
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

11-19-2007

AMP: An Affinity-based Metadata Prefetching
Scheme in Large-Scale Distributed Storage Systems
Lin Li
University of Nebraska - Lincoln, lili@cse.unl.edu

Xuemin Li
Chongqing University, Chongqing, China

Hong Jiang
University of Nebraska - Lincoln, jiang@cse.unl.edu

Yifeng Zhu
University of Maine Orono, ME

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Li, Lin; Li, Xuemin; Jiang, Hong; and Zhu, Yifeng, "AMP: An Affinity-based Metadata Prefetching Scheme in Large-Scale Distributed
Storage Systems" (2007). CSE Technical reports. Paper 50.
http://digitalcommons.unl.edu/csetechreports/50

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/50?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages

1

AMP: An Affinity-based Metadata Prefetching Scheme in Large-Scale
Distributed Storage Systems

Lin Lin, Xuemin Li^, Hong Jiang, Yifeng Zhu*
Computer Science and Engineering

University of Nebraska-Lincoln, Lincoln, Nebraska 68588
Email:{lilin, jiang}@cse.unl.edu
^College of Computer Science

Chongqing University, Chongqing, China 400030
Email: lixuemin@cqu.edu.cn

∗Electrical and Computer Engineering
University of Maine Orono, ME 04469-5708

Email: zhu@eece.maine.edu

Abstract Prefetching is an effective technique for
improving file access performance, which can reduce
access latency for I/O systems. In distributed storage
system, prefetching for metadata files is critical for the
overall system performance. In this paper, an Affinity-
based Metadata Prefetching (APM) scheme is proposed
for metadata servers in large-scale distributed storage
systems to provide aggressive metadata prefetching.
Through mining useful information about metadata
assesses from past history, AMP can discover metadata
file affinities accurately and intelligently for prefetching.
Compared with LRU and some of the latest file
prefetching algorithms such as NEXUS and C-miner,
trace-driven simulations show that AMP can improve the
hit rates by up to 12%, 4.5% and 4%, respectively, while
reduce the average response time by up to 60%, 12% and
8%, respectively.

Index terms: Prefetch, metadata, storage, data mining

1. Introduction and Motivations

High-performance computer system designers have
long sought to improve the performance of file systems,
which have proved critical to the overall performance of
an exceedingly broad class of applications. The scientific
and high-performance computing communities in
particular have driven advances in the performance and
scalability of distributed storage systems. Since all I/O
requests can be classified into two categories, user data
requests and metadata requests, the scalability of
accessing both data and metadata has to be carefully
maintained to avoid any potential performance bottleneck
along all data paths. A novel decoupled storage
architecture diverting actual file data flows away from
metadata traffic has emerged to be an effective approach
to alleviating the I/O bottleneck in modern storage

systems [1]-[4], as shown in Figure 1. In such a system a
client will consult a metadata server (MDS) cluster, which
is responsible for maintaining the file system namespace,
to receive permission to open a file and information
specifying the location of its contents. Subsequent reading
or writing takes place independently of the MDS cluster
by communicating directly with one or more storage
devices [5][6]. Previous studies on this new storage
architecture mainly focus on optimizing the scalability
and efficiency of file data accesses by using RAID-styled
striping [7], [8], caching [9], scheduling [10] and
networking schemes [11].

However, while the scalability of metadata operations
is also very critical, it tends to be ignored or under
estimated. Metadata not only provides file attributes and
data block addresses, but also synchronizes concurrent
updates, enforces access control, supports recovering and
maintains consistency between user data and file metadata.
A study on the file system traces collected in different
environments over a course of several months show that
metadata operations may make up over 50% of all file
system operations [13], making the performance of the
MDS cluster of critical importance. Furthermore, while
the overall capacity of the storage server cluster can easily
scale by increasing the number of (relatively
independently operating) devices, metadata exhibits a
higher degree of interdependence, making the design of a
scalable system much more challenging.

Figure 1 System architecture

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2007-0024
Issued Nov. 19, 2007

2

Existing caching and prefetching schemes designed
for and applied on actual file data typically ignore
metadata characteristics [14]. The most important
characteristic of metadata is its much smaller size relative
to actual file contents. Conventional data prefetching
algorithms are usually very conservative and only
prefetch one or two files upon each cache miss. They are
not efficient for metadata prefetching. Because of
relatively small size of metadata, the miss-prefetching
penalty for metadata on both the disk side and the
memory cache side is likely much less than the penalty for
file data miss-prefetching [14]. Hence, an aggressive
prefetching algorithm is desirable for metadata in order to
handle large-volume of metadata traffic.

This paper proposes an affinity-based metadata
prefetching (AMP) scheme that applies data mining
techniques to discover and identify the affinities existing
among metadata accesses from past history and then uses
these affinities as hints to judiciously perform aggressive
metadata prefetching. The main technical contribution of
this paper includes.
1. It develops an aggressive but efficient affinity-based

metadata prefetching algorithm based on data mining
techniques. The experimental results show that we
can prefetch up to 6 metadata files at one time.

2. AMP explores the impacts of different parameters
(such as prefetching group size, server-oriented vs.
client-oriented prefetching, group header size) to
optimize the tradeoff between the efficiency of
metadata prefetching, and the memory and network
overhead.

3. It compares AMP with some of the state-of-the-art
prefetching schemes, including the NEXUS metadata
prefetching algorithm [31] and the block-correlation-
discovery C-Miners algorithm [30], qualitatively and
quantitatively. Comparison results show that AMP
consistently outperforms both NEXUS and C-Miners.

The rest of the paper is organized as follows. Section
2 outlines existing relevant algorithms to provide a
background for AMP. Section 3 describes the proposed
algorithm and discusses its design issues. The simulation
methodology and the performance evaluations are
presented in Section 4. Section 5 concludes the paper.

2. Related Work
In this section, we briefly discuss some representative

work that is closely related to this paper. Data prefetching
has been studied extensively in databases, file systems
and I/O-intensive applications. Most of previous
prefetching work either relies on applications to pass hints
[15-19] or is based on simple heuristics such as sequential
accesses. Ref. [20] is an example of prefetching in disk
caches. I/O prefetching for out-of-core applications
including compiler-assisted prefetching is proposed in [21,
22] and prefetching through speculative execution is
introduced in [23].

In the spectrum of sophisticated prefetching schemes,
research has been conducted for semantic distance-based
file prefetching for mobile or networked file servers. The
SEER project from UCLA [24, 25] groups related files
into clusters by keeping track of semantic distances
between files and downloading as many complete clusters
as possible onto the mobile station. Kroeger extends the
probability graph to a tree with each node representing the
sequence of consecutive file accesses from the root to the
node [26]. Lei and Duchamp also use a similar structure
by building a probability tree [27, 28].

There are also some studies on metadata prefetching.
Nexus [31] is a weighted-graph-based prefetching
technique, built on successor relationship, to gain
performance benefit from prefetching specifically for
clustered metadata servers.

Data mining methods have been mostly used to
discover patterns in sales, finance or bio-informatics
databases [29]. A few studies have applied them in
storage systems. For example, Li et al. [30] proposed C-
Miner using data mining techniques to find block
correlations on storage server to direct prefetching.

STEP [32] proposed a sequentiality and thrashing
detection-based prefetching scheme to aggressively
prefetch disk data based on cost-benefit analysis for two
typical storage access patterns: sequential access patterns
and disk thrashing patterns.

3. Affinity-based Metadata Prefetching Scheme
In this section, we will introduce our new data mining

based metadata prefetching algorithm AMP. AMP
explores deep affinities from metadata files and it
involves two steps: (1) It first analyzes past metadata
access history and extracts connotative relevancy for each
file metadata and (2) It then utilizes the small size
characteristic of file metadata and aggressively prefetches
multiple metadata simultaneously. Since file metadata
typically are much smaller than actual file contents, the
penalty for metadata miss-prefetching would be relatively
smaller compared to data miss-prefetching.

A. Metadata Affinities
Metadata affinities widely exist in storage systems.

The metadata of two or more files are affined if they are
“linked” together either spatially or temporally. For
example,/usr always has a strong spatial affinity with
/usr/bin, /usr/bin/ls and /usr/bin/ps. If we can find out the
strong affinities between these metadata, we could
prefetch all these metadata files into cache simultaneously.
This can potentially significantly reduce the response time,
especially in distributed storage systems, where we need
to obtain such metadata files from remote MDS.

B. Affinity Identification
AMP uses the recent metadata access history and

applies data mining techniques to discover metadata
affinities. For example, it can use one week’s trace to train
the algorithm to extract the affinities, and then use this

3

affinity information for metadata prefetching during the
next week. A prefetching window with a fixed capacity is
adopted in AMP. The prefetching window will move
when a new request arrives. In the prefetching window,
we fix the first two items as a header and concatenate the
rest items with the header to form a sub–sequence. The
pseudo-code of our algorithm above is provided to
describe how AMP works.

We use an example to illustrate the basic idea of our
algorithm. Suppose that the history window size is six and
a request sequence is given as follows

D= {ABCADEFABE}
As illustrated in Figure 2 the procedure divides the

sequence into fixed-length segments by moving the
history window sequentially.

For each segments, the first two file metadata are
considered as the prefix group and the set of the latter four
file metadata excluding those in the prefix are the affix
group. For example, in the segment {ABCADE}, the affix
{CDE} does not include A since A is in the prefix. The
basic idea is that a prefix group gives positive support for
prefetching to all elements in the affix. For example, for
the segment {AB:CDE} if A and B are accessed, {CDE}

are likely to be accessed again in the future. The
following shows the details of all prefix and affix groups
for all segments obtained by moving the window
sequentially along the access sequence.

 An access forest will be built with all accessed file
metadata in the near past as roots, as shown in Figure 4.

Then, each root node is extended into a weighted
access tree by adding all prefix-affix pairs. For example,
for the prefix-affix pair {AB:CDE}, AB will be added to
the tree as level one node. Then ABC, ABD, ABE will be
added to the tree as level 2 nodes. After that, ABCD,
ABCE, ABDE will be added to the tree. Then, the last one
ABCDE would be added to the tree, as shown in figure 5.

Figure 2 History window movements

1 F NULL //F is a forest
2 for each item mi of M do
3 if (mi does not exist in F)
4 add mi to F
5 end for
6 for i←1 to n-1
7 iG =mi m(i+1)…m(i+w-1) // history window size w

8 iG ←filter (iG) //filter: fix first two items in iG and remove same items in iG

9 group iS ←mi m(i+1)+ subset(iG =m(i+2)…mk) //fix first two items of iG , concatenate with the rest items in iG

10 for each iS do

11 search mi in F
12 if (children of node mi don’t contain node mi m (i+1))
13 add node mi m(i+1) under node mi

14 else
15 frequency of mi m(i+1) + 1
16 j←3
17 while j<=length (iS)

18 find mi mi+1 … mj-1

19 if (children of mi mi+1 … mj-1do not contain mi mi+1 … mj)
20 add node mi mi+1 … mj under mi mi+1 … mj-1

21 else
22 frequency of mi mi+1 … mj +1
23 j++
24 end while
25 end for
26 end for
27 MaxGroups(all trees in F) //for each tree, compare frequency of every node under level 2 and find out the node who has the biggest frequency

Figure 4 tree root nodes

Figure 3 Group information

4

From the training result of A, as shown in Figure 5, we
can find that the frequency of node ABE is 2, which is
larger than the weights of the other path rooted from A.
This indicates that ABE has a strong affinity. When item A
or AB appears, E is most likely to be accessed in the very
near future. This obtained affinity is what we need for
prefetching.

Many prefeching algorithms use only the currently
accessed object to predict the objects that are likely to be
accessed in the near future. Such approaches are believed
to be neither accurate nor adequate. Accordingly, AMP
chooses to use multiple objects, instead of the currently
accessed one, to perform predictions. For example, given
a group ABCDEF, if A is already in the cache, and a cache
miss happens on B, the prefetching affinity should
be AB CDEF , instead of B CDEF . Using AB

simultaneously provides a better prefetching accuracy.
This is base on the fact that

1 1 2(|) (|)P Group X P Group X X

AMP has the following major advantages. Firstly, the
most significant difference between AMP and other
probability based approaches is that AMP is not limited to
predicting the most immediate successor. AMP aims to
provide a deeper insight into the future and aims to predict
a group of metadata that are likely to be accessed for
aggressive prefetching.

Secondly, AMP provides more accurate predictions.
Nexus constructs a graph for all items and selects those
items with largest weight for prefetching. The relations
between file metadata are relatively simple and straight.
In addition, the affinity identified by Nexus is sometimes
inaccurate under some circumstance. Typical prefetching
rules in Nexus are similar to this: A CD (Upon a
miss on A, Nexus prefetches C and D). AMP explores the
affinity with longer prefix, such as AB->CD in which A is

in cache and a miss happens on B. AMP uses both A and
B to determine the prefetching of CD. This design with
longer prefix helps to reduce mis-predictions and also
improve the capability of predicting further into the future.
In addition, our experiments show that when the prefix
length increases to 3 or 4, the prefetching accuracy almost
has no significant improvement, while the algorithm
complexity increases exponentially.
 Thirdly, AMP is more aggressive than Nexus by taking
advantage of the fact that file metadata typically are small
in size. In real-trace experiments, we have found that
AMP can prefetch up to 6 file metadata during a cache
miss, while Nexus only perfetches 2 file metadata.
 Similarly to other algorithms, AMP can also perform
affinity discovery in an on-line fashion without system-
level intervention. For example, AMP can train each day
trace at midnight and use the training results for the
second day's prefetching. The new training results are
accumulated into the database while old results in the
database are either replaced or aged over the time. In this
aspect, AMP differs from C-Miner that only uses recent
traces for training and training results are not accumulated.

Another important difference between AMP and C-
Miner is that AMP has less overhead. AMP places more
focus on affinity and less on strict access orders. Fox
example, AMP treats the following prefix-affix pair
exactly the same in identifying affinity:
A BCDE and A DEBC , while C-Miner

considers them to be different for prefetching.
Accordingly C-Miner identifies few affinity sequences,
thus less accurate.

C. Design issues
C.1 Prefetch group size

The size of file metadata is typically uniform and
much smaller than the size of file contents in most file
systems. With a relatively small size, the penalty for miss-
prefetching on both the disk side and the memory cache
side is likely much less than that for file data, allowing the
opportunity for exploring and adopting more aggressive
prefetching algorithms. We study the impact of the impact
of prefetch group size from 3 to 9, as shown in Figure 6. It
is interesting to observe that the hit rate remains almost
unchanged when the group size increases from 7 to 9.
Thus, in this paper, we choose to use 8 as the group size.
This means that when the size of prefix group is two, we
can prefetch up to 6 items for one cache miss. .
C.2 Header size

In this part, we will analysis the hit rate and the
prefetch header size. This header size is also referred to as
the prefix N is the N-gram scheme. An N-gram is a sub-
sequence of n items from a given sequence. N-grams are
used in various areas of statistical natural language
processing and genetic sequence analysis. When we fix
the first item of the group, we call it two-gram, fix the
first two items of the group, we call it three-gram and so
on. Instinctively, when the header size increases, the
prefetching accuracy is expected to increase, while the

Figure 5 Training results

5

algorithm complexity increases exponentially. Figure 7
shows the prefetch performance of 2-gram, 3-gram, 4-
gram and 5-gram. Compared with 3-gram, 4-gram or 5-
gram cannot provide no improvement. Thus, in this paper,
3-gram is chosen in AMP.

C.3 Server-oriented grouping vs. client-oriented grouping
There are two different approaches to affinity

discovery: 1) obtain affinities for all requests received by
a particular metadata server; or 2) obtain affinities for
requests sent separately from individual clients. In this
paper, we refer to the former as server-oriented access
grouping, and the latter as client-oriented access grouping
[31]. Our experimental results prove that the client-
oriented scheme always out-performs the server-oriented
scheme. Thus, the client-oriented grouping is chosen in
our design.

4. Performance Evaluation
We use trace-driven simulations to evaluation our

design based on several large traces collected in real
systems. We have developed a metadata management
simulator that incorporates widely used DiskSim
simulator [33].
A. workloads
 To the best of our knowledge, there are no publicly
available file system traces that have been collected from
a large scale cluster with thousands of nodes. We conduct
our simulations on two public traces: the HP traces [34]
and Harvard SOS Traces [35, 36]. HP traces are 10-day

long file system traces collected on a time-sharing server
with a total of 500GB storage capacity and 236 users. To
emulate the I/O behaviors of such a large system and
facilitate a meaningful simulation, we artificially scale up
the workloads from 200 clients to about 8000 clients by
merging multiple trace files into one, thus increasing the
access density while maintaining the time order of access
sequences. Harvard SOS traces are collected from the
some departments and main campus general-purpose
servers with a total of 160 GB. We use the one collected
from the main campus general-purpose servers for
our simulation.

B. Simulation framework
In order to obtain the pure prefetching effect, we first

experiment on local machine that only consists of local
cache and local disk. The prefetching result in local client
can directly influence the performance of the whole
system. Figure 10 shows the hit rate of several prefetching
algorithms.

Figure 6 Group size comparison

Figure 7 N-Gram header size

Figure 9 Server-oriented grouping vs. client-
oriented grouping, cache size=750

Figure 8 Server-oriented grouping vs. client-
oriented grouping, cache size=400

6

In order to simulate a distributed storage system, we
develop a system simulator to study the clustered-MDS
based storage system. In our simulation framework, the
storage system consists of four layers: 1) client cache, 2)
metadata server cache, 3) cooperative cache, and 4)
metadata server hard disks. When one client needs to
obtain a file metadata, it first checks its local cache (client
cache). Upon a cache miss, the client sends the request to
the corresponding MDS, a corresponding network latency
would be added. Since our main goal is to explore the
distributed storage system and prefetching, we assume
that all nodes are connected with a network delay of 0.3
ms; if the MDS also sees a miss, the MDS looks up the
cooperative cache, which would add another network
latency. Otherwise, MDS can only fetch the metadata files
from the disk, which potentially experiences a relatively
higher delay due to large disk access.

C. Hit rate comparison
The overall cache hit rate includes three components:

client local hit, metadata server memory hit, and
cooperative cache hit. Obviously, local hit rate directly
reflects the effectiveness of the prefetching algorithm
because the prefetching algorithm is executed in this layer.
We have collected the hit rate for all these three levels.
The client cache is the most important part, because it
directly reflects the effect of prefetching and greatly
influences the hit rate and response time. Figure 11
shows the hit rate when the system contains different
clients. It shows that AMP always has the best local hit
rate, which is uniform with the local hit rate experiment.
Also, we can see that three prefetching algorithm AMP,
C-miner and Nexus all beat the off-line optimal cache
replacement algorithm (OPT) that doesn’t perform
prefetching. This proves the effectiveness of metadata
prefetching. .

Figure 10 Client local hit rate (HP trace). System hit rate with 8MDS and 800
clients (HP trace).

System hit rate with 8MDS and 1600
clients(HP trace).

System hit rate with 8MDS and 2400
clients (HP trace).

Figure 12

7

D. Response time Comparison
The average response time is measured by using

Disksim. As explained earlier, the whole system has four
layers, including client cache, MDS cache, cooperative
cache and MDS disk. From Figure 14 and Figure 15, we
can see that AMP has the best response time. Compared
with LRU, NEXUS and C-miner, trace-driven simulations
show that AMP can improve the hit rates by up to 12%,
4.5% and 4%, respectively, while reduce the average
response time by up to 60%, 12% and 8%, respectively.

800 1600 2400
0

10

20

30

40

50

60

70

80

90

100

Clients

A
ve

ra
ge

 r
es

po
ns

e
tim

e

LRU
OPT
NEXUS
C-miner
AMP

5. Conclusion
This paper proposes an Affinity-based Metadata

Prefetching (AMP) Scheme for distributed large-scale
storage systems. By exploiting the past affinities between
file metadata, AMP can achieve aggressive but efficient
prefetching. AMP has following contributions:
 By precisely analyzing the past requests, AMP can

discover deeper and more accurate metadata affinities.
 AMP takes advantages some the small-size

characteristic and performs more aggressive
prefetching than state-of-the-art prefetching
algorithms.

 AMP has small overhead and can be implemented as
an online prefetching algorithm.

Both theoretical analytical and simulation results
improve the cache hit rate and reduce metadata time
significantly.

References
[1] “Lustre: A scalable, high-performance file system,” Cluster

File Systems Inc. white paper, version 1.0, Nov. 2002.
[2] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical bloom filter

arrays (hba):a novel, scalable metadata management system
for large cluster-based storage,” in Cluster Computing, 2004
IEEE International Conference on, 2004, pp. 165–174.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,
“PVFS: A parallel file system for linux clusters,” in
Proceedings of the 4th Annual Linux Showcase and

Figure 14 Average response time for 8 MDS
(HP traces)

System hit rate with 8MDS and 800
clients (Harvard SOS trace).

System hit rate with 8MDS and 1600
clients (Harvard SOS trace).

System hit rate with 8MDS and 2400
clients (Harvard SOS trace).

Figure 13

Figure 15 Average response time for 8 MDS
(Harvard SOS traces)

8

Conference. Atlanta, GA: USENIX Association, 2000, pp.
317–327.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in SOSP, 2003, pp. 29–43.

[5] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed
disk striping to provide high I/O data rates. Computing
Systems, 4(4):405–436, 1991.

[6] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J.
Zelenka. A cost-effective, high-bandwidth storage
architecture. In Proceedings of the 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 92–
103,San Jose, CA, Oct. 1998.

[7] J. H. Hartman and J. K. Ousterhout, “The Zebra striped
network file system,” in High Performance Mass Storage
and Parallel I/O:Technologies and Applications, H. Jin, T.
Cortes, and R. Buyya, Eds. New York, NY: IEEE Computer
Society Press and Wiley, 2001, pp.309–329.

[8] E. J. Otoo, D. Rotem, and A. Romosan, “Optimal file-bundle
caching algorithms for data-grids,” in SC’2004 Conference
CD. Pittsburgh, PA: IEEE/ACM SIGARCH, Nov. 2004,
lBNL.

[9] M. Gupta and M. Ammar, “A novel multicast scheduling
scheme for multimedia servers with variable access
patterns,” Dec. 26 2002.

[10] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” in SOSP, 2001, pp. 174–
187.

[11] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller,
“Dynamic metadata management for petabyte-scale file
systems,” in SC’2004Conference CD. Pittsburgh, PA:
IEEE/ACM SIGARCH, Nov. 2004,

[12] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. In Proceedings of the 2000 USENIX
Annual Technical Conference, pages 41–54, June 2000.

[13] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. In Proceedings of the 2000 USENIX
Annual Technical Conference, pages 41–54, June 2000.

[14] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: A novel
weightedgraph-based prefetching algorithm for metadata
servers in petabyte-scale storage systems,” Proc. 6th IEEE
Int’l Symp. on Cluster Computing and the Grid, pp. 409–
416, 2006.

[15] P. Cao, E. Felten, and K. Li. Application-controlled file
caching policies. In USENIX Summer 1994 Technical
Conference, pages 171–182, June 1994.

[16] P. Cao, E.W. Felten, A. Karlin, and K. Li. A study of
integrated prefetching and caching strategies. In
Proceedings of ACM SIGMETRICS, May 1995.

[17] A. Tomkins, R. H. Patterson, and G. Gibson. Informed
multi-process prefetching and caching. In Proceedings of
the 1997 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 100–114. ACM
Press, 1997.

[18] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P.
Cao, E. Felten, G. Gibson, A. R. Karlin, and K. Li. A trace-
driven comparison of algorithms for parallel prefetching
and caching. In Proceedings of the 1996 Symposium on
Operating Systems Design and Implementation, pages 19–
34. USENIX Association, 1996.

[19] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In the

15th ACM Symposium on Operating System Principles,
1995.

[20] V. Soloviev. Prefetching in segmented disk cache for multi-
disk systems. In Proceedings of the fourth workshop on I/O
in parallel and distributed systems, pages 69–82. ACM
Press, 1996.

[21] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-
based I/O prefetching for out-of-core applications. ACM
Transactions on Computer Systems, 19(2):111–170, 2001.

[22] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic
compiler-inserted I/O prefetching for out-of-core
applications. In Proceedings of the 1996 Symposium on
Operating Systems Design and Implementation, pages 3–17.
USENIX Association, Oct. 1996.

[23] F. W. Chang and G. A. Gibson. Automatic I/O hint
generation through speculative execution. In Operating
Systems Design and Implementation, pages 1–14, 1999.

[24] G. Kuenning. Design of the SEER predictive caching
scheme. In Workshop on Mobile Computing Systems and
Applications, 1994.

[25] G. H. Kuenning and G. J. Popek. Automated hoarding for
mobile computers. In Proceedings of the 15th Symposium
on Operating Systems Principles, pages 264–275, St. Malo,
France, Oct. 1997. ACM.

[26] T. M. Kroeger and D. D. E. Long. Predicting file-system
actions from prior events. In 1996 USENIX Annual
Technical Conference, pages 319– 328, 1996.

[27] H. Lei and D. Duchamp. An analytical approach to file
prefetching. In 1997 USENIX Annual Technical
Conference, Anaheim, California, USA, 1997.

[28] C. D. Tait, H. Lei, S. Acharya, and H. Chang. Intelligent
file hoarding for mobile computers. In Mobile Computing
and Networking, pages 119–125, 1995.

[29] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

[30] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner:
Mining block correlations in storage systems. In
Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST), pages 173–186, 2004.

[31] Peng Gu, Yifeng Zhu, Hong Jiang, Jun Wang, Nexus: A
Novel Weighted-Graph-Based Prefetching Algorithm for
Metadata Servers in Petabyte-Scale Storage Systems.
International Symposium on Cluster Computing and the
Grid, 2006.

[32] Shuang Liang, Song Jiang, Xiaodong Zhang. STEP:
Sequentiality and Thrashing Detection Based Prefetching to
Improve Performance of Networked Storage Servers. In
Proceedings of the ICDCS'07, Toronto, Canada, June 2007.

[33] G. Ganger. Systemoriented evaluation of I/O subsystem
performance. Technical Report CSE-TR-243-95, University
of Michigan, June 1995.

[34] E. Riedel, M. Kallahalla, and R. Swaminathan, “A
framework for evaluating storage system security,” in
FAST, 2002, pp. 15–30.

[35] “SOS Project Traces,” [online]. Available:
http://www.eecs.harvard.edu/sos/traces.html.

[36] Daniel Ellard and Margo Seltzer, New NFS Tracing Tools
and Techniques for System Analysis, 2003 LISA.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	11-19-2007

	AMP: An Affinity-based Metadata Prefetching Scheme in Large-Scale Distributed Storage Systems
	Lin Li
	Xuemin Li
	Hong Jiang
	Yifeng Zhu

