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Abstract Prefetching is an effective technique for 
improving file access performance, which can reduce 
access latency for I/O systems. In distributed storage 
system, prefetching for metadata files is critical for the 
overall system performance. In this paper, an Affinity-
based Metadata Prefetching (APM) scheme is proposed
for metadata servers in large-scale distributed storage 
systems to provide aggressive metadata prefetching. 
Through mining useful information about metadata 
assesses from past history, AMP can discover metadata 
file affinities accurately and intelligently for prefetching. 
Compared with LRU and some of the latest file 
prefetching algorithms such as NEXUS and C-miner, 
trace-driven simulations show that AMP can improve the 
hit rates by up to 12%, 4.5% and 4%, respectively, while 
reduce the average response time  by up to 60%, 12% and 
8%, respectively.

Index terms: Prefetch, metadata, storage, data mining

1. Introduction and Motivations

High-performance computer system designers have 
long sought to improve the performance of file systems, 
which have proved critical to the overall performance of 
an exceedingly broad class of applications. The scientific 
and high-performance computing communities in 
particular have driven advances in the performance and 
scalability of distributed storage systems. Since all I/O 
requests can be classified into two categories, user data 
requests and metadata requests, the scalability of 
accessing both data and metadata has to be carefully 
maintained to avoid any potential performance bottleneck 
along all data paths. A novel decoupled storage 
architecture diverting actual file data flows away from 
metadata traffic has emerged to be an effective approach 
to alleviating the I/O bottleneck in modern storage 

systems [1]-[4], as shown in Figure 1. In such a system a 
client will consult a metadata server (MDS) cluster, which 
is responsible for maintaining the file system namespace, 
to receive permission to open a file and information 
specifying the location of its contents. Subsequent reading 
or writing takes place independently of the MDS cluster 
by communicating directly with one or more storage 
devices [5][6]. Previous studies on this new storage 
architecture mainly focus on optimizing the scalability
and efficiency of file data accesses by using RAID-styled
striping [7], [8], caching [9], scheduling [10] and 
networking schemes [11].

However, while the scalability of metadata operations 
is also very critical, it tends to be ignored or under
estimated. Metadata not only provides file attributes and 
data block addresses, but also synchronizes concurrent 
updates, enforces access control, supports recovering and 
maintains consistency between user data and file metadata. 
A study on the file system traces collected in different 
environments over a course of several months show that 
metadata operations may make up over 50% of all file 
system operations [13], making the performance of the 
MDS cluster of critical importance. Furthermore, while 
the overall capacity of the storage server cluster can easily 
scale by increasing the number of (relatively 
independently operating) devices, metadata exhibits a 
higher degree of interdependence, making the design of a 
scalable system much more challenging.

Figure 1 System architecture
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Existing caching and prefetching schemes designed 
for and applied on actual file data typically ignore 
metadata characteristics [14]. The most important 
characteristic of metadata is its much smaller size relative 
to actual file contents. Conventional data prefetching 
algorithms are usually very conservative and only
prefetch one or two files upon each cache miss. They are
not efficient for metadata prefetching. Because of 
relatively small size of metadata, the miss-prefetching 
penalty for metadata on both the disk side and the 
memory cache side is likely much less than the penalty for 
file data miss-prefetching [14]. Hence, an aggressive 
prefetching algorithm is desirable for metadata in order to 
handle large-volume of metadata traffic.

This paper proposes an affinity-based metadata 
prefetching (AMP) scheme that applies data mining 
techniques to discover and identify the affinities existing 
among metadata accesses from past history and then uses
these affinities as hints to judiciously perform aggressive 
metadata prefetching. The main technical contribution of 
this paper includes.
1. It develops an aggressive but efficient affinity-based 

metadata prefetching algorithm based on data mining 
techniques. The experimental results show that we 
can prefetch up to 6 metadata files at one time. 

2. AMP explores the impacts of different parameters 
(such as prefetching group size, server-oriented vs.
client-oriented prefetching, group header size) to 
optimize the tradeoff between the efficiency of 
metadata prefetching, and the memory and network 
overhead.

3. It compares AMP with some of the state-of-the-art 
prefetching schemes, including the NEXUS metadata 
prefetching algorithm [31] and the block-correlation-
discovery C-Miners algorithm [30], qualitatively and 
quantitatively. Comparison results show that AMP 
consistently outperforms both NEXUS and C-Miners.

The rest of the paper is organized as follows. Section 
2 outlines existing relevant algorithms to provide a 
background for AMP. Section 3 describes the proposed 
algorithm and discusses its design issues. The simulation 
methodology and the performance evaluations are
presented in Section 4. Section 5 concludes the paper.

2. Related Work
In this section, we briefly discuss some representative 

work that is closely related to this paper. Data prefetching 
has been studied extensively in databases, file systems 
and I/O-intensive applications. Most of previous 
prefetching work either relies on applications to pass hints
[15-19] or is based on simple heuristics such as sequential 
accesses. Ref. [20] is an example of prefetching in disk 
caches. I/O prefetching for out-of-core applications 
including compiler-assisted prefetching is proposed in [21, 
22] and prefetching through speculative execution is 
introduced in [23].

In the spectrum of sophisticated prefetching schemes, 
research has been conducted for semantic distance-based 
file prefetching for mobile or networked file servers. The 
SEER project from UCLA [24, 25] groups related files 
into clusters by keeping track of semantic distances 
between files and downloading as many complete clusters 
as possible onto the mobile station. Kroeger extends the 
probability graph to a tree with each node representing the 
sequence of consecutive file accesses from the root to the 
node [26]. Lei and Duchamp also use a similar structure 
by building a probability tree [27, 28].

There are also some studies on metadata prefetching. 
Nexus [31] is a weighted-graph-based prefetching 
technique, built on successor relationship, to gain 
performance benefit from prefetching specifically for 
clustered metadata servers.

Data mining methods have been mostly used to 
discover patterns in sales, finance or bio-informatics 
databases [29]. A few studies have applied them in 
storage systems. For example, Li et al. [30] proposed C-
Miner using data mining techniques to find block 
correlations on storage server to direct prefetching.

STEP [32] proposed a sequentiality and thrashing
detection-based prefetching scheme to aggressively
prefetch disk data based on cost-benefit analysis for two 
typical storage access patterns: sequential access patterns
and disk thrashing patterns.

3. Affinity-based Metadata Prefetching Scheme
In this section, we will introduce our new data mining 

based metadata prefetching algorithm AMP. AMP
explores deep affinities from metadata files and it 
involves two steps: (1) It first analyzes past metadata 
access history and extracts connotative relevancy for each 
file metadata and (2) It then utilizes the small size 
characteristic of file metadata and aggressively prefetches
multiple metadata simultaneously. Since file metadata 
typically are much smaller than actual file contents, the
penalty for metadata miss-prefetching would be relatively 
smaller compared to data miss-prefetching.

A. Metadata Affinities
Metadata affinities widely exist in storage systems. 

The metadata of two or more files are affined if they are 
“linked” together either spatially or temporally. For 
example,/usr always has a strong spatial affinity with 
/usr/bin, /usr/bin/ls and /usr/bin/ps. If we can find out the 
strong affinities between these metadata, we could 
prefetch all these metadata files into cache simultaneously. 
This can potentially significantly reduce the response time,
especially in distributed storage systems, where we need 
to obtain such metadata files from remote MDS. 

B. Affinity Identification
AMP uses the recent metadata access history and 

applies data mining techniques to discover metadata 
affinities. For example, it can use one week’s trace to train
the algorithm to extract the affinities, and then use this
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affinity information for metadata prefetching during the 
next week. A prefetching window with a fixed capacity is 
adopted in AMP. The prefetching window will move 
when a new request arrives. In the prefetching window, 
we fix the first two items as a header and concatenate the 
rest items with the header to form a sub–sequence. The 
pseudo-code of our algorithm above is provided to 
describe how AMP works.

We use an example to illustrate the basic idea of our 
algorithm. Suppose that the history window size is six and 
a request sequence is given as follows

D= {ABCADEFABE}
As illustrated in Figure 2 the procedure divides the 

sequence into fixed-length segments by moving the 
history window sequentially.

For each segments, the first two file metadata are 
considered as the prefix group and the set of the latter four 
file metadata excluding those in the prefix are the affix 
group. For example, in the segment {ABCADE}, the affix 
{CDE} does not include A since A is in the prefix.  The 
basic idea is that a prefix group gives positive support for
prefetching to all elements in the affix. For example, for 
the segment {AB:CDE} if A and B are accessed, {CDE}

are likely to be accessed again in the future. The 
following shows the details of all prefix and affix groups 
for all segments obtained by moving the window 
sequentially along the access sequence. 

   An access forest will be built with all accessed file 
metadata in the near past as roots, as shown in Figure 4. 

Then, each root node is extended into a weighted 
access tree by adding all prefix-affix pairs. For example, 
for the prefix-affix pair {AB:CDE}, AB will be added to 
the tree  as level one node. Then ABC, ABD, ABE will be 
added to the tree as level 2 nodes. After that, ABCD, 
ABCE, ABDE will be added to the tree. Then, the last one 
ABCDE would be added to the tree, as shown in figure 5.

Figure 2 History window movements

1   F  NULL //F is a forest
2   for each item mi of M do
3      if (mi does not exist in F)
4        add mi to F
5   end for
6   for i←1 to n-1
7      iG =mi m(i+1)…m(i+w-1) // history window size w

8   iG ←filter ( iG ) //filter: fix first two items in iG and remove same items in iG

9      group iS ←mi m(i+1)+ subset( iG =m(i+2)…mk ) //fix first two items of iG , concatenate with the rest items in iG

10        for each iS do 

11          search mi in F
12          if (children of node mi don’t contain node mi m (i+1))
13            add node mi m(i+1) under node mi

14          else
15            frequency of mi m(i+1) + 1
16          j←3
17          while j<=length ( iS )       

18            find mi mi+1 … mj-1

19              if (children of mi mi+1 … mj-1do not contain mi mi+1 … mj)
20                add node mi mi+1 … mj under mi mi+1 … mj-1

21              else
22                  frequency of mi mi+1 … mj +1
23              j++
24          end while
25        end for
26   end for
27   MaxGroups(all trees in F) //for each tree, compare frequency of every node under level 2 and find out the node who has the biggest frequency

Figure 4 tree root nodes

Figure 3 Group information
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From the training result of A, as shown in Figure 5, we 
can find that the frequency of node ABE is 2, which is 
larger than the weights of the other path rooted from A.
This indicates that ABE has a strong affinity. When item A
or AB appears, E is most likely to be accessed in the very 
near future. This obtained affinity is what we need for 
prefetching.

Many prefeching algorithms use only the currently 
accessed object to predict the objects that are likely to be 
accessed in the near future. Such approaches are believed 
to be neither accurate nor adequate. Accordingly, AMP 
chooses to use multiple objects, instead of the currently 
accessed one, to perform predictions. For example, given
a group ABCDEF, if A is already in the cache, and a cache 
miss happens on B, the prefetching affinity should 
be AB CDEF , instead of B CDEF . Using AB

simultaneously provides a better prefetching accuracy. 
This is base on the fact that 

1 1 2( | ) ( | )P Group X P Group X X

AMP has the following major advantages. Firstly, the
most significant difference between AMP and other 
probability based approaches is that AMP is not limited to 
predicting the most immediate successor. AMP aims to 
provide a deeper insight into the future and aims to predict 
a group of metadata that are likely to be accessed for 
aggressive prefetching. 

Secondly, AMP provides more accurate predictions. 
Nexus constructs a graph for all items and selects those 
items with largest weight for prefetching. The relations 
between file metadata are relatively simple and straight. 
In addition, the affinity identified by Nexus is sometimes 
inaccurate under some circumstance. Typical prefetching 
rules in Nexus are similar to this: A CD (Upon a 
miss on A, Nexus prefetches C and D). AMP explores the 
affinity with longer prefix, such as AB->CD in which A is 

in cache and a miss happens on B. AMP uses both A and 
B to determine the prefetching of CD. This design with 
longer prefix helps to reduce mis-predictions and also 
improve the capability of predicting further into the future. 
In addition, our experiments show that when the prefix 
length increases to 3 or 4, the prefetching accuracy almost 
has no significant improvement, while the algorithm 
complexity increases exponentially.
    Thirdly, AMP is more aggressive than Nexus by taking 
advantage of the fact that file metadata typically are small 
in size. In real-trace experiments, we have found that 
AMP can prefetch up to 6 file metadata during a cache 
miss, while Nexus only perfetches 2 file metadata. 
    Similarly to other algorithms, AMP can also perform 
affinity discovery in an on-line fashion without system-
level intervention. For example, AMP can train each day
trace at midnight and use the training results for the 
second day's prefetching. The new training results are 
accumulated into the database while old results in the 
database are either replaced or aged over the time. In this 
aspect, AMP differs from C-Miner that only uses recent 
traces for training and training results are not accumulated.

Another important difference between AMP and C-
Miner is that AMP has less overhead. AMP places more 
focus on affinity and less on strict access orders. Fox 
example, AMP treats the following prefix-affix pair 
exactly the same in identifying affinity:
A BCDE and A DEBC , while C-Miner 

considers them to be different for prefetching. 
Accordingly C-Miner identifies few affinity sequences, 
thus less accurate.

C. Design issues
C.1 Prefetch group size

The size of file metadata is typically uniform and 
much smaller than the size of file contents in most file
systems. With a relatively small size, the penalty for miss-
prefetching on both the disk side and the memory cache 
side is likely much less than that for file data, allowing the 
opportunity for exploring and adopting more aggressive 
prefetching algorithms. We study the impact of the impact 
of prefetch group size from 3 to 9, as shown in Figure 6. It 
is interesting to observe that the hit rate remains almost 
unchanged when the group size increases from 7 to 9. 
Thus, in this paper, we choose to use 8 as the group size. 
This means that when the size of prefix group is two, we 
can prefetch up to 6 items for one cache miss. .
C.2 Header size

In this part, we will analysis the hit rate and the 
prefetch header size. This header size is also referred to as 
the prefix N is the N-gram scheme. An N-gram is a sub-
sequence of n items from a given sequence. N-grams are 
used in various areas of statistical natural language 
processing and genetic sequence analysis. When we fix 
the first item of the group, we call it two-gram, fix the
first two items of the group, we call it three-gram and so 
on. Instinctively, when the header size increases, the 
prefetching accuracy is expected to increase, while the 

Figure 5 Training results
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algorithm complexity increases exponentially. Figure 7 
shows the prefetch performance of 2-gram, 3-gram, 4-
gram and 5-gram. Compared with 3-gram, 4-gram or 5-
gram cannot provide no improvement. Thus, in this paper, 
3-gram is chosen in AMP.

C.3 Server-oriented grouping vs. client-oriented grouping
There are two different approaches to affinity 

discovery: 1) obtain affinities for all requests received by
a particular metadata server; or 2) obtain affinities for
requests sent separately from individual clients. In this 
paper, we refer to the former as server-oriented access 
grouping, and the latter as client-oriented access grouping
[31]. Our experimental results prove that the client-
oriented scheme always out-performs the server-oriented
scheme. Thus, the client-oriented grouping is chosen in 
our design.

4. Performance Evaluation 
We use trace-driven simulations to evaluation our 

design based on several large traces collected in real 
systems. We have developed a metadata management
simulator that incorporates widely used DiskSim 
simulator [33].
A. workloads
   To the best of our knowledge, there are no publicly 
available file system traces that have been collected from 
a large scale cluster with thousands of nodes. We conduct 
our simulations on two public traces: the HP traces [34] 
and Harvard SOS Traces [35, 36]. HP traces are 10-day 

long file system traces collected on a time-sharing server
with a total of 500GB storage capacity and 236 users. To 
emulate the I/O behaviors of such a large system and
facilitate a meaningful simulation, we artificially scale up 
the workloads from 200 clients to about 8000 clients by 
merging multiple trace files into one, thus increasing the 
access density while maintaining the time order of access 
sequences. Harvard SOS traces are collected from the 
some departments and main campus general-purpose 
servers with a total of 160 GB. We use the one collected 
from the main campus general-purpose servers for 
our simulation.

B. Simulation framework
In order to obtain the pure prefetching effect, we first 

experiment on local machine that only consists of local 
cache and local disk. The prefetching result in local client 
can directly influence the performance of the whole 
system. Figure 10 shows the hit rate of several prefetching 
algorithms.

Figure 6 Group size comparison

Figure 7 N-Gram header size

Figure 9 Server-oriented grouping vs. client-
oriented grouping, cache size=750

Figure 8 Server-oriented grouping vs. client-
oriented grouping, cache size=400
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In order to simulate a distributed storage system, we 
develop a system simulator to study the clustered-MDS 
based storage system. In our simulation framework, the 
storage system consists of four layers: 1) client cache, 2) 
metadata server cache, 3) cooperative cache, and 4) 
metadata server hard disks. When one client needs to 
obtain a file metadata, it first checks its local cache (client 
cache). Upon a cache miss, the client sends the request to 
the corresponding MDS, a corresponding network latency 
would be added. Since our main goal is to explore the 
distributed storage system and prefetching, we assume 
that all nodes are connected with a network delay of 0.3 
ms; if the MDS also sees a miss, the MDS looks up the 
cooperative cache, which would add another network
latency. Otherwise, MDS can only fetch the metadata files 
from the disk, which potentially experiences a relatively
higher delay due to large disk access. 

C. Hit rate comparison
The overall cache hit rate includes three components: 

client local hit, metadata server memory hit, and 
cooperative cache hit.  Obviously, local hit rate directly 
reflects the effectiveness of the prefetching algorithm 
because the prefetching algorithm is executed in this layer.
We have collected the hit rate for all these three levels. 
The client cache is the most important part, because it 
directly reflects the effect of prefetching and greatly 
influences the hit rate and response time.  Figure 11
shows the hit rate when the system contains different 
clients. It shows that AMP always has the best local hit 
rate, which is uniform with the local hit rate experiment.
Also, we can see that three prefetching algorithm AMP, 
C-miner and Nexus all beat the off-line optimal cache 
replacement algorithm (OPT) that doesn’t perform 
prefetching. This proves the effectiveness of metadata 
prefetching. .

Figure 10 Client local hit rate (HP trace). System hit rate with 8MDS and 800 
clients (HP trace).

System hit rate with 8MDS and 1600 
clients(HP trace).

System hit rate with 8MDS and 2400 
clients (HP trace).

Figure 12
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D. Response time Comparison
The average response time is measured by using

Disksim. As explained earlier, the whole system has four 
layers, including client cache, MDS cache, cooperative
cache and MDS disk. From Figure 14 and Figure 15, we 
can see that AMP has the best response time. Compared 
with LRU, NEXUS and C-miner, trace-driven simulations 
show that AMP can improve the hit rates by up to 12%, 
4.5% and 4%, respectively, while reduce the average 
response time  by up to 60%, 12% and 8%, respectively.
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5. Conclusion
This paper proposes an Affinity-based Metadata 

Prefetching (AMP) Scheme for distributed large-scale 
storage systems. By exploiting the past affinities between 
file metadata, AMP can achieve aggressive but efficient 
prefetching. AMP has following contributions:
 By precisely analyzing the past requests, AMP can 

discover deeper and more accurate metadata affinities.
 AMP takes advantages some the small-size 

characteristic and performs more aggressive 
prefetching than state-of-the-art prefetching 
algorithms.

 AMP has small overhead and can be implemented as 
an online prefetching algorithm.

Both theoretical analytical and simulation results
improve the cache hit rate and reduce metadata time
significantly.
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