for aeration length. The universal constants \(\epsilon, \epsilon_R \) and \(\epsilon_A \) are related as

\[
\epsilon = 1.32\epsilon_R = 0.66\epsilon_A = 2.58 = \frac{6.90}{\Lambda} \tag{44}
\]

which are independent of the shape of the channel cross section (Bushra and Afzal 2006). The sequent depth ratio Equation (31), jump length Equation (38), roller length Equation (40), and aeration length Equation (42) may also be expressed as

\[
\frac{h_2}{h_1} - 1 = \phi, \quad \frac{L_j}{h_1} = \frac{8}{3} \epsilon \phi, \quad \frac{L_R}{h_1} = \frac{8}{3} \epsilon_R \phi, \quad \frac{L_A}{h_1} = \frac{8}{3} \epsilon_A \phi
\]

The function \(\phi \) sequent depth Equation (31) is expanded in the powers of \(F_{S1} - 1 \) by a Taylor series as

\[
\phi = \frac{4}{3}(F_{S1} - 1) + \frac{2}{27}(F_{S1} - 1)^2 - \frac{32}{739}(F_{S1} - 1)^3 + \ldots \tag{45}
\]

Based on the leading order term in Equation (46), the sequent depth ratio becomes

\[
\frac{h_2}{h_1} - 1 = \frac{4}{3}(F_{S1} - 1) \tag{47}
\]

and jump length, roller length, and aeration length become

\[
\frac{L_j}{h_1} = \frac{32}{9}(F_{S1} - 1) \tag{48}
\]

\[
\frac{L_R}{h_1} = \frac{32}{9}\epsilon_R(F_{S1} - 1) \tag{49}
\]

\[
\frac{L_A}{h_1} = \frac{32}{9}\epsilon_A(F_{S1} - 1) \tag{50}
\]

Equation (47) may be compared with empirical Equation (5) by Carollo et al. (2009) for sequent depth ratio. The roller length \(L_R \) empirical relations proposed by Carollo et al. (2007) are

\[
\frac{L_R}{h_1} = 6.525 \left(\exp \left(-0.60 \frac{k}{h_1} \right) \right) (F_1 - 1), \tag{51}
\]

The work of Pagliara et al. (2008) proposed the sequent depth relation Equation (1), subjected to Equation (3), and the empirical relations for jump length \(L_j \) and roller length \(L_R \) are

\[
\frac{L_j}{h_1} = 5.000(1 - F_1^m), \quad m = -0.0086 \exp \left(\frac{-0.466}{\chi} \right) \tag{52}
\]

\[
\frac{L_R}{h_1} = \left(27.457 \frac{k}{h_1} - 73.517 + \frac{20}{\chi^2} \right) \left(\frac{1}{F_1} - \frac{1}{2} \right) \tag{53}
\]

The empirical Equation (5) by Carollo et al. (2009), Equation (51) by Carollo et al. (2007), and Eqs. (52) and (53) by Pagliara et al. (2008) are valid for small values on \(F_1 - 1 \). On other hand, the writers’ first order analytical predictions in Eqs. (47)–(50) in terms of parameter \(F_{S1} - 1 \) are explicitly independent of the bed roughness of the channel.

Results and Discussion

The analysis of the hydraulic jump over a rough bed rectangular channel has been presented. The solution Equation (31) obtained for sequent depth ratio is described as follows:
and has been compared with the experimental data of the hydraulic jump. In terms of \(F_1 = [(1 - \lambda)(1 + \beta)]^{1/2} F_1 \), the effective upstream Froude number, the sequent depth ratio becomes

\[
\frac{h_2}{h_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8(1 - \lambda)(1 + \beta) F_1^2} \right]
\]

(54)

The relative roughness is connected to bed drag force coefficient \(\lambda \) through sequent depth ratio for each Froude number. Thus, bed roughness drag coefficient \(\lambda \) is estimated from sequent depth Equation (54) for each set \((h_2/h_1, F_1)\) of experimental data for prescribed roughness, after neglecting the \(\beta \) effect. The effects of relative roughness drag are considered in terms of the roughness parameter \(k/h_1 \) and alternate parameter \(k/h_c \), where \(h_c = (q^2/g)^{1/3} = h_1 F_1^{2/3} \) is the critical depth. The data of bed roughness drag coefficient \(\lambda \) is shown in Figure 3(a) against relative roughness \(k/h_1 \). Therefore, the current work proposes the following prediction for bed drag force coefficient:

\[
\lambda = 1 - \exp \left[-0.55 \left(\frac{k}{h_1} \right)^{0.75} \right]
\]

(56)

which is also shown Figure 3(a), and compares well with the experimental data. Furthermore, a simple linear relation

\[
\lambda = 0.45 \frac{k}{h_1}
\]

(57)

is also shown in Figure 3(a) compares slightly better with the experimental data for \(k/h_1 \leq 1 \). The relation proposed by Carollo et al. (2007)

\[
\lambda = \frac{2}{\pi} \arctan \left[0.8 \left(\frac{k}{h_1} \right)^{0.75} \right]
\]

(58)

that also compare well with the experimental data. Furthermore, a simple linear prediction

\[
\lambda = 1.5 \frac{k}{h_c}
\]

(61)

which is also shown in Figure 3(b) agrees with the data for \(k/h_1 \leq 0.3 \). The experimental data shown in Figures 3(a) and 3(b) have appreciable scatter, but these predictions nearly represent the mean of the data. The roughness drag coefficient \(\lambda \) in terms of roughness scale \(k/h_1 \) from the experimental data in Figure 3(a) show that Eqs. (56) and (57) describe the data roughly of the same order. Furthermore, the roughness drag coefficient \(\lambda \) in terms of the roughness scale \(k/h_c \), from experimental data in Figure 3(b) shows that the Eqs. (59) and (60) also describe the data, roughly to the same order. In the present work, the bed roughness drag Equation (55) is adopted for comparison of the writers' prediction with the experimental data on jump characteristics over transitional rough beds. The sequent depth ratio \(h_2/h_1 \) with the upstream Froude number \(F_1 \)
shown in Figure 4 from the experimental data for relative bed roughness $0 \leq k/h_1 < 2.5$ and bed drag coefficient $0 \leq \lambda < 0.7$ has been compared with Equation (54) on the sequent depth ratio involving bed roughness drag coefficient from Equation (56).

The comparison of this study’s prediction for the universal sequent depth ratio h_2/h_1 Equation (55) based on the upstream effective Froude number F_{S1}, shown in Figure 5, compares with the experimental data for all types of bed roughness.

In a rectangular channel, the nondimensional jump length L_j/h_2 and L_j/h_1 versus upstream Froude number F_1 from experimental data are shown in Figures 6(a) and 6(b), which reveals the dependence on drag owing to transitional bed roughness. For large values of upstream Froude numbers $F_1 \to \infty$, the jump length L_j/h_2 approaches a constant value that depends on bed roughness. This study’s prediction of jump length from Equation (38) with $8\epsilon/3 = 6.9$ is also shown in the same figure for relative roughness $k/h_1 = 0, 1/4, 1/2, 3/4, 1, 2, 2.5$, and 3. Accurate data is needed, particularly in terms of certain fixed value of k/h_1, rather than particular values of k. The nondimensional jump length Equation (39) in terms of effective Froude number F_{S1} is a universal relation that explicitly does

Figure 5. Comparison of experimental data with this study’s universal prediction of sequent depth ratio h_2/h_1 versus effective upstream Froude number F_{S1}, Equation (28), for all bed roughness in a rectangular channel

Figure 6. Comparison of Equation (39) for jump length versus upstream Froude number F_1 with transitional rough bed experimental data in a rectangular channel: (a) L_j/h_2; (b) L_j/h_1

Figure 7. (a) Comparison of universal Equation (37) for jump length L_j/h_1 versus sequent depth ratio h_2/h_1 with experimental data for all bed roughness in a rectangular channel; (b) comparison of this study’s universal predictions with experimental data for jump length L_j/h_1 versus effective upstream Froude number $F_{S1} = F_1 \sqrt{(1 - \lambda)(1 + \beta) - \Gamma}$ for all bed roughness
not depend on the bed roughness. The jump length L_j/h_1 versus h_2/h_1 and F_{S1} from Equation (39) is also a universal relation. To test this universal proposition, the same experimental data are also shown in Figure 7(a), where the data scatter fits well with coefficient $8\epsilon/3 = 6.3$. Subramanya (1998) suggested the jump length $L_j/h_1 = 6.1$ over a smooth bed rectangular channel, which practically remains constant for $F_1 > 5$, whereas Elevatorski (1959) proposed $L_j/h_1 = 6.9$. Clearly, better experiments are needed with respect to bed roughness for particular fixed values of relative roughness k/h_1 for moderate and higher Froude numbers. The role of the effective upstream Froude number F_{S1} based on bed roughness is investigated for jump length L_j/h_1. The experimental data of Hughes and Flack (1984) and Ead and Rajaratnam (2002) for jump length L_j/h_1 versus F_{S1} are shown in Figure 7(b), which also provides strong support for the writers’ universal relations, explicitly independent of bed roughness. The leading term approximations in $(F_{S1} \to 1)$ in Equation (43) for jump length L_j/h_1 is also shown in Figure 7(b) and is in good agreement with the experimental data.

In rectangular channels the nondimensional roller length L_R/h_2 and L_R/h_1 against the upstream Froude number F_1 are shown in Figures 8(a) and 8(b), respectively, from the rough bed data of Hughes and Flack (1984), Ead and Rajaratnam (2002), and Carollo et al. (2007). For large values of upstream Froude numbers $F_1 \to \infty$, the roller length L_R/h_2 approaches a constant universal value that depends on the bed roughness. This study’s prediction of roller length from Equation (41) is also shown for $k/h_1 = 0, 1/4, 1/2, 3/4, 1, 2, 2.5, 3$. Accurate data is needed, particularly in terms of a certain fixed value of k/h_1, rather than particular values of k. The nondimensional roller length Equation (40) is a universal relation that does not depend on bed roughness. The roller length L_R/h_1 versus h_2/h_1 from Equation (36) is also a universal relation. To test this linear proposition, the same experimental data is shown in Figure 9(a); within the scatter, the data fit well with coefficient $8\epsilon/3 = 4.2$. The role of the effective upstream Froude number F_{S1} on roller length L_R/h_1 from the experimental data of Carollo et al. (2007) and Ead and Rajaratnam (2002) is shown in Figure 9(b), which also provides strong support for this study’s universal relations, explicitly independent of bed roughness. The leading term perturbation solution in parameter $F_{S1} \to 1$ from roller length Equation (44) in terms of L_R/h_1 is also shown in Figure 9(b) and is in good agreement with the experimental data.

![Figure 8](image8.png)

Figure 8. Comparison of Equation (41) versus upstream Froude number F_1 with a transitional rough bed experimental data in rectangular channel for two jump lengths: (a) L_R/h_2; (b) L_R/h_1.

![Figure 9](image9.png)

Figure 9. Comparison of this study’s universal predictions versus effective upstream Froude number $F_{S1} = [F_1 / (1 - \lambda)(1 + \beta) - \Gamma]$ with experimental data for various bed roughness of a rectangular channel: (a) jump length L_R/h_1 versus sequent depth ratio h_2/h_1; (b) roller length L_R/h_1.
Conclusions
1. The turbulent hydraulic jump theory over a rough bed rectangular channel has been proposed from depth averaged analysis of the Reynolds momentum equation. The bed shear stress attributable to the transitionally rough bed surface of the channel is considered while integrating the depth averaged Reynolds equations. The flow at the toe of the jump is supercritical (upstream Froude number $F_1 > 1$), which at the exit of jump is subcritical (downstream Froude number $F_1 < 1$).

2. The skin friction force is not greater and likely smaller than form drag owing to irregular random bed roughness. In a typical bed roughness, the separation attributable to irregular transitional bed surface is primarily confined in the roughness sublayer. The flow separation in the roughness sublayer does not directly affect the flow in the outer layer, but implicitly imposes drag force owing to the bed friction and form drag owing to bed roughness. In fact, form drag that arises because of separation flow on a transitional bed is also caused by the fluid molecular kinematic viscosity effects.

3. The flow invariant relations in the jump are attributable to the upstream and downstream fluxes where depth jump Equation (18) and velocity jump Equation (19) are based on parameter ϵ defined by Equation (17). For a particular case if $(1-\lambda)(1+\beta) - \Gamma$ is invariant at two ends of the jump, then depth jump Equation (25) and velocity jump ratios are very much simplified. The subsequent depth ratio and critical depth depend on bed roughness drag coefficient λ, in addition to the upstream Froude number F_1 for a particular channel shape. In terms of effective Froude number $F_1 = (1 - \lambda)(1 + \beta)^{1/2}/\lambda$, the subsequent depth ratio, and other hydraulic jump characteristics over the rough bed can be deduced from the classical hydraulic jump over smooth beds, provided that the upstream Froude number F_1 is replaced by the upstream friction Froude number F_{S1}. The Belanger’s jump condition in turbulent flow is extended for transitional bed roughness, kinetic energy correction factor, and turbulent normal stress fluctuations of the momentum transfer.

4. The bed roughness drag coefficient λ as a function of bed roughness scale k/h_1, has been predicted by Eqs. (55) and (57), which describe the data to the same level of accuracy. Furthermore, λ as a function of alternate bed roughness scale k/h_1 is predicted by Eqs. (55) and (56), which also describe the data to the same order. In the present work, Equation (55) is adopted for the prediction of jump characteristics.

5. The depth averaged Equation (23) over a rough channel bed is closed by a simple eddy viscosity model $T_{ww} = \rho \frac{\partial U}{\partial x}$. The eddy viscosity expression $v_t = \epsilon (1 - \lambda)(1 + \beta) (U_2 - U_1)/(h_2 - h_1)$ incorporates the effects of transitional roughness attributable to bed roughness drag coefficient λ, kinetic energy correction factor β, overall jump velocity scale $\Delta U = U_2 - U_1$, and jump length scale $\Delta h = h_2 - h_1$. Here ϵ is a universal constant, independent of channel geometry and bed roughness.

6. The length of a hydraulic jump is often hard to measure in the field and during laboratory investigations because of the sudden changes in surface turbulence, in addition to the formation of rollers and eddies. The most common definition is by passing a tangent to the depth (of velocity) at the center and finding out where the theoretical upstream and downstream depth conditions are met. The jump thickness based on axial velocity profile $L_j = (U_1 - U_2)/(\partial U/\partial x)_m$ is the ratio of the jump in velocity U_1 to U_2 to the velocity gradient $(\partial U/\partial x)_m$ at mean velocity $U = (U_1 + U_2)/2$ in the jump. Likewise, the hydraulic jump length $L_j = (h_2 - h_1)/(\partial h/\partial x)_m$ is the ratio of the rise of fluid depth $h_2 - h_1$ to depth gradient $(\partial h/\partial x)_m$ at mean depth h = $h_1/2 + h_2/2$. The theory predicts $L_j = c\Lambda(1 - \alpha)$, where $\Lambda = 8/3$ and bed roughness data agree with $\epsilon = 2.58$, the smooth bed value (Afzal and Bushra 2002). The data show that the validity of the dynamic similarity that the roller length L_R and aeration length L_A are of the order of the jump length L_j and that the constant of proportionality is explicitly independent of channel shape and bed roughness. The roller length, $L_R^2 = \epsilon_R(1 - \alpha)$, and aeration length $L_A^2 = \epsilon_A(1 - \alpha)$ are of the same order as L_j, which leads to eddy viscosity universal number $\epsilon = 1.32\epsilon_A = 0.66\epsilon_\Lambda = 2.58 = 6.9/\Lambda$, the same as the smooth bed channel.

7. The solution of the jump profile h versus x for a rough bed rectangular channel has been proposed. The jump length L_j relation is obtained in analogy with the shock wave thickness, leading to $L_j/\lambda = c\Lambda(1 - \alpha)$, which is explicitly independent of λ drag of bed roughness, but depends on channel geometric shape factor, which for a rectangular channel is $\Lambda = 8/3$. The jump length L_j/λ, versus α and L_j/β, versus F_{S1} are universal relationships that are explicitly independent of λ the drag attributable to bed roughness and β the energy correction parameter. However, the jump length L_j/β, and the aeration length L_j/α, turn out to be analogous with the jump length L_j/α, which in terms of F_3 depend on bed roughness but are universal in terms of F_{S1} as explicitly independent of bed roughness and energy correction factor.

8. The proposed theory for rough bed rectangular channels predicted universal solution depth profile, sequent depth ratio, jump length, and roller lengths in terms of effective upstream Froude number F_{S1} and are explicitly independent of bed roughness. The experimental data of Hughes and Flack (1984), Carollo et al. (2007, 2009), and Ead and Rajaratnam (2002) support the proposed universal theory. Thus, the results for rough bed channels can be directly deduced from the classical smooth bed hydraulic jump theory, provided the upstream Froude number F_1 may be replaced by the effective upstream Froude number F_{S1}.

Notation

The following symbols are used in this paper:

- $A(x) = bh(x)$ area of flow in rectangular channel;
- b = width of the rectangular channel;
- $C_v = 2 \int_0^1 dx/\rho u^2 dz$ = coefficient of drag attributable to channel bed;
- $e = \text{Equation (17)}$ in sequent depth Equation (16) of the hydraulic jump;
- $e = (1 - \lambda)(1 + \beta) - \Gamma - 1 = \text{assumed invariant function across the jump, which includes special case } \lambda = \lambda_1 \approx \lambda_2, \beta = \beta_1 \approx \beta_2, \text{ and } \Gamma = \Gamma_1 \approx \Gamma_2$;
- $F = U/\sqrt{gh} = \text{Froude number}$;
- $F_e = \sqrt{(1 - \lambda)(1 + \beta) - \Gamma} = \text{effective Froude number}$;
- g = gravitational acceleration;
- $h(x)$ = depth of fluid layer in the channel;
- $h_j = (q^2/g)^{1/2} = h_1 F_{e_1}^{1/2}$ = critical depth of flow;
- $h_m = (h_1 + h_2)/2 \approx \text{mean of upstream and downstream depths in a hydraulic jump}$;
- k_b = bed roughness height;
- L = arbitrary constant representing the streamwise location of
the jump origin;

$L_A = \text{aeration length of the jump};$

$L = \text{length of the hydraulic jump};$

$L_R = \text{roller length in the formation of the hydraulic jump};$

$L_V = \text{velocity length attributable to velocity profile in the jump};$

$p = \rho g (h - z) = \text{hydrostatic pressure distribution};$

$q = \text{Q/b} = \text{discharge per unit width of the channel flow};$

$T_{aa} = T_{zz} - T_{xx} = \text{effective depth averaged Reynolds normal stress in the hydraulic jump};$

$T_{uu} = \nu, \partial U/\partial x = \text{eddy viscosity closure model in the hydraulic jump};$

$T_{xx}(1/h) \int_{x}^{} dz = \text{depth averaged Reynolds normal stress in the x-direction};$

$T_{zz}(1/h) \int_{z}^{} dz = \text{depth averaged Reynolds normal stress in the z-direction};$

$U(x) = (U/y) u(h) = \text{cross-sectional averaged velocity in the x-direction};$

$u(x, z) = \text{local velocity at a point in the streamwise x-direction};$

$V(x) = (U(x) - U_1)/(U_2 - U_1) = \text{nondimensional axial velocity profile in the hydraulic jump};$

$w(x, z) = \text{local velocity at a point in the normal z-direction};$

$X = h/\lambda_1 = \text{nondimensional streamwise variable};$

$x = \text{streamwise horizontal coordinate of the flow};$

$z = \text{vertical coordinate measured above the bottom wall};$

$\alpha = h/\lambda_1 = \text{sequential depth ratio};$

$\beta_1, \beta_2 = \text{upstream and downstream kinetic energy correction factors};$

$\Gamma = T_{uu}(\rho U_2)^{-1} = \text{normal Reynolds stress turbulence level coefficient in the jump};$

$\Gamma_1 = T_{uu}(\rho U_2^2)^{-1} = \text{upstream normal turbulence level coefficient};$

$\Gamma = T_{uu}(\rho U_2^2)^{-1} = \text{downstream normal turbulence level coefficient};$

$\epsilon = \text{universal number for eddy viscosity constant independent of channel section};$

$\epsilon_A = \text{universal number for aeration length independent of channel section};$

$\epsilon_R = \text{universal number for roller length independent of channel section};$

$\eta(x) = (h(x) - h_1)/(h_2 - h_1) = \text{nondimensional depth profile in the jump};$

$\Lambda = \text{constant in the jump based on shape of the channel};$

$\lambda = \epsilon/\rho = \text{drag coefficient of the channel in the hydraulic jump};$

$\nu = \text{molecular kinematic viscosity of fluid};$

$\nu = \text{eddy viscosity of fluid in the jump};$

$\rho = \text{fluid density};$

$\tau = \text{bed roughness drag force per unit flow depth at the bottom};$

$\tau_{xx}, \tau_{zz} = \text{Reynolds normal stresses in streamwise and normal directions};$

$\tau_{zz} = \text{Reynolds shear stress in x-z plane};$

Subscripts

$1 = \text{upstream of jump};$ and

$2 = \text{downstream of jump};$

References

