
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Nebraska Cooperative Fish & Wildlife Research
Unit -- Staff Publications

Nebraska Cooperative Fish & Wildlife Research
Unit

1-1-2002

IMPLICATIONS OF BODY MASS PATTERNS:
LINKING ECOLOGICAL STRUCTURE AND
PROCESS TO WILDLIFE CONSERVATION
AND MANAGEMENT
Jan P. Sendzimir

Craig R. Allen

Lance Gunderson

Craig Stow

Follow this and additional works at: http://digitalcommons.unl.edu/ncfwrustaff
Part of the Other Environmental Sciences Commons

This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized
administrator of DigitalCommons@University of Nebraska - Lincoln.

Sendzimir, Jan P.; Allen, Craig R.; Gunderson, Lance; and Stow, Craig, "IMPLICATIONS OF BODY MASS PATTERNS: LINKING
ECOLOGICAL STRUCTURE AND PROCESS TO WILDLIFE CONSERVATION AND MANAGEMENT" (2002). Nebraska
Cooperative Fish & Wildlife Research Unit -- Staff Publications. Paper 56.
http://digitalcommons.unl.edu/ncfwrustaff/56

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ncfwrustaff?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ncfwrustaff?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ncfwru?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ncfwru?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ncfwrustaff?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ncfwrustaff/56?utm_source=digitalcommons.unl.edu%2Fncfwrustaff%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 1 

Sendzimir, J., C. R. Allen, L. Gunderson and C. Stow.  2002.  Implications of body mass  
patterns: linking ecological structure and process to wildlife conservation and  
management.  Chapter 6 in, Bissonette, J. and I. Storch, eds.  Landscape ecology and  
resource management: making the match.  Island Press: in press. 
 

IMPLICATIONS OF BODY MASS PATTERNS:  LINKING 
ECOLOGICAL STRUCTURE AND PROCESS TO WILDLIFE 

CONSERVATION AND MANAGEMENT 
 

Sendzimir, Jan P., Craig R. Allen, Lance Gunderson, and Craig Stow 

 

1.1 The Challenge of Structure and Process at Multiple Scales 

 

The unprecedented scale of problems affecting wildlife ecology today overwhelms 

many managers. Challenges are no longer local in origin, but rather a tangle of local, 

regional and even global externalities often interacting in unpredictable ways.  

Previously isolated ecosystems have become increasingly connected at global, 

hemispheric and regional levels, eroding their integrity. Endocrine-disrupting 

compounds applied in Mexico have changed avian sexual development in the Great 

Lakes (Colborn et al. 1996). Chamois (Rupicapra rupicapra) reproduction in the 

Carpathian mountains falters when the color of newborns is no longer cryptic because 

climate change prematurely melts snow cover (K. Perzanowski, Polish Academy of 

Sciences, pers. comm.). Climate change predictions (Houghton et al. 2001) now 

project sea-level rise up to 5 meters within the next few centuries, which will displace 

more than a billion people and inundate coastal plains. The populations of many 

species have dwindled and disappeared as they have been displaced by invasive and 

introduced species and as habitat removal and fragmentation change migration 

patterns and the carrying capacity of landscapes.  



 

 2 

 

These large-scale crises surprise us and force us to look beyond local issues to 

consider regional influences. This is not the first time that our worldviews have been 

challenged to expand. More than a half-century ago, collapsing fish and forestry 

industries forced resource managers to consider regional context when assessing local 

problems. These reassessments of causes at larger scales provoked a variety of 

theoretical advances in ecology (see Walters 1986, for forestry and fisheries 

examples). Theories of catastrophe (Casti 1982), complexity (Kauffman 1993, Kay 

2000), and hierarchy (Allen and Starr 1982, O’Neill et al. 1986) marked new insights 

into the structure, function and dynamics of ecosystems, especially at larger scales. 

The resulting synthesis of all these initiatives is summed in the descriptive term for 

ecosystems as “complex, adaptive systems” (Holling 1992, Levin 1992, Levin 1998, 

Kay 2000). However, while these theories increased our understanding of the 

interactions underlying these resource crises, the science of putting these new insights 

into practice is in its infancy. What tools do these theories put in the hands of a 

manager with on-the-ground responsibility to manage and conserve wildlife?   

 

A central question in ecology has been: is there meaningful, repeatable pattern in 

ecosystems or do all apparent patterns and structures arise continuously from chance 

interactions that are contingent (Lawton 1999) on local conditions of species 

abundance, environment and the web of species interactions?  In the former case, our 

understanding of ecosystem pattern and structure resulting from the study of one 

ecosystem can be applied to other systems. On the other hand, if systems are 
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assembled randomly, then each event is unique, and we must learn anew in each 

ecosystem. Holling (1986, 1992) addressed these questions by asking whether random 

events could produce the regularity observed in disturbance periodicities (fire, flood, 

pest outbreaks). Does the regular return (around eight to twelve years in the absence 

of intervention) of fire to Florida sand pine forests indicate some deeper, underlying 

structure that persists despite random variations? Similar clustering of time series data 

is evident for such processes such as insect outbreaks (Clark et al., 1979, McNamee et 

al. 1981, Holling 1988, 1992), fires (Clark 1990), and floods (Fiering 1983), which all 

cluster into small sets of repetitive cycles. Holling (1992) proposed that ecosystems 

have structure that emerges from the effects of relatively few processes that operate 

over distinct scales in space and time. This chapter describes efforts to test how such 

regularities of pattern in time and space consistently influence  (entrain) 

characteristics of animals, such as body size. In brief, Holling predicted that animal 

species will cluster in size (lumps) as they interact with the clustering in time 

(periodicities) and space (landscape structure) of their environment, and that those 

animal size clusters will correspond with the key scales of structure available in a 

given system. 

 

We first review the findings in support of this proposition, and then discuss its 

management applications for vertebrates in terrestrial ecosystems. In particular we 

address four questions directed at wildlife management. What evidence is there that 

ecosystems operate as Complex Adaptive Systems (CAS)? Are there predictable 

natural patterns (“is the world lumpy?”), and does this influence animal behavior, 
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survival, and evolution? How do animals interact with a lumpy world and what are 

the consequences for their conservation and management? And finally, does a lumpy 

framework of analysis help us address at what scales animals respond to pattern in the 

environment? 

 

1.2 The Spoor Of Complex Adaptive Systems: Patterns Of Ecological 

Processes, Landscape Structure, And Body Size 

  

Ecological processes such as succession, nutrient cycling and seed dispersal can 

sustain and sometimes transform ecosystems over time (Peterson et al. 1998). We can 

describe an ecosystem as a Complex Adaptive Systems (CAS) if complex behavior 

emerges unpredictably (non-linearity) without the influence of central control but as a 

result of adaptive behavior by its component, interacting agents (Holland 1995). Such 

agents can ‘self-organize’ (change their rules of interaction as experience 

accumulates) and act in anticipation, such that, under stress, the system coheres or 

completely changes its composition. If ecosystems operate as a CAS then we predict 

that they persist or change depending on the functioning of feedback interactions 

between ecological processes, landscape structure, and biota (Allen and Hoekstra 

1992, Levin 1998, Peterson et al. 1998). We emphasize that complex systems, 

particularly ecosystems, are organized hierarchically, because separation into semi-

autonomous levels is a prerequisite for evolutionary advances to take hold (Simon 

1962). Evolution is unlikely in a world without hierarchical levels to isolate 

organisms from the inordinate distraction possible if all organisms in a system could 
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interact with equal intensity (Allen and Hoekstra 1992). The first test, therefore, is to 

see if we detect discontinuities in landscape patterns that suggest hierarchical 

structure. The second test looks for discontinuities in animal sizes that suggest a 

hierarchical organization of biota that reflects the discontinuities in the landscape 

pattern. We describe evidence from these two tests and then consider what 

interactions might cause them. First, we examine hierarchical landscape pattern more 

closely. 

 

We refer to landscape structure here as the distribution in space and time of 

opportunities for animals to eat, compete for mates or territory, find shelter, and nest. 

Holling (1992) proposed that these opportunities are not spread smoothly across the 

landscape like continuous gradients running from dry to wet or high to low. Rather, 

opportunities tend to cluster discontinuously, because different sets of opportunities 

are evident depending on the interaction between discontinuous scales of perception 

and scales of landscape structure. We use two factors, window (or extent) and grain 

(resolution), to describe how perception scales with body size. A vole will see very 

different sets of opportunities than a moose. Both are mutually oblivious to or ignore 

key landscape features of the other. Grass runway corridors for voles are invisible to 

or ignored as noise by a moose, and the sizes and distances between alder thickets for 

moose are ignored as background by voles. How can landscape ecologists begin to 

imagine the separate perceptive scales of different animals? The book Powers of Ten 

(Morrison and Morrison 1994) illustrates vividly the jerky or discontinuous way that 

different landscape features jump out at one as one changes perspective by zooming in 
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or out from any point in space. Starting from a beach blanket in Miami and stepping 

back in stages that differ by an order of magnitude (1 meter, 10 meters, 100 meters, a 

kilometer, and so forth) different patterns of attributes are apparent at different ranges 

of distance from the origin. After several steps one pattern suddenly disappears, to be 

replaced by another set, previously not evident.  

 

Such jumps between evident sets of pattern are referred to as ‘scale breaks’ (Allen et 

al. 1999), which separate the scales at which we can delineate one spatial domain 

from another. Scale breaks do not necessarily coincide with any measure, such as 

order of magnitude shifts in distance, and the quantification of scale breaks remains a 

key future avenue of inquiry. The theories underlying CAS propose that such 

discontinuous pattern is fundamental to ecosystems and results when different sets of 

processes operate over distinct ranges of scale, organizing the landscape into different 

spatial and temporal domains. If animals perceive and respond to this discontinuous 

structure (Holling 1992) we may gain insight into the assembly and structure of 

animal communities. If animals respond to discontinuous scales of landscape 

structure, the species in an assemblage of animals will cluster at discreet size ranges 

because specific size ranges will optimally compete for resources in each of these 

spatio-temporal domains. Briefly, lumpy landscape pattern should be mirrored by 

lumpy body size patterns, as interactions link animals with the lumpy geometries of 

structure and the time/space clustering of ecological processes. 
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The groups of objects that constitute the predominant structure of each level in the 

landscape hierarchy are intuitive. The fine-scale structure of herbaceous vegetation, 

the medium-scale mosaic of forest patches, the grand geological sweep of the 

landscape, have an appealing cohesiveness and fit, nested like Russian dolls or a 

Chinese puzzle. But is there real pattern giving rise to this appealing sense of 

symmetry, or are these notions just another imposition of human values and scales on 

the world?  And if there is real, discontinuous landscape pattern, what significance 

does it really have for animals?  We discuss efforts to apply objective measures of 

landscape pattern and then examine evidence of similar patterns in animal 

assemblages. 

 

1.2.1 Landscape Structure: Multi-Level Patterns 

 

Many concepts about hierarchical structure and non-linear dynamics in ecosystems 

that suggest a discontinuous or lumpy world were presented decades ago in systems 

science (Simon 1962, von Bertalanffy 1968, Odum 1982). Opportunities to detect 

pattern and test these ideas at larger scales awaited the advent of satellite sensors and 

relatively cheap, high-speed computers in the early 1980s. Since then attempts to 

develop objective means to detect pattern without human bias have created a diversity 

of indices for landscape structure, such as fractal breaks (Mandlebrot 1982, Morse et 

al. 1985, Milne 1997), and fractal dimensions based on perimeter-area and on mass 

(Hargis et al. 1997). 
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If key ecological processes each interact at characteristic space and time scales to 

produce discontinuous structures, then data from systems should reflect such a 

pattern. That is, cross-scale analyses of key spatial variables should reveal discreet 

changes in pattern as scale changes, and analyses of time series should produce a few 

dominant frequencies that reflect a clustering of temporal processes. Below we 

present results that show how such analyses identify key structures and processes 

from a large freshwater wetland ecosystem, the Everglades in Florida, USA, and are 

indicative of a general pattern for all ecosystem types.  

 

1.2.1.1 Spatial Attributes Of Natural Landscapes  

 

Spatial and temporal data that are thought to represent key variables in the Everglades 

ecosystem were analyzed for breaks and clusters. Fourier techniques were used to 

detect dominant frequencies in time series data including rainfall, water depth, water 

flow, evaporation, and fire sizes. Spatial data of vegetation and topographic profiles 

were analyzed using fractal techniques to test for breaks in scaling dimensions.  

 

Three dominant frequencies appear in the time series data. Surface water levels 

fluctuate on daily, annual, and decadal cycles. The daily and annual fluctuations in 

stage levels are related to processes that produce convective thunderstorms. The 

dominant frequencies for water flow, evaporation and fire frequencies occur at 

approximately decadal intervals (Gunderson 1992). The longer-term fluctuations 

appear to coincide with variation patterns in two processes: evapo-transpiration rates 
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and, to a less evident degree, decadal fluctuations in rainfall related to the 

periodicities of El Niño events.  

 

Spatial patterns exhibit scales of self-similarity separated by distinct breaks. The soil 

surface topography appears to vary at two distinct spatial scales. The broad scale is 

apparently a result of geologic features and the small scale appears related to the 

processes of organic soil accretion and removal. The vegetation patterns exhibit 

breaks between regions of self-similarity related to the interaction among water levels, 

water flow, and fire patterns (Gunderson 1992).  

 

Figure 1 shows cross-scale ecosystem structure and processes in the Everglades 

mapped in the form of a Stommel diagram. The primary axes are logarithmic scales 

over space (abscissa) and time (ordinant) that cover about six orders of magnitude and 

are matched with their non-log equivalents. Entities within the diagram are defined by 

grain and extent. Grain is the smallest resolution required to identify an entity, as 

indicated by the lowest margin (time) and the left edge (space) of a polygon in Figure 

1. These correspond to the minimum time step in sampling to detect an object and the 

pixel size on a screen at which an object is recognizable. By the same token, the 

window is the extent of that object, as indicated by the highest margin (time) and the 

right edge (space) of a polygon in Figure 1. These correspond to the life span and the 

window size that can frame the entire object of interest. Breaks in the fractal 

dimension of spatial patterns can be used to define breaks between entities in the 
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spatial dimension. Similarly, dominant frequencies appear to differentiate temporal 

entities or levels.  

 

The analysis of the Everglades ecosystem supports the hypothesis that spatial patterns 

exhibit breaks and that temporal patterns cluster around a few cycles. Spatial patterns 

exhibit scales of self-similarity separated by distinct breaks. The soil surface 

topography appears to vary at two distinct spatial scales. Breaks in fire size may be 

related to the approximately decadal time period between large burns. The vegetation 

patterns exhibit breaks between regions of self-similarity, although the reasons are 

unclear. Temporal patterns in water stage and flow reflect dominant frequencies in the 

interplay between the faster dynamics of the atmosphere, the intermediate speeds of 

the surface water (stage and flow) and the longer-term variations in vegetation, 

climate and sea level.  

 

Scale breaks in the time behavior of processes and the spatial distribution of 

landscape pattern confirm in the Everglades what has seemed apparent in a range of 

landscapes: the environment is clustered into a small number of groups of objects of 

relatively similar size. Were variation in object sizes unlimited, then no clustering 

would be evident. However, size variation is bounded for different types of objects 

from the smallest to largest scales: vegetation, patches, eco-tones, and topography. 

The conservation implications of hierarchical patterns in landscapes increase if 

animals respond to it in predictable ways. We discuss evidence for this below. 

 



 

 11 

1.2.2. Macroecology: Size Attributes Of Animal Assemblages 

 

Even if distinctive patterns appear to divide a landscape into separate ranges of scale, 

is there compelling evidence that animals interact with such discontinuous pattern in 

ecologically meaningful ways?  We now consider evidence from animal assemblages, 

for example, all the animals of one taxon that feed and reproduce on a landscape. A 

typical example of such an assemblage might be all mammals in the Everglades 

ecosystem.  

 

Brown (1995) proposed "macroecology" to explore overarching patterns at larger 

scales (biome to global scales in space and decadal to millennial in time) to bridge 

gaps in understanding of processes defined at smaller scales by population and 

community ecologists. By forging synthetic links between ecology, biogeography, 

paleobiology and macro-evolution, macroecology aims to establish an informed 

context for smaller scale questions of abundance, distribution and diversity of species 

as affected by interactions between species and their environment. The shapes and 

bounds of statistical distributions of animal size indices are patterns which reflect 

either "intrinsic, evolutionary or extrinsic, environmental constraints on variation" 

(Brown 1995). In brief, the echoes of large-scale processes are sought in the size 

distributions of animal assemblages over wide areas (landscape level and higher). 

Some general trends do relate animal morphometric patterns to large-scale 

evolutionary, ecological and climatic patterns. Mammal body size correlates strongly 

with seasonality, the amplitude of seasonal climatic variation (Lindstedt and Boyce 
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1984). For evolutionary lineages, the general trend for body size to increase within a 

phylogenetic group (Cope's Law) now appears to apply only to the upper size range, 

since many species shrink in size over evolutionary time (LaBarbera 1989).  

 

Macroecology (Brown 1995, Maurer 1999) expands the arena in which we can test 

ideas about ecological processes from the local to the regional and even continental. 

However, are these the only scales at which ecological processes operate?  Holling 

(1992) proposed a far wider variety of scales of operation for the ecological processes 

structuring the Boreal forest, dissecting it more finely into eight separate scale ranges. 

Clearly, the science of defining the scales of operation for ecological processes is in 

its infancy (Peterson et al. 1998, Peterson 2000). For example, the tension emerging 

from arbitrary applications of a wide variety of different scales to the term 

‘ecosystem’ (Noss and Cooperrider 1994) sparked the struggle to define its ‘true’ 

dimensions or abandon it altogether. Examining landscape pattern simultaneously 

across scales will provide a more unifying framework for defining ecologically 

meaningful scale domains than trying to synthesize analyses done individually at 

different scales (e.g. mycologists, mammalogists, and forest ecologists) 

 

1.2.2.1 Lumpy Size Patterns in Animal Assemblages 

 

Intuitive and even objective indications that landscapes are hierarchies do not prove 

any link with animal behavior or community assembly. Scale breaks are distinct to 

human eyes, but it is premature to assume what animals perceive (Ims 1995). Even if 
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evidence existed that animals perceive scale breaks, is there evidence that animals 

respond to scale breaks and clusters of objects within a domain of scale?  To test this, 

Holling (1992) proposed that discontinuities in the landscape would be translated into 

gaps in the size distributions of the animal assemblages. If a mouse’s scale of 

perception only fits a certain window and reveals only certain objects clearly, then its 

choices to feed or flee will depend on those perceptions. And if the scale of perception 

is proportional to body size, then for each scale only a certain range of body sizes 

perceive resources within that scale range. Therefore, animal species should cluster in 

certain size ranges that compete best over specific scale ranges. Animals would not be 

competitive if their size fell in the range that perceives resources best within scale 

breaks, the ranges of scale over which resources were not apparent (or poorly so), or 

were hyper-variable (Allen et al. 1999). In summary, ‘lumps’ of similarly sized 

animals will be adapted to ‘lumps’ of apparent resources in the landscape.  

 

The methods for finding gaps or discontinuities that separate ‘lumps’ (modes, 

aggregations or clusters) in size distributions are relatively new and non-trivial.  We 

can profile the size distribution of any animal assemblage by lining up, by mean adult 

body size, all the animals that live in a landscape from the smallest to the largest 

species. Viewing across the profile we may notice that sections have continuous 

outlines where the species are quite similar in size. These smooth sections stand out 

further because they are bounded on either end by relative jumps in size from one 

species to the next. This jump in size between two species is the simplest notion of a 

size gap between the clusters of animals of similar size.  We use a cumulative 
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distribution function to illustrate the locations of lumps and gaps in the size 

distribution of a mammal assemblage (Figure 2). 

Figure Two 

While a debate continues (Manly 1994, Siemann and Brown 1999) regarding the 

methods and conceptual justification for identifying lumps, Gap Pattern (GaP) 

analysis (Restrepo et al. 1997) has shown credible consistency in providing assistance 

to visual inference regarding the body mass distributions of a variety of taxa around 

the world. Discontinuous body mass distributions have been shown for the bird and 

mammal assemblies of the Canadian boreal forest and prairie (Holling 1992), birds in 

Colombian montane forests (Restrepo et al. 1997), birds, mammals and herpetofauna 

in the South Florida ecoregion (Allen et al. 1999), birds and mammals of 

Mediterranean-climate Australia (Allen et al. 1999), Mexican cave bats (Allen et al. 

1999), Pleistocene mammals in savanna-forests (Lambert and Holling 1998), and 

birds in North American suburban landscapes and Neo- and Paleo-Boreal Forests 

(Hostetler 1997). Sendzimir (1998) tested for and confirmed lumpiness in 150 

mammal data sets in 18 different biomes from four continents. Lumpy size patterns 

for animal communities are revealed by size gaps as well as the regularity of size 

distributions within clusters.  Allen and Sendzimir (unpublished data) found that 

within the clusters the animal sizes are more evenly spaced than expected by chance  

 

The consistency with which lumpy size distributions are found in terrestrial 

ecosystems make them compelling. What process(es) might cause such ubiquitous 

lumpiness? Sendzimir (1998) found no evidence that membership in a lump is 
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correlated with membership in a trophic class or a taxonomic order. Gaps between 

lumps are not explained by size differences because of trophic relations, and lumps 

are not explained because of limited adaptive radiation from a common ancestor 

(Holling 1992). The remaining explanation, that animal lumps arise from animal 

interactions with a lumpy landscape, becomes more compelling when we examine the 

regularities of lump pattern. If body size distributions reflect animal interactions with 

landscape structure, then certain lumpy body size patterns should be consistently 

associated with particular landscape structures. In fact, lumps and gaps in different 

animal assemblages tend to line up at the same places along the size axis, but only if 

the two assemblages inhabit relatively similar landscapes, such as in the same biome 

(Sendzimir, unpublished data). Taxonomic overlap does exist to various extents 

between such assemblages, but it does not explain these pattern regularities. When 

comparing different animal assemblages, indices of lump pattern regularity had only a 

random relationship with indices of species similarity (Sendzimir 1998). Finally, these 

regularities of lump pattern gained a further degree of credibility when computer 

simulation showed that their degree of regularity was not the product of chance.  

 

1.3 Implications For Conservation And Management 

1.3.1 Animal Interactions With Landscapes 

 

Animals are not merely passive responders to ecological patterns in space and time. 

They interact by utilizing ecological pattern at certain scales and, in some cases, by 

reinforcing processes that structure the landscape. Conversely, structure is not simply 
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the end product of processes mediated by animals or abiotic factors. Landscape 

patterns interact with processes (and therefore animals), often in mutually reinforcing 

ways that sustain the pathways, cycles and species of a landscape as a complex, 

adaptive system.  

 

1.3.1.1 Exploitation Of Ecological Pattern And Architecture 

 

Evidence links certain body sizes to certain landscape features evident within one or a 

few ranges of scale. Groups of similarly sized animals show regular associations with 

certain sets of landscape features at different scales. At micro-scales, arthropod body 

sizes have been related to various vegetation architectures (Morse et al. 1988, 

Shorrocks et al. 1991). In the Boreal forest, guilds of small birds, such as foliage 

gleaners, forage for insects among the micro-architecture of tree needles and leaves 

(Holling 1992). Between micro- and meso-scales, artiodactyl size correlates with the 

structure of the undergrowth so as to minimize resistance from vegetation (Dubost 

1979) and small rodents use overgrown fence-lines and hedgerows as corridors 

(Fahrig and Merriam 1985, 1994). At meso-scales, medium to large size animals, 

such as raccoons and white-tailed deer (Odocoileus virginianus) interact with larger 

structures, such as patchy edges and ecotones. Mega-fauna discriminate and respond 

to specific macro- scale structures. For example, moose (Alces alces) interact with 

large-scale landscape patterns, such as the distribution of marshes within a landscape. 

Grizzly bears (Ursus ursus horribilis) seldom use habitat within 100 meters of a 

highway, whether the road is in use or not (Turner 1989), and European bison (Bison 
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bonsasus) often will not cross a road even in total absence of vehicles or people (K. 

Perzanowski, pers. comm.). The link between body size and landscape structure was 

dramatically demonstrated in Cameroon by Smith et al. (1997) where sub-populations 

of the same bird species, the little greenbul (Andropadus virens), have significantly 

different body size and wing size morphometrics that correlate with differences with 

landscape structure, but are not attributable to genetic drift. As Holling predicted, 

birds in more open habitats (the forest/savanna ecotone) have larger body and wing 

sizes than birds in the more enclosed habitat (interior forest). 

 

Measuring landscape structure is far easier than quantifying links between structure 

and animal behavior. From the wider perspective across all scales in a landscape, 

work on quantifying and describing landscape structure (Gardner and Turner 1991, 

Hargis et al. 1997) dwarfs research on animal responses to spatial patterns, especially 

landscape mosaics (Ims 1995). A variety of theories (Optimal Search, Optimal 

Foraging, Habitat Selection and Dispersal, Source and Sink, Meta-population) 

provide useful predictive frameworks to test observations of how animals respond to 

what structures (see Table 1 for a small sample). What kind of structure and at what 

scale an animal responds to it depends on the life process involved. In the Everglades, 

wading birds make decisions at micro-scales (food capture in littoral zones), meso-

scales (which pond in which to forage?), and macro-scales (migration). Similar 

hierarchies relate spatial scale to movement response for a variety of taxa (Senft et al. 

1987, Kotliar and Wiens 1990, Ims 1995).  

Table One 
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What process links hierarchies of landscape structure and scale-dependent animal 

decision-making?  Holling (1992) proposed that scale-dependent animal perception is 

a key link. If animal perception and use of habitat is scale dependent, and perception 

of landscape structure is allometric with body size, then animals in a lumpy landscape 

should cluster into sizes that can sense and exploit specific scale domains. As opposed 

to separate and unique connections between single species and landscape features, 

lump analysis can help define which animal groups are linked with which sets of 

habitat features or landscape structures. Sendzimir (1998) used lump analysis to 

contrast two mammal assemblages in African woodland ecosystems. Despite the lack 

of species overlap, the lump patterns of the two assemblages were highly similar 

(Figure 3). Not only do the lumps and gaps occur in very similar locations on the size 

axis, but the landscape texture used by different species in each ecosystem is best 

predicted by the lump (size class) they occur in. The discrete jumps in size that 

separate lumps are associated with qualitative differences in landscape structure used, 

with larger size classes using coarser and coarser textures in the ecosystem. For 

example, mammals in the lump containing the smallest species sizes used micro-scale 

architectures like grass runways while those in the next larger lump exploited cavities 

between rocks and under logs. Species in the third largest lump associate with meso-

scale linear features like ecotones between wetlands and water bodies or forests and 

open spaces. 

Figure Three 

 

1.3.1.2 Maintenance Of Ecological Pattern And Architecture 
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Animals within a size-class may perceive and use ecological architecture within a 

range of scale, but how they use it may reinforce and maintain that architecture as 

well. Landscapes are structured by a variety of processes. Vegetative processes of 

growth and senescence, and disturbance processes of wind throw, flooding, and fire 

all contribute to the architecture of landscapes. However, certain landscape structures 

are also sustained over time by animal-mediated processes that reinforce the 

distribution of structure at several scales (Table 2). Note that the structuring effect 

does not necessarily scale with animal body size. Large animals can effect small-scale 

patterns (bear browsing and defecation reinforcing patch spatial distributions of alpine 

flowers), and small animals can effect large scale patterns (defoliating insects can 

denude vegetation over 100,000 km2 in the boreal forest over a 7 year outbreak 

(Ludwig et al. 1978)). In the latter case, over-development of biomass during 

succession can over-connect an ecosystem, making it vulnerable to contagious spread 

of processes that usually work at small scales. Spruce budworm outbreaks in most 

years may create patches less than several hectares if there is any outbreak at all.  

Table Two 

 

1.3.1.3 Resilience Of Ecosystems 

 

Lumpy body size patterns may link aggregations of animal species with processes that 

structure the landscape at specific scales. Understanding the distribution of function 

both within and across lumps provides a framework for understanding how resilience 
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is generated in ecological systems. Resilience is the capacity of an ecosystem to 

absorb a shock while retaining the sets of processes that structure and maintain its 

character (Holling 1973, 1992, Peterson et al. 1998). The resilience of ecosystems 

depends upon the distribution of functional groups within and across scales. If the 

species that comprise a functional group operate at different scales, they provide 

mutual reinforcement that contributes to the resilience of a function, while at the same 

time minimizing competition among species within the functional group. For 

example, while small foliage gleaners such as kinglets and warblers forage for spruce 

budworm at low larval densities, a larger class of birds, such as corvids, converges to 

forage on budworm when an outbreak aggregates individual budworms so that they 

constitute a large-scale resource. This cross-scale resilience complements a within-

scale resilience that is produced by an overlap of function among species of different 

functional groups that operate at the same scales (Peterson et al. 1998).  Within-scale 

resilience arises from a ‘fuzzy’ redundancy because each species within a scale has 

similar but not at all identical effects.   They differ in function, as well as degree of 

influence and sensitivity to change. We propose that this resilience can be assessed by 

analyzing the distribution of function within and across lumps in the body mass 

distribution of an animal assemblage. 

 

1.3.2 Understanding And Predicting Vulnerability 

 

In hierarchical complex systems, breaks between levels indicate the scales at which 

the processes controlling structure shift from one set to another. Scale breaks in 
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attributes of animal communities such as body masses correlate strongly with a set of 

poorly understood biological phenomena that mix contrasting attributes. These 

phenomena include invasion, extinction, high population variability, migration and 

nomadism; in other words, high variability at the species, population and community 

levels. Recently, Allen et al. (1999) documented that the body masses of endangered 

and invasive species in a community occur at the edges of body mass aggregations 2-4 

times as often as expected by chance. For example, Figure 4 illustrates the locations 

of invasive species (arrows) within body mass aggregations (hatched polygons) of a 

body size distribution for south Florida mammals. That correlation is consistent in all 

8 data sets examined so far. Those data include four different taxa in two different 

ecosystems. The strong correspondence between the independent attributes of 

population status and body-mass pattern in three different taxa confirms the existence 

of discontinuous body mass distributions. It may seem surprising that both invasive 

and declining species are located at the edge of body-mass aggregations. These results 

suggest that something similar must be shared by the two extreme biological 

conditions represented by invasive species and declining species. An examination of 

the phenomena of nomadism in birds in an Australian Mediterranean climate 

ecosystem (Allen and Saunders 2002) found that nomadic birds also cluster about 

scale breaks (occur at the edge of body mass aggregations). The clustering of these 

phenomena at predictable locations – the edge of body mass aggregations - suggests 

that variability in resource distribution or availability is greatest at scale breaks.  

  



 

 22 

Rapid anthropogenic disturbance affects the processes that structure ecosystems. If 

animal body mass aggregations are linked to scale-specific structures, such 

perturbations should reveal themselves by rate changes in species turnover that affect 

body mass aggregation patterns, or changes in the pattern itself. Feedback from taxa 

adapted to the altered ecosystem structure (e.g., invasive species) can prevent return to 

the original system state. As more invasive species become established, they may 

further alter the environment and promote a new regime of processes that entrench 

structural change. The lower turbidity induced by zebra mussel invasion of the Great 

Lakes is one example (MacIsaac 1996, Budd et al. 2001). Even if original key 

processes are re-established, the original animal community is not likely to be re-

assembled (Case 1990, Drake et al. 1996). Understanding the nature, location, and 

drivers of turnover in complex systems may help us understand how these systems are 

established and maintained. 

 

There are unusual characteristics associated with scale breaks. The edges of 

aggregations may be considered zones of crisis or opportunity depending on the way a 

given species at these scales exploits resources and interacts with its environment. As 

such, scale breaks may be analogous to phase transitions. In perturbed systems, we 

have documented that biological invasions, extinctions, and nomadism tend to occur 

at aggregation edges. However, we suspect that variability in species composition and 

population status is higher at scale breaks (the edge of body mass aggregations) 

whether or not the system has been perturbed. Human landscape transformations 

simply heighten the inherent variability. Highly variable behavior such as this has 
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been demonstrated for the area between domains of scale in physical systems 

(Nittmann et al. 1985, O’Neill et al. 1986, Grebogi et al. 1987), and postulated for 

biological communities (Wiens 1989). This discontinuous pattern may have 

predictive power: invasive species and extinct or declining species tend to be located 

at the edge of body-mass aggregations, which may be transition zones between 

distinct ranges of scale. Location at scale breaks affords species great opportunity, but 

also potential crisis. Complex behaviors such as migration, and rapid adaptation 

leading to speciation may evolve most efficiently and commonly at scale breaks, 

where there is the greatest potential reward, though with the highest potential cost.  

Figure Three 

 

1.3.3 Wildlife Management And Landscape Pattern 

 

By practical imperative, protocols to manage landscape pattern tend to become diffuse 

and vague as the scale of the conservation goal increases. Conservation of an 

individual species mandates identifying, conserving and/or creating the specific 

metrics of patch size, shape, and diversity in the landscape mosaic that favor that 

species, whereas regional goals broadly aim to “preserve diversity at all scales 

including the processes that create diversity” (Arnold 1995). From vegetation 

distributions to patch metrics to corridor width, the work of identifying landscape 

pattern types critical to conservation at different scales is relatively young, and 

developing spatial pattern statistics has only begun (Turner and Gardner 1991). 

Determining the metrics of critical landscape patterns separately for each species 
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would be an overwhelming task even if landscapes remained stable. In a world of 

shifting climates, nutrient and material fluxes, and land cover, how can we practically 

assess and manage landscapes to conserve biodiversity at the species level?  And if 

species requirements conflict, how can they be rationalized within landscape level 

planning?   

 

Complex Adaptive Systems theory may shorten the road to conservation effectiveness 

by integrating parallel probes of the processes, structures and species interacting in a 

landscape. All three show fundamental clustering patterns and hierarchical structure. 

Lumpiness is evident in the temporal distribution of the structuring processes, the 

space/time distributions of landscape patterns, and the size distributions of the 

animals living in the landscape. The task remains to test whether these pattern 

correspondences translate into functional linkages that can guide conservation 

research and management practice. The association between location of a species in 

the lumpy body size pattern and species attributes such as invasiveness or 

vulnerability to extinction suggests that such functional links do exist. If so, the 

daunting diversity of dozens of natural histories in a landscape may reduce to a small 

number of species groups (lumps), within which species share affinities for scale 

ranges of landscape pattern and structuring processes. For example, in an analysis of 

animal assemblages with species numbers ranging from 25 to 73 (Sendzimir 1998), 

the number of lumps ranged from 3 to 13, a reduction in numerical complexity 

ranging from a factor of 5 to 24.   
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The analysis of body mass patterns and their links with scales of structure in the 

landscape has many potential applications in wildlife management.  For landscapes it 

may be possible to analyze the distribution of function within and across scales and 

estimate the relative ability of different ecosystems to cope with perturbations.  We 

predict that systems with more lumps, greater functional group representation, and 

more even distribution of functional groups across lumps (Peterson et al. 1998) will 

be more resilient to human development, or other large disturbances.  Systems with 

relatively fewer lumps, less functional group representation, and less even distribution 

of functional groups across lumps are less likely to tolerate development and more 

likely to need intensive management intervention following landscape change.   

 

Even in a world in transition, it should be easier to study and manage species within 

groups rather than dozens of species individually. We can more easily identify critical 

landscape patterns if lump analysis identifies groups of animals likely to exploit such 

patterns. Conversely, identifying key landscape patterns simplifies monitoring the 

dynamics of critical or endangered populations of species related to those landscape 

structures. As well, it should be possible to predict those species most at risk of 

decline, and thus most in need of monitoring, following perturbations.  Species whose 

body masses place them at the edge of body mass aggregations are twice as likely to 

be endangered, threatened or species of special concern than species whose body 

masses place them solidly within lumps (Allen et al. 1999).   Longer-term research 

might identify vulnerable clusters of species whose habitat use relies on landscape 

structure that has begun to change, or is expected to change.   Management 
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interventions could address endangered species and structuring processes in parallel, 

by protecting vulnerable species clusters while changing the degree of perturbation at 

critical scales.  This might be done by diminishing other impacts on vulnerable 

species, e.g., hunting or competition for resources, while shaping resource spatial 

patterns through control of grazing, hydrology and/or planting.  

 

Two examples of pre- and post- disturbance research and management illustrate how 

integrating analyses of lumps and landscape spatial patterns of structure and function 

help to assess and manage the effects of perturbations at various scales on wildlife. 

Efforts to anticipate or respond to perturbation effects on native fauna could use lump 

analysis to identify species size clusters and compare the spatial scales of movement 

and habitat use critical to survival of species within each cluster with those of 

perturbation (such as patch size and inter-patch distances). One post-disturbance 

opportunity to study and perhaps manage change was created when European 

colonization of Australia introduced new species of grazing herbivores that 

transformed vegetation patterns at regional scales. Introduction of cattle and rabbit 

drastically altered plant species composition in rare, fertile pockets of the arid 

landscape. These perturbations to the Australian landscape increased inter-patch 

distances, making resources at meso-scales inaccessible to indigenous middle-sized 

mammals and hastening their disappearance (Morton 1990).  Lump analysis might 

predict species or species groups in the size range that could profit from re-

establishment of pre-colonial vegetation patterns or that could better exploit existing 

vegetation patterns. 
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We anticipate the use of a similar approach prior to a planned introduction of a new 

disturbance regime intended to support avian biodiversity conservation efforts in the 

Narew River valley in north-east Poland.  This experiment tests ideas (Vera 2000) that 

proper management of disturbance regimes can sustain and promote biodiversity.  

Pollen stratigraphic analysis in lake bottoms revealed that landcover in many parts of 

pre-historic Europe was not closed forest but more open and savanna-like, perhaps in 

response to mega-faunal foraging and browsing processes (Vera 2000).  This suggests 

that habitat management might restore biodiversity to historic levels by re-

establishing the full suite of processes, including browsing, which formerly structured 

the landscape.  The impacts on biodiversity of re-introduction of browsing or 

traditional forms of mowing are being tested in forests, heathlands and grasslands 

(Bokdam and Wallis de Vries 1992, Bokdam 1995, Kampf 2001). We plan to assess 

the biodiversity impacts of browsing in the river floodplain of the Narew by 

monitoring avian populations and changes in vegetation patterns related to changes in 

hydrology or herbivory by local or ancient breeds of horses or cattle.  Lump analysis 

of the avian species assemblage will be employed to identify as candidates for 

monitoring those individual species and species clusters that might be influenced by 

change in vegetation spatial distributions. 
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1.4 Conclusions 

 

Ecosystems function as, and are organized as, complex adaptive systems (Levin 

1998). There is compelling evidence from time-series and spatial data that the world 

is organized by a small set of structuring processes into a hierarchy of a limited 

number of spatial scales (a ‘lumpy’ world). Measures of clustering in the time 

behavior of ecological processes, the spatial distributions of landscape structures, and 

the size distributions of resident, animals can identify which groups of processes and 

landscape patterns might be associated with which groups of species over which time 

horizons. These clusters of process-landscape-species may prove more practical to 

detect and manage than efforts to marshal data on dozens of species and landscape 

characteristics. They may also provide a more informed context for asking specific 

questions about the habitat requirements of individual species. The most striking 

example to date of the conservation implications is the capacity that lump pattern 

analysis provides to predict species characteristics, such as nomadism, invasiveness 

and vulnerability (Allen et al. 1999, Allen and Saunders 2002).  We can test the larger 

potential of lump analysis by using it to predict the full range of vulnerabilities across 

a species assemblage by linking their body size-related resource use to scales of 

disturbance.   Wildlife managers can then incorporate changes in resource distribution 

associated with slower and subtler perturbations such as climate change or shifts in 

land use and land cover in addition to other known threats such as hunting, 

catastrophic disturbances, and pollution.   
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1.6 Summary 

Landscape patterns that are different at different scales, and which change abruptly at 

scale breaks, entrain morphological and behavioral characteristics of species (Holling 

1992). That entrainment is reflected in discontinuous animal body mass patterns 

(lumps and gaps in body mass distributions). Clustering patterns evident in the 

time/space distributions of processes and structures and the body masses of species 

interacting in a landscape offer opportunities to study and manage wildlife based on 

functional links between animals and the scales of ecological structure they utilize. 

The potential for lump analysis to link clusters of animal body masses with ecological 

processes is demonstrated in its power to predict species characteristics, such as 

nomadism, invasiveness and vulnerability. For managing wildlife where perturbations 

are shifting the landscape mosaic, this potential can be extended by linking 

predictions of species vulnerability and scales of habitat exploitation with analysis of 

the spatial scales of landscape structure changed by disturbance.  
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Table 1.  Links between landscape patterns and patterns of animal survival, size and 

movement as predicted separately by Optimal Search Theory (OST), Habitat 

Selection and Dispersal Theory (HSD), and Metapopulation Theory (MPT). 

 
Theory Structure Observation(O) /Prediction from theory (P) Ref. 
 Boundary 

Hard edge 
O - Species crosses habitat boundary only in 
extreme circumstances 

2 

HSD Patch Size O - Smaller habitat patches have higher rates 
of extinction and emigration, lower rates of 
immigration. 

1,2 

OST  P  - foraging movements are scale specific, 
step length decreases and turning rate 
increases when entering a smaller size patch 

2 

  O - Increasing minimum patch size 
associated with increasing body size for 
occupant species 

1 

MPT Patch Shape Concave edges act as funnels to channel 
migration from peninsulas and facilitate 
boundary crossings by dispersers 

2 

  Convex edges are crossed more frequently by 
animals doing daily foraging 

2 

  P -Emigration rate increases with edge/area 
ratio 

2 

OST Inter-patch 
distance 

P – Traplining (rotational foraging along a 
memorized circuit) optimally exploits patchy 
resources (food or shelter). 

2 

  O - Increasing inter-patch distance associated 
with declining patch occupancy 

1 

HSD Fragmentation P – hampers migration of ‘matrix-sensitive’ 
or ‘interior’ species. 

2 

HSD Corridors P – may lower fragmentation’s impact, 
especially as corridor width increases. 

2 

 Landscape Mosaic O - fewer, large extinction-resistant patches 
and many, small extinction-prone patches. 

1 

 
References: 1- Ritchie (1997), 2- Ims (1995) 
 
 
 



 

 

Table 2.  Fauna-mediated processes that create and maintain patchy landscape 

patterns (after Johnson 1995). 

 
Pattern Process Fauna Ref. 

Patches – Surface, 
 2-dimensional 

   

Tree stems and crown 
 
 

Seedling recruitment 
boosted by mycorrhyze 
enhanced by 
defecation  

Small rodents 
 
 
 

15 

Patches of flowers in alpine 
meadows 

Germination enhanced 
by higher nutrient 

levels from defecation 

Bears 15 

Small-to-Medium-sized patches 
(Conspecific tree patch 

distribution in rainforest 
mosaic) 

Patchy defecation – 
Seed dispersal- 

Latrines 
 
 

Seed predation  

Tapirs 
 
Howler monkeys 
 
Collared 
peccaries, 
 
 Agoutis 
 
 

10, 14, 
 
12 
 
 
10 
 
11 
 
 

Medium-sized patches Selective herbivory      - 
Diffuse effects of single 

individuals 
 

Seed & seedling 
consumption 

-Intense effect of herd 

Moose 
 
 
 
White-lipped 
peccaries 

2,3 
 
 
 
10, 11, 
13 

 Digging, wallowing Wild Boar 4 
 Destructive browsing Elephants 5 

Medium-to-Large-sized patches Selective herbivory      - 
Concentrated effects of 

swarms 

Gypsy moth,  
Spruce budworm 

6 
7 

Patch Bodies – Volumetric, 
 3-dimensional 

   

Small patches Soil-mixing Earthworms 6 
 Mounds – nutrient & 

water concentration 
Termites, ants 6 

 Den burrowing Pocket gophers 
Prairie dogs 

8 
9 

Small to large sized patches 
(Ponds) 

Dam construction Beavers 6 

 
1.  Paine and Levin 1981,  2.  Pastor et al. 1988,  3. Bowyer et al. 1997,  4. Holling 1992,  5. 
Bratton 1975 ,  6. Laws 1970 , 7.  Ludwig et al. 1978, 8. Huntley and Inouye 1988, 9. Agnew et. 
al. 1986, 10. Fragoso 1999, 11. Silvius 1999, 12. Julliot 1997, 13. Fragoso 1998, 14. Fragoso and 
Huffman 2000, 15. Sendzimir 1998. 



 

 

 
Figure 1.  Stommel plot of structures and processes in the Everglades ecosystem, along 

dimensions of space and time. The upper set of boxes indicate vegetation hierarchy, from 

individual plants to physiographic groupings. The lower tier represents the scales of 

meteorological processes that influence ecosystem. Fractal breaks (‘scale breaks’, as 

assessed by changes in fractal dimensions) that delimit the domains of landscape features 

are shown.   Dominant frequencies of hydrologic processes in the Everglades are depicted 

as arrows from the surface water representation. 

 

Figure 2.  Extrapolation of cumulative distribution function (a) for log10 body masses of 

shortgrass steppe mammals from southwest Kansas to an interpretation of lump structure 

(b) wherein each gray box represents a distance along the size axis occupied by a cluster 

of species of relatively similar size (body size lump). These lumps are separated by 'gap' 

zones on the size axis that are occupied by no or very few species. 

 

Figure 3.  Body mass patterns for two African savanna/woodland mammal assemblages 

with no taxonomic overlap at the species level. Discontinuities in these lump patterns 

identify the distinctions in the scale and texture of landscape use of the species in the 

body size zones A, B, and C.  With jumps in body size landscape textural use grades from 

very fine (A - burrows under sandy or wet soil, herbaceous mats) to fine (B - extensive 

ground cover, hollows, holes, crevices) to coarse (C - fringes of water, forest, and open 

areas).  

 



 

 

Figure 4.  Gap statistic (triangles), body mass pattern (body masses as circles), and 

occurrence of listed species (red) for Everglades mammals.  All data is presented in the 

lower graphic, while the upper graphic displays a stylized version of the body mass 

pattern and location of listed species (arrows).  Aggregations (shaded) were defined as 

groups of 3 or more species bordered by significant gaps; this criteria led us to disregard 

some high values of the gap statistic.  Note, however, that changes in body mass patterns 

due to the above make no difference in the overall patterns detected. (Modified from 

Allen et al. 1999). 
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FIGURE TWO 
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FIGURE 3 
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