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Abstract: 

In this paper, we propose an architectural approach, Supplementary Partial Parity (SPP), to addressing the 
availability issue of parity encoded RAID systems. SPP exploits free storage space and idle time to gen-
erate and update a set of partial parity units that cover a subset of disks (or data stripe units) during fail-
ure-free and idle/lightly-loaded periods, thus supplementing the existing full parity units for improved 
availability. By applying the exclusive OR operations appropriately among partial parity, full parity and 
data units, SPP can reconstruct the data on the failed disks with a fraction of the original overhead that is 
proportional to the partial parity coverage, thus significantly reducing the overhead of data regeneration, 
especially under heavy workload. By providing redundant parity coverage, SPP can potentially tolerate 
more than one disk failure with much better flexibility, thus significantly improving the system’s reliabil-
ity and availability. 

Due to its supplementary nature, SPP provides a more efficient and flexible redundancy protection me-
chanism than the conventional full parity approach. SPP offers multiple optional levels depending on par-
tial parity coverage and performance/cost targets. According to the actual workload and the available re-
source, the SPP approach can be adaptively and dynamically activated, deactivated and adjusted while the 
original RAID system continues to serve user requests on-line. We conduct extensive trace-driven ex-
periments to evaluate the performance of the SPP approach. The experiments results demonstrate that 
SPP significantly improves the reconstruction time and user response time simultaneously. 

1. Introduction 

Partial or complete disk failures are becoming increasingly common and frequent in modern-day 
large-scale data centers as the number and capacity of disks increase rapidly while individual disk failure 
rates remain almost unchanged. It thus becomes imperative for storage systems in general, and those in 
data centers in particular, to be capable of tolerating disk failures, hopefully more than one simultaneous 
failure, and regenerating data of the failed disks in as smallest amount of time as possible without no-
ticeably affecting user applications. To address the problem, most current research work focuses not only 
on the statistical analyses, trend predications, and impact evaluations of the disk failures in the real world 
[1-3], but also on improving existing failure-tolerant technologies deployed in the file system layer [4, 5] 
or inside disk-based systems [6-9]. 

As a fundamental component for availability, redundant disk arrays [10] have been widely deployed in 
modern storage systems to resist disk failures. By employing redundancy mechanisms such as mirroring, 
parity-encoding, and hot-sparing, disk arrays can tolerate disk failures and automatically rebuild the lost 
data on a failed disk onto a replacement disk in the background. Although many online recovery mecha-
nisms have been proposed and proven to be effective to some extent, the problem of availability in 
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large-scale storage systems remains a daunting challenge in light of the increasing demand for availability 
and thus clear trend of ultra scales in such systems. In an ultra-scale storage system, such as a Peta-
byte-scale data center [11] where hundreds of thousands of hard-disks are deployed, disk failures are be-
coming more frequent and omnipresent, giving rise to the likelihood that multiple reconstructions in the 
corresponding RAID sets could be carried out simultaneously due to significantly high disk failure rates 
and increasingly long recovery time. For example, [12] expected that hundreds of concurrent reconstruc-
tions would soon become inevitable in such large data centers and proposed that “systems need to be de-
signed to operate in repair”. On the other hand, while hard-disk technology has advanced rapidly in terms 
of capacity and cost, other performance parameters of hard-drives such as bandwidth, seek latency and 
failure rate have been improved much more slowly in contrast, effectively lengthening the time to rebuild 
a failed disk, resulting in a longer "window of vulnerability" in which a second disk failure may occur. 
This problem will only be exacerbated in the emerging mobile data centers where disk arrays are more 
prone to failures than their stationary counterparts because of their harsh application and operational en-
vironments. In addition, mobile disk arrays tend to deploy small-form-factor disks, which have higher 
annual failure rates than desktop or enterprise hard disks, for the advantages of power-efficiency and mo-
bility, thus further sacrificing system reliability and availability.  

We believe that availability should be a first-class RAID concern, similar to the design principle in [4] 
----“reliability should be a first-class file system concern”. Therefore, the design of effective and efficient 
recovery mechanisms, which reduce both reconstruction time and user response time while being able to 
tolerate multiple failures, is an important approach to providing both availability and long-term reliability 
for storage systems. 

However, existing the-state-of-art redundancy protection mechanisms and recovery approaches cannot 
fully cope with the above problems. D-GRAID [6] ensures the availability of most files within the file 
system even though unexpected multiple disk failures occur, and provides the live-block recovery to re-
store only live file system data. Its weakness lies in that it needs acquiring the liveness information of up-
per file systems or databases for recovery, thus incurs more implementation complexity and portability 
issues. PRO [7] exploits the popularity of workloads and sequentiality of hard disks to rebuild the fre-
quent-accessed data areas prior to other data areas, so the improvement by PRO will be limited if the 
popularity of workloads is not high or the underlying disks are not hard disks. 

In this paper, we propose a Supplementary Partial Parity mechanism (SPP), an architectural approach to 
improving the availability of parity-encoded RAID systems. The basic idea of the SPP approach is to sig-
nificantly reduce the recovery overhead of reading data from the survival disks and of the exclusive OR 
(XOR) calculation for data regeneration, by introducing a supplementary parity mechanism. In addition to 
the conventional parity units, called full parity in this paper, in a RAID4/RAID5/RAID6 disk array, that 
cover the data units on all of the component data disks for each parity group, our SPP approach stores 
parity units on dedicated spare disks or potentially free blocks on data disks to cover the data units on a 
subset of the component data disks for each parity group. As a result, each component disk is protected by 
a combination of the conventional full parity approach and our SPP approach. By exploiting the unique 
feature of the XOR calculation, we reduce the overhead of both reading data blocks from the survival 
disks and XOR calculation for data reconstruction by a factor proportional to the SPP coverage percent-
age, thus improving both recovery time and user response time during recovery significantly and simul-
taneously. In other words, in general, with m dedicated spare disks that each provides SPP coverage for 
one (m+1)th of the n component disks, the reconstruction overhead is approximately reduced to 1/(m+1) 
of the original, particularly when n is large. Furthermore, and importantly, an SPP (with the Vertical Ori-
entation, see Section 3 for details) with m spare disks can be shown to tolerate up to (m+1) disk failures.  
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The proposed SPP approach aims to offer an efficient and flexible mechanism for highly-available RAID 
systems with minimal complexity and overhead. Similar to the classic RAID architectural level, the SPP 
architecture has multiple optional levels to meet the various application demands and performance/cost 
considerations, as detailed in Section 3. The main difference among these levels lies in the coverage and 
layout of SPP, resulting in different tradeoffs among availability, reliability and cost. More importantly, 
according to the actual workloads, available storage resource and the availability requirements, the SPP 
configuration parameters such as the SPP coverage range, placement strategy and update policy etc. can 
be adaptively and dynamically adjusted on-line due to its highly flexible design. 

It must be emphasized that the SPP approach is not a substitution for the full parity mechanism but a po-
werful supplement to the latter. We argue that SPP is a powerful yet flexible approach in that SPP’s de-
ployment does not need any change to the original data or parity layout of the standard parity-encoded 
disk arrays, and the SPP function of an SPP-enabled disk array can be activated or deactivated adaptively 
and dynamically while the disk array continues its normal operations. In other words, in the SPP approach 
free hot-spare disks can be judiciously deployed to generate/update and store the supplementary partial 
parity units during idle or lightly-loaded periods to significantly improve recovery time and user response 
time, and to provide enhanced protection against future disk failures. 

To prove the concept of SPP and assess its performance, we design and incorporate one common case of 
the SPP Level-1 in a commonly used software RAID implementation, called Multiple Devices (MD) in 
Linux, and run extensive trace-driven experiments on this MD implementation. The experimental results 
demonstrate that SPP improve the reconstruction time by consistently 50% with limited recovery band-
width, and improve the user response time during recovery by up to 60.42%with limited bandwidth to 
serving user requests compared with the RAID5 disk array without SPP, and prove that the extra costs for 
SPP are negligible. 

The rest of the paper is organized as follows: background and motivation are presented in Section 2, and 
Section 3 describes the architecture and design space of the SPP approach. The organization and proto-
type implementation are presented in Section 4. In Section 5, we conduct result evaluations and detailed 
analysis. Section 6 presents related work and Section 7 concludes and points out the future work. 

2. Background and Motivation 

RAID systems have been the essential building blocks of large-scale data centers requiring high perform-
ance, high capacity and high availability. Redundant disk arrays with high I/O parallelism, fault-tolerance, 
and low storage capacity overhead, and parity-encoded RAID levels, such as RAID4, RAID5 and RAID6, 
are commonly used in data centers. 

In general, redundant disk arrays can tolerate one or more disk failures. A redundant disk array operates 
in one of the following three modes: the operational mode when there is no disk failure, the degraded 
mode when one disk drive fails while the disk array still serves the I/O requests with a performance deg-
radation and the risk of data loss, and the recovery mode when the disk array is rebuilding data on the 
failed disk to a replacement disk in the background upon a disk failure. The period when the disk array is 
in the degraded or recovery mode is called a “window of vulnerability” because another disk failure dur-
ing this time will cause data loss. After all of the data blocks are rebuilt, the disk array returns to the op-
erational mode. 
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Therefore, it is very critical to reduce the recovery time to minimize the window of vulnerability and alle-
viate the performance degradation during recovery. However, most research efforts on RAID systems 
during the last decade or so have been focused on improving RAID performance, such as solving the 
small write problem, while relatively less work has been directed towards further improving RAID avail-
ability, an increasingly important issue in light of the new reliability challenges brought by large disk ca-
pacity and disk array scale. 

To seek for a solution to address the availability problem, we make the following important observations 
about current RAID-structured storage systems based on research investigations and user experiences 
[13-16]: 

1). Online expansion and reconfiguration lead to reduced availability. To meet the ever-growing demand 
for higher capacity and performance, the scale of RAID-structured storage systems has been increasing 
steadily, where an increasing number of hard disks may be deployed to constitute a single RAID set. 
Therefore, most existing hardware RAID products, as well as some software RAIDs such as Linux MD, 
support online addition of new disks to a disk array and the necessary data and parity layout 
re-organization and re-configuration without interruption of operations. However, the lengthy online re-
shaping process to expand an existing disk array carries two potential reliability risks. First, during the 
expansion period there always exists a "window of vulnerability" in which data can be lost given a disk 
failure or a power down. Second, while the expansion improves the capacity and I/O performance, system 
reliability and availability decrease because more disks result in a higher disk failure rate. Consequently, 
the availability of RAID systems does not scale up with the expansion of hard drives, making it very nec-
essary to provide a more efficient and flexible approach to guarantee the availability of large-scale 
RAID-structured storage systems. 

2). Rapid declines in hard disk costs encourage trading disk capacity and bandwidth for improved system 
reliability and availability. With the advancement of the hard disk technology, hard drives are rapidly 
increasing in their capacity while decreasing in their cost [13]. As a result, the number of spare disks is no 
longer an issue for a large-scale data center. RAID-structured storage systems usually have multiple 
available disks as global or local hot spare disks for their multiple RAID sets. It is thus sensible to trade 
the capacity and bandwidth of these free disks for higher system reliability and availability. 

3). Workload fluctuations provide idle/lightly loaded periods to be leveraged for availability-improving 
techniques. Workloads of user applications have been shown to be fluctuating [14, 15]. During the work 
time, user workloads tend to be heavy while becoming relatively light during the other time. Even during 
the busy times, there still exist many idle periods between I/O bursts [16]. Leveraging the idle or lightly 
loaded periods has been a common practice to improve the performance of storage systems. 

4). The salient feature of the XOR operation enables techniques such as SPP to significantly improve 
availability. The exclusive OR calculation is widely used in parity-encoded RAID systems due to its 
unique feature revealed in formulas 1 and 2 below. 

1 1 2 1n m mP D D D D D+= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕� L nL

n n

                                            [1] 

1 2 1 1 1m m mD D D D D D P− += ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ �L L                                       [2] 

If  is the XOR sum of N data units,  to , formula 2 can be used to regenerate any data unit 
covered by . The regeneration entails N reading operations and N-1 XOR calculations. Interestingly, 
given a supplementary partial parity unit as expressed in formula 3, 
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It shows that if a supplementary partial parity unit can be obtained, it incurs approximately only propor-
tional (if j-i=N/2, then N/2) data reading operations and only proportional (if j-i=N/2, then N/2) XOR 
calculations, that is, the overhead of regenerating the lost data on the failed disk can be nearly halved. 

Motivated by the above important observations, we propose the Supplementary Partial Parity (SPP) me-
chanism that exploits free disk space and free bandwidth during idle or lightly-loaded periods to enhance 
the existing recovery mechanisms for parity-encoded RAID systems, thus addressing the reliability and 
availability problems for ultra-scale data centers. 

3. The SPP Architecture 

3.1 Design Principles 

Since the disk failures are unavoidable in large-scale data centers, a new approach is needed to tolerate 
frequent disk failures with minimal overhead and complexity. Our proposed new approach, the Supple-
mentary Partial Parity (SPP) redundancy protection architecture, is a two-pronged one 1). to minimize 
reconstruction time and user response time during recovery to reduce the "window of vulnerability"; and 
2). to tolerate against multiple disk failures. As an architectural approach to improving availability of ex-
isting parity-encoded RAID systems, SPP aims to achieve flexibility, adaptability and scalability, as fol-
lows. 

1. Flexibility: Since it is risky and costly to expand an existing disk array online as discussed in Section 
2, it is desirable not to require any reconfiguration of data or parity layout in standard RAID levels 
when incorporating SPP into an existing parity-encoded RAID system.  

2. Adaptability: It will be advantageous for SPP to be activated, deactivated and adjusted adaptively and 
dynamically in order to target an optimal performance/cost ratio in terms of various QoS require-
ments and resource investments.  

3. Scalability: The availability improvement by the SPP approach should be scalable to the size of the 
redundant disk arrays and the available system resource. In other words, if the scale of the disk arrays 
grows up, the improvement should increase accordingly. If more free storage space and idle times are 
available, the SPP approach should improve the availability proportionally to the resource utilization. 

SPP exploits free storage space and idle times to store and update a set of partial parity units that cover a 
subset of disks (or data stripe units) during failure-free and idle/lightly-loaded periods, thus supplement-
ing the existing full parity units for improved availability. By leveraging the XOR operations appropri-
ately among partial parity, full parity and data units (see Section 3.2 for details), SPP can reconstruct data 

 

 



 

 

on the failed disks with only a fraction of the original overhead that is proportional to the partial parity 
coverage, thus significantly reducing the overhead of data regeneration especially under heavy workload. 

3.2 The Basic Idea and Simple Examples of SPP 

Here is a general but simple example to illustrate the basic idea of SPP, including its SPP layout, cover-
age and functionality. In Figure 1, Pm-n denotes a full parity stripe covering data stripes from Dm to Dn. Qi-j 
denotes a partial parity stripe covering data stripes from Di to Dj while QP, k denotes a partial parity stripe 
covering the data stripe Dk and the parity stripe P for this parity group. A shadowed rectangle with the 
dashed line denotes the coverage of Q for this parity group. 

Q3-4D1 D2 D3 D4 P1-4

D 5 D 6 D 7 D 8

D 9 D10 D11 D12

D13 D14 D15 D16
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PG 4

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Free Disk

LEGEND:  D – Data Stripe           PG – Parity Group P – Full Parity Stripe     Q – Partial Parity Stripe
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Q13,P
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(a) (b)

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Free Disk

Q Q Q Q Q

 

Figure 1. Two examples of SPP coverage and layout. In Figures 1(a) and 1(b), SPP utilizes one free disk 
to store the partial parity stripes, and each partial parity stripe covers data on half of the disks for each 
parity group. Figure 1(a) depicts an SPP coverage with Diagonal Orientation and Figure 1(b) depicts an 
SPP coverage with Vertical Orientation. 

As Figure 1(a) shows, given a RAID5 left-asymmetry disk array consisting of five disks with a free 
hot-spare disk, SPP uses this spare disk to store the partial parity stripes. More specifically, the SPP 
stripes of , , ,  and 3 4� 6 7� 9 10� 13,16 19 20�  are calculated as follows: 

3 4 3 4Q D D= ⊕� ; ; 6 7 6 7Q D D= ⊕� 9 10 9 10Q D D= ⊕� ; 13,16 13 16Q D D = ⊕ ; and  19 20 19 20Q D D= ⊕�

Assume that one disk, say Disk 4, fails at one time. According to the conventional full parity approach, 
, , ,  and D  on Disk 4 will be regenerated as follows: 4D P D D

4

5 8� 11 15 19

4 1 2 3 1D D D D P= ⊕ ⊕ ⊕ � ;  ;  5 8 5 6 7 8P D D D D= ⊕ ⊕ ⊕� 11 9 10 9 12 12D D D P D= ⊕ ⊕ ⊕� ; 

15 13 13 16 14 16D D P D D= ⊕ ⊕ ⊕� ; and 19 17 20 17 18 20D P D D D= ⊕ ⊕ ⊕�  

However, if the SPP approach is deployed, we can regenerate these data or parity stripes in a more effi-
cient way as follows: 
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4 3 3D D Q= ⊕ �4 5 8 5 8 6 7P D D Q= ⊕ ⊕� �; ; 11 9 12 12 9 10D P D Q= ⊕ ⊕� � ; 15 13 16 14 13,16D P D Q  = ⊕ ⊕� ; and 

 19 20 19D D Q= ⊕ �20

Intuitively, compared with the conventional full parity approach, SPP in this example can almost halve 
the overhead due to data read operations and XOR calculations for data reconstruction on average. Al-
though reads issued to individual disks for data reconstruction are always executed in parallel, the recov-
ery bandwidth of each disk quickly becomes a bottleneck while users’ requests are being served at the 
same time, since a disk array utilizes most of the available bandwidth to guarantee services to users’ re-
quests [17]. Moreover, the maximal I/O latency among read operations is bounded by the slowest read 
operation. Thus, SPP has on average a 50% chance of avoiding the slowest read operation, compared with 
the full parity approach. On the other hand, because SPP halves the number of the read operations, it also 
avoids the negative performance impact of data reconstruction (reads) on disks that are spared of the in-
volvement in recovery, which is particularly important for user requests under heavy workloads. As a re-
sult, SPP can reduce disk bandwidth utilization due to reconstruction, shorten disk I/O queues, mitigate 
system bus bottlenecks, and lower CPU utilization during failure recovery. This will be specially pro-
nounced under heavy I/O workloads. 

Figure1 (b) illustrates another SPP approach with a different coverage orientation of partial-parity. Ac-
cording to the coverage orientation, there are two forms of partial-parity distribution: partial-parity with 
Diagonal Orientation (as shown in Figure 1(a)) and partial-parity with Vertical Orientation (as shown in 
Figure 1(b)). Diagonal Orientation implies that data stripes covered by SPP are distributed diagonally; 
while Vertical Orientation signifies that stripes covered by SPP are distributed among a fixed subset of 
disks. 

Assume that one disk, say Disk 4, fails at one time, we can regenerate these data or parity stripes as fol-
lows: 

4 3 1 4 1 2D D P Q= ⊕ ⊕� � ; ; 5 8 7 8 5 6P D D Q= ⊕ ⊕� � 11 9 12 12 9 10D P D Q= ⊕ ⊕� � ; 15 14 16 13, PD D D Q  = ⊕ ⊕ ;  

and  19 18 20 P,17D D D Q  = ⊕ ⊕

Assume that another disk, say Disk 2, subsequently fails, we can regenerate these data or parity stripes as 
follows: 

2 1 1D D Q= ⊕ �2 6 5 5D D Q= ⊕ �; ; 6 10 9 9 10D D Q= ⊕ � ; 13 16 13 13, PD D Q  = ⊕� ; and 17 17 20 P,17D P Q  = ⊕�  

The advantage of Diagonal Orientation is its ability to balance recovery workload among all of the disks, 
but at the cost of not being able to tolerate a subsequent disk failure during recovery. On the other hand, 
Vertical Orientation can tolerate another disk failure during recovery if exactly one of the two failed disks 
is covered by SPP, a fault-tolerant ability that is equivalent to that of RAID50 [18]. The drawback of this 
distribution lies in the imbalanced recovery workload. An additional advantage of Vertical Orientation is 
its potential for covering a number of designated disks that may have higher failure rates.  

3.3 Design Space of the SPP Architecture 

As illustrated in the example of Figure 2, the SPP architecture has a rich design space along a number of 
dimensions, which we will discuss in more details in this subsection. In general, in addition to the cover-
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age orientation (diagonal vs. vertical) discussed in Section 3.2, the main design space of SPP can span 
along the following dimensions: coverage range, placement strategy, and update policy.  

SPP Coverage Range refers to the proportion of the component disks in a parity group in the disk array 
that are covered by a SPP parity group. In the Half-Parity approach (Figure 2(a)), for example, the cov 

Q4-7D1 D2 D3 D4 P0-7PG 0

Disk 1 Disk 2 Disk 3 Disk 4 Free Disk 1

LEGEND:  D – Data Stripe    PG – Parity Group P – Full Parity Stripe Q – Partial Parity Stripe

D5 D6 D7

Disk 5 Disk 6 Disk 7 Disk 8

Q5-7D1 D2 D3 D4 P0-7PG 0 D5 D6 D7

Free Disk 2

Free Disk 3

Q’2-4

Q6-7D1 D2 D3 D4 P0-7PG 0 D5 D6 D7 Q’4-5 Q”2-3

(a) Half-Parity Coverage

(b) Third-Parity Coverage

(c)  Fourth-Parity Coverage

 

Figure 2. An example of SPP with different coverage ranges. For simplicity, only the first parity group 
for every coverage range is illustrated. 

erage range is ½ since each SPP parity group covers the data on half of the component disks. In terms of 
the available storage space and system availability requirements, SPP provides a family of optional ap-
proaches with different coverage ranges. As Figure 2(b) depicts, the Third-Parity approach exploits two 
free spare disks to store partial parity for two sets of SPP stripes, with each SPP parity group exclusively 
covering stripes on one third of the component disks. Third-Parity reduces the overhead for data regen-
eration to nearly one third of that required by the full parity approach. Similarly, the Fourth-Parity ap-
proach exploits three spare disks to store partial parity for three sets of SPP stripes, with each SPP parity 
group exclusively covering stripes on one fourth of the component disks. Correspondingly, the overhead 
of Fourth-Parity is decreased to nearly one fourth of the overhead required by the full parity approach. 
Additionally and in general, if the Vertical Orientation coverage distribution is applied, an nth-Parity ap-
proach can tolerate up to n simultaneous disk failures. 

More attractively, the coverage range can be flexibly setup by utilizing workload characteristics or file 
system semantic knowledge. For example, a SPP parity group need only cover the infrequently-accessed 
stripes to reduce SPP update overhead if a monitor of user access pattern is integrated into the SPP ap-
proach. Or, if the liveness information of the data stripes is obtained by methods similar to those de-
scribed in TSD [19] or SDS [20], a SPP parity group need only cover the live stripes to further reduce 
reconstruction overhead. 

SPP Placement Strategy. As Figures 1 and 2 indicate, our SPP approach utilizes one or more dedicated 
free spare disks to store the SPP parity units. On the other hand, if the liveness information of data stripes 
in disk arrays can be obtained, SPP can exploit “free blocks”, disk blocks that are deemed “dead” from 
the perspective of file systems or databases [21], to store the SPP parity units, thus minimizing the extra 
storage overhead to zero. Since it has been shown that the proportion of the free capacity over the whole 
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capacity of a storage system deployed in a typical application environment is about 50% [22], there is in 
general sufficient amount of room for SPP to leverage additional “free blocks” in a disk array to store one 
or multiple replicas of the SPP stripes to mitigate the negative impact on the validity of SPP parity stripes, 
in the possible events that free blocks containing the SPP parity units are overwritten with new data by 
the upper file systems or databases.  

SPP Update Policy. When a write request arrives at a disk array with an address that does not fall under 
the coverage of any SPP parity group, no update is needed to any SPP parity unit. Otherwise, the SPP 
parity unit of the SPP parity group covering the address of the write request needs to be updated some-
how.  

SPP provides two update policies: synchronous update and asynchronous update. The synchronous up-
date policy, which applies update to the corresponding SPP parity stripe at the same time as the write op-
eration, ensures the full validity for each SPP parity group, but incurs performance degradation with 
write-intensive workloads. However, it may be practically acceptable since write intensity is generally 
much lower than read intensity and writes tend to congregate around a relatively small proportion of the 
storage capacity in typical workloads [16]. The advantage of the asynchronous update policy, which 
postpones updates to parity stripes until idle or lightly-loaded periods, is its ability to minimize perform-
ance degradation due to frequent SPP updates. However, the asynchronous update policy may reduce the 
benefit of the SPP approach during recovery if some SPP parity stripes are invalid (not updated yet) at the 
time of recovery. In general, the amount of such decrease in SPP benefit will be proportional to the 
amount of invalid SPP parity stripes. Another drawback of the asynchronous update policy is its need to 
use some NVRAM or other types of battery-powered memory to store the SPP verification bitmap table 
(see Section 4 for details), although the cost of such NVRAM can be negligible in modern RAID systems 
with massive memory capacity. 

 

Figure 3. The coverage examples for the SPP Level 2 and SPP Level 3. Figure 3(a) depicts the coverage 
and layout for the SPP Level 2, in which each partial parity stripe only covers infrequently-accessed data 
stripes for each parity group. Figure 3(b) depicts the coverage and layout for the SPP Level 3, in which 
SPP utilizes free blocks on the component disks to store partial parity stripes. 

Based on the SPP design space defined and discussed above, we define three SPP levels, analogous to the 
typical RAID levels, as follows: 
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SPP Level 1 is the basic level of SPP, whose salient feature is to trade the lowest implementation com-
plexity and minimal overhead for a reasonable availability improvement. SPP Level 1 includes 
Half-Parity, Third-Parity, Fourth-Parity, etc. These approaches utilize one or multiple dedicated spare 
disks to store SPP parity stripes. It is easy to determine the coverage of SPP parity groups due to the fixed 
and simple coverage range algorithm. This level can be easily implemented in most existing par-
ity-encoded disk arrays. 

SPP Level 2, as a flexible extension of SPP Level 1, includes those approaches that have flexible cover-
age range and can thus cover infrequently-accessed stripes according to workload characteristics. The 
main advantage of SPP Level 2 is its high flexibility, which comes at the expense of the need for an ac-
cess popularity monitor to keep track of the changing user accesses and a bitmap table to represent the 
status of whether a stripe is covered by a particular SPP parity group. As shown in Figure 3(a), the cov-
erage range becomes more flexible since the number and locations of data stripes covered by the SPP 
stripes are no longer fixed as in SPP Level 1. 

The main objective of SPP Level 3 is to incorporate semantic knowledge into the recovery process. By 
exploiting the liveness information of the data stripes from the perspective of file systems or databases, 
SPP Level 3 does not need dedicated spare disks to store SPP parity units because it can leverage the free 
blocks in the component disks to store the SPP parity units and their replicas. Another advantage is that it 
only needs to generate and update the SPP stripes for live data blocks. However, since this level needs the 
semantic knowledge of file system or databases running on a RAID system, it incurs more implementa-
tion complexity and sacrifices some portability. In Figure 3(b), SPP stores the SPP stripes onto the free 
blocks onto the component disks needless dedicated spare disks. Table 1, below, summarizes the charac-
teristics of the suggested three optional SPP levels based on the main parameters of the SPP design space. 

SPP Level Coverage 
Range 

Placement 
Strategy 

Update 
Policy 

Flexibility Adaptability Scalability Storage 
Overhead 

Level 1  Fixed Dedicated Disks Both Moderate Strongest Strong Small 

Level 2 Flexible Dedicated Disks Both Strong Strong Strong Small 

Level 3 Most Flexible Free Blocks Both Strong Moderate Strong Zero 

Table 1. The characteristics of three SPP Levels. 
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4. Organization and Prototype Implementation 

 

Figure 4. SPP organization and its functional modules. 

The entire SPP structure can be embedded into any RAID controller software, so it is independent of the 
underlying disks or storage media. As a result, our SPP approach can be easily ported onto any of the 
various platforms based on block-level devices, such as Network Block Device, Solid State Disk, flash 
disk, etc. 

Basically, the SPP organization is composed of eight main functional components: Administration Inter-
face, Access Monitor, Semantic Extractor, Coverage Manager, Placement Manager, Update Module, Re-
covery Module, and SPP Bitmap Table, as shown in Figure 4. Administration Interface provides an in-
terface for storage system administrators to configure the parameters of the SPP design space and monitor 
operational states. Access Monitor is responsible for keeping track of the frequency of I/O requests to 
help Update Module determine the appropriate time to start updating SPP stripes, and keep track of the 
changing popularity of workloads to help Coverage Manager determine the appropriate coverage range 
for SPP Level 2. The main functions of Semantic Extractor include two parts: (1) to discover which 
blocks are alive to help Coverage Manager choose an appropriate coverage range covering only the live 
data stripes for each parity group; and (2) to discover which blocks are free to help the Placement Man-
ager choose the appropriate location to store the SPP parity stripes and their replicas for SPP Level 3. 
Placement Manager is responsible for selecting and executing a placement strategy while Coverage 
Manager is responsible for choosing and executing a coverage strategy for SPP. In the SPP bitmap table, 
one bit is used to denote the validity status of the SPP parity stripe for each parity group, with a value of 
‘0’ (false) indicating an invalid status and a value of ‘1’ (true) signifying a valid status. The SPP Recov-
ery Module is responsible for leveraging both the partial parity and full parity mechanisms to rebuild the 
data or parity stripes to the replacement disk upon a disk failure. Once a disk fails, the SPP recovery 
process will be activated automatically and data reconstruction will be launched in the background. For 
each parity group, the SPP bitmap table will be checked first. If the corresponding bit is true, it will re-
build the data on the failed disk according to the specific SPP approach. Otherwise, it will rebuild ac-
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cording to the full parity approach. The main function of the SPP Update Module is to generate the partial 
parity when deployed and update them appropriately based on the designated SPP update policy. 

As shown in Figure 5, the SPP approach can be activated or de-activated at any given time, even for an 
online RAID system. An administrator can activate the SPP approach via the Administration Interface 
and inform the SPP module of the detailed SPP configurations (such as SPP Level, available spare disk 
number, SPP coverage range and update policy, etc.). Given a specific SPP configuration, other appropri-
ate SPP components will be activated and the bitmap table will be initialized. After the initialization, the 
Update Module will start to generate the SPP parity stripes for each parity group, and store and update 
them on the free storage space during idle or lightly-loaded periods under the control of the Access Mon-
itor, Semantic Extractor, Coverage Manager and Placement Manage by default (i.e., asynchronous up-
date). Periodically, the SPP update process checks the SPP bitmap table to identify and update the invalid 
SPP stripes during the idle periods. Once a disk fails, the SPP Recovery Module will start a recovery 
process in the background and rebuild the data on the failed disks automatically until all of the stripes 
have been rebuilt on the replacement disk. Due to the nature of supplementary partial parity, the SPP 
module can dynamically adjust the appropriate strategies and policies to achieve the target of optimal 
performance/cost ratio according to available resources and the administrator’s requirements. 

In our current proof-of-the-concept prototype SPP implementation, we incorporate the basic SPP archi-
tecture and organization into the Linux software RAID (MD) and its corresponding management software 
(mdadm). Due to the time and space constrains, we implement one common case of SPP Level 1, 
Half-Parity, for the study reported in this paper, while the implementation and performance evaluation of 

 

Figure 5. SPP workflow. 

SPP Level 2 and 3, which are beyond the scope of this paper, are left for future research. We implement 
all the SPP components except for the Semantic Extractor because Half-Parity does not need the semantic 
information of file systems or databases. For the flexibility of our experiments, we integrate an IOCTL 
function into mdadm to trigger the SPP update process manually. 
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The source code augmentation on MD mainly concentrates on the SPP coverage, placement, update mod-
ules and the key modification made to MD lies in its recovery module. All of the augmented and modified 
source code amounts to no more than 2000 lines of C code. 

5. Performance Evaluations 

In this section, we report and analyze the experimental results from our extensive trace-driven experi-
ments conducted on the SPP Level 1 prototype, Half-Parity (HP for short). There are generally two com-
mon evaluation metrics for system availability and user performance of a recovery process: reconstruction 
time and average user response time during recovery. We will present performance evaluation of SPP 
with regard to the various RAID configurations, such the number of the component disks, RAID level, 
RAID chunk size, reconstruction bandwidth thresholds, etc., and typical workloads.  

5.1 Trace-Driven Experiment Setup 

All of the experiments are conducted on two different server-class machines but with the same software 
configurations. Machine A has an Intel 3GHz Xeon processor, 512 MB DDRAM, and 15 Seagate 
ST3300831AS 300GB SATA hard drives attached by a Highpoint RocketRAID 2240 SATA adapter. 
Machine B has an AMD Opteron Dual-Core 2.2GHz Processor, 2GB DDRAM, and 15 Western Digital 
WD1600AAJS-08PSA 160G SATA hard drives attached by a Marvell 88SX50XX SATA adapter. The 
majority of the experimental results reported here are obtained from Machine B unless explicitly specified 
otherwise. We install the Fedora Core 4 Linux (kernel version 2.6.11) on the machines that have the Li-
nux software RAID package (MD and mdadm) embedded by default. It must be noted that there is a me-
chanism in MD to control the disk bandwidth utilized by the recovery process to guarantee user perform-
ance. The default minimal and maximal thresholds are 1MB/s and 200MB/s, respectively, which means 
that MD will use a minimal of 1MB/s disk bandwidth for recovery upon heavy user loads and any avail-
able bandwidth for recovery upon light user loads since the highest bandwidth of off-the-shelf disks is far 
less than 200MB/s.  

We use RAIDmeter [17] as a block-level trace-replay software that issues specific I/O requests to the sto-
rage device at the specific times according to the trace records and collects the response time per I/O re-
quest during failure recovery. Two typical traces [23] identified by the Storage Performance Council [24], 
Websearch (Web for short) and Financial (Fin for short), are used in our performance evaluations. The 
former was obtained from a machine running a web search engine. The latter was captured from OLTP 
applications run by a large financial institution. In addition, to avoid the time-consuming recovery process, 
we limit the capacity of each disk to 10GB in the experiments and truncate the beginning 2000000 re-
corders of both the traces. We note that this limit on disk capacity should not significantly affect the 
comparative evaluation results, nor the main conclusions from the study. Regarding both captured traces, 
Web has a 99.98%:0.02% read/write ratio with 331.05 IOPS intensity, while Fin has about a 
21.55%:78.45% read/write ratio with 55.36 IOPS intensity. We use Web to represent heavy workload 
while we intentionally double the intensity of Fin to represent moderate workload since the original inten-
sity of Fin is too light. To scale the workloads to the growing number of disks in the experiments, the 
coverage of the requests is increased proportionally to the number of disks. 
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5.2 Numerical Results 

We conduct experiments to evaluate the performance of the Half-Parity (HP) SPP configuration with the 
Diagonal Orientation on a RAID5 left-asymmetric disk array composed of a variable number of compo-
nent disks and one single hot-spare disk with a fixed chunk size of 64KB. We incorporate one dedicated 
disk to store the SPP parity stripes, and all SPP parity stripes have been updated and thus valid at the time 
of recovery. Table 2 and Table 3 respectively show the reconstruction times and average user response 
times of RAID5 with and without HP under the default MD recovery bandwidth threshold range of 
1MB/s to 200MB/s, as a function of the number of disks. From Table 2 one can see that HP improves the 
reconstruction time consistently by about 50% with the Web trace and by up to 37.78% with the Fin trace. 
From Table 3 one can see that HP incurs an average of 5.99% and a maximum of 15.20% performance 
degradation on the average response time compared with the architecture without HP. The reason why the 
reconstruction time improvement is far greater than the average response time improvement is that MD 
utilizes a very small preserved disk bandwidth for recovery by default (1 MB/s in this case) while availing 
the remainder of all available bandwidth to serve user I/O requests. Under heavy workloads, the preserved 
recovery bandwidth will decease to the minimal threshold to guarantee the user performance. In this sce-
nario, the recovery bandwidth becomes a severe bottleneck. As shown in Table 2, the recovery rate with-
out HP is roughly 10GB / 10000sec = 1MB/s while the recovery rate with HP is roughly 10GB / 5000sec 
= 2MB/s for the heavy Web trace. In other words, our HP approach succeeds in doubling data regenera-
tion rate of the full parity approach under a heavy workload. The moderate Fin trace, however, only re-
sulted in about 30% reduction in reconstruction time, further validating our intuition that SPP’s effec-
tiveness is most pronounced under heavy workloads. The reason why the average user response time of 
HP slightly suffers is two-fold. First, our current prototype implementation favors reconstruction time 
improvement over user response time improvement by allocating all the saved bandwidth by SPP back to 
the recovery process, resulting in user requests not benefiting from any of the reduced data regeneration 
overhead. For example, the recovery rate for the Web trace is doubled in HP because the recovery process 
in HP reaps all the benefit of halving the overhead of data regeneration. Second, for write-intensive ap-
plications, such as the Fin trace, the replacement disk becomes a performance bottleneck since HP has a 
higher reconstruction write rate to the replacement disk than the non-HP scheme, which causes a slight 
slowdown of the user write requests that are issued to the replacement disk (as shown in Table 3). How-
ever, the policy of whether to favor reconstruction or user requests can be tunable to strike a good balance 
between reliability and user performance during recovery. As a result, the user response time can be sig-
nificantly improved if one chooses to allocate all the benefit from reducing data regeneration overhead to 
serve user requests without increasing the reconstruction time.  

Reconstruction Time(second) 
Web Fin 

RAID 
Level 

Number 
 of 
 Disks w/o HP w/ HP improved w/o HP w/ HP improved 

9 10411.90 5193.99 50.11% 2105.82 1715.75 18.52% 
11 10388.83 5199.64 49.95% 3212.91 2199.77 31.53% RAID5 
13 10377.48 5210.95 49.79% 3866.23 2405.72 37.78% 

Table 2. A comparison of reconstruction time with HP and without HP as a function of the number of 
disks. 

Average User Response Time during recovery (millisecond) RAID 
Level 

Number 
 of Web Fin 
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 Disks w/o HP w/ HP improved w/o HP w/ HP improved 
9 30.46 30.76 -0.98% 86.24 87.35 -1.29% 

11 30.47 30.96 -1.61% 66.62 76.74 -15.20% RAID5 
13 30.49 32.34 -6.07% 72.06 79.85 -10.81% 

Table 3. A comparison of user response time with HP and without HP as a function of the number of 
disks. 

It must be noted from the above results that SPP is most effective in alleviating the impact of performance 
bottleneck. Since MD is an availability-oriented RAID system, the default minimum recovery bandwidth 
threshold of 1MB/s imposes a performance bottleneck for the recovery process in favor of user requests 
and our SPP is able to effectively alleviate the bottleneck by reducing reconstruction time significantly. 
On the other hand, as shown in our results given later in the paper, the user response time can also be sig-
nificantly reduced by SPP if the performance bottleneck is shifted onto the user request service by limit-
ing the bandwidth available to serving user requests. SPP can be adjusted to provide performance im-
provement for both reconstruction time and user response time simultaneously. 

To examine the impact by the different chunk sizes, we conduct experiments on a RAID5 disk array 
composed of 13 disks and one single hot spare disk with variable chunk sizes of 4KB, 64KB and 256KB. 
The experimental results show that the measured reconstruction times and average response times of HP 
remain almost unchanged, demonstrating that the Half-Parity approach is not sensitive to change in chunk 
size.  

Similarly, we conduct experiments on the platform of a disk array consisting of 11 disks and one spare 
disk with variable RAID levels of RAID4 and RAID5 to examine the performance impact on HP by the 
different RAID levels. We plot the measured reconstruction time and average response time during re-
covery in the Figure 6. From Figure 6, one can see that the reliability and performance impacts of HP on a 
RAID4 disk array are similar to those on a RAID5 disk array. With HP, reconstruction time has been re-
duced nearly by half while sacrificing very small user response time degradation under the default MD 
reconstruction bandwidth threshold of 1MB/s. 
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Figure 6. Reconstruction time (in seconds) with two different RAID levels (RAID4 and RAID5), under 
two traces: Fin and Web, comparing the architecture without and with HP. The RAID4/RAID5 disk array 
is consisted of 11 disks and one spare disk with 64KB chunk size. 

Since the preserved bandwidth for recovery has direct impact on the recovery performance and user per-
formance, we conduct experiments to evaluate performance impacts caused by the different minimal re-
construction bandwidth threshold for recovery. By adjusting the default minimal threshold from 1MB/s to 
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Figure 7. Reconstruction time (in seconds) and average response time (in milliseconds) during recovery 
under different recovery bandwidth (1MB/s, 10MB/s, 100MB/s), under two traces: Fin and Web, com-
paring the architecture without and with HP.  

10MB/s and then to 100MB/s, respectively, Figure 7 plots the measured reconstruction times and average 
response times during recovery on a RAID5 disk array consisting of 11 disks and one hot spare disk. It is 
observed that as the threshold increases, the user response time is consistently lengthened while the re-
construction time is consistently shortened because more disk bandwidth is allocated for the recovery 
process for both the conventional approach and our SPP approach. However, as the threshold shifts from 
one extreme (i.e., 1MB/s) to the other (i.e., 100MB/s), the SPP improvement over the original full-parity 
approach also shifts from reconstruction time (Figure 7(a)) to user response time (Figure 7(b)), reducing 
the user response time by up to 60.42% for Web and 33.93% for Fin. It demonstrates that our SPP ap-
proach can significantly alleviate the bandwidth bottleneck under heavy workloads. HP shows great ad-
vantages in reconstruction time with lower recovery bandwidth, which implies that HP is especially de-
sirable under heavy workload. It is noted that setting 10MB/s as a minimal bandwidth threshold for re-
covery may be a reasonably good reliability/performance tradeoff for the Fin trace because HP improves 
both reconstruction time and average response time simultaneously. 

To examine the performance impact by different coverage orientations, Diagonal Orientation vs. Vertical 
Orientation, we conduct experiments on an HP-enabled RAID5 disk array with both orientations. Figure 8 
illustrates that the reconstruction time and response time improvements with the Vertical Orientation are 
less than those with the Diagonal Orientation, especially for the Fin trace. This is because that the Vertical 
Orientation covers a fixed subset of all component disks and distributes all SPP recovery workloads onto 
this subset, thus imposing imbalanced workloads on the disk array during recovery. As a result, the re-
construction time and user response time during recovery are lengthened compared with the Diagonal 

 

 



 

 

Orientation that distributes SPP recovery work evenly among all component disks. In other words, the 
Vertical Orientation trades a small performance loss for its multiple-failure-tolerance capability.  
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Figure 8. Reconstruction time (in seconds) and average response time (in milliseconds) during recovery 
with Diagonal and Vertical Orientation of SPP architecture, under Fin and Web traces. This experiment is 
conducted on Machine A, and the disk array is consisted of 13 disks and one spare disk.  

5.3 Discussions 

In summary, our trace-driven experiments have shown that the SPP approach can significantly improve 
the reconstruction time and average response time during recovery, especially under heavy workloads. In 
addition, we draw the following the additional observations and conclusions from our experimental study: 

1) Reconstruction time with our Half-Parity approach has been reduced consistently by about 50% com-
pared with the conventional parity-based approach, under relatively heavy user I/O loads (Web). Also, 
comparing the results with the two traces used in this study, SPP is more desirable under a heavy IO 
workload. It indicates that the reconstruction time improvement under heavy workloads is roughly pro-
portional to the coverage range of SPP, so other SPP approaches such as Third-Parity or Fourth-Parity 
will likely produce far greater performance improvement if more available spare disks are introduced. It 
shows that our SPP approach is scalable with the intensity of workloads and available resources. 

2) With limited recovery bandwidth, SPP shows pronounced effect in reducing reconstruction time. On 
the other hand, SPP shows pronounced effect in reducing user response time during recovery when the 
disk bandwidth to serve user requests becomes a bottleneck. More importantly, we can judiciously select 
a reasonable threshold for the minimal recovery bandwidth to improve the reconstruction time and re-
sponse time simultaneously, as a good tradeoff between system reliability and user performance. The SPP 
design provides this flexibility for system administrators to balance system reliability and user perform-
ance requirements. 

3) The experimental results show that while the SPP approach is insensitive to the RAID level and chunk 
size, it is very sensitive to the minimal recovery bandwidth threshold and the intensity of workloads. 
Moreover, our investigation into the performance impacts of different coverage orientations and the 

 

 



 

 

number of component disks has confirmed the efficiency of SPP. The experimental results also demon-
strate the adaptability of the SPP approach since SPP can achieve different performance/cost ratios to tar-
get different reliability and performance requirements by judiciously tuning a number of design parame-
ters in the SPP design space.  

6. Related Work 

Because our approach is supplementary to the conventional parity-encoded RAID solution, we will con-
centrate on the most representative and relevant work on the existing parity-encoded RAID organization 
and recovery mechanisms. 

Among these existing mechanisms, AFRAID [25] and VSP [26] are the most relevant approaches to our 
SPP approach. The essential idea of AFRAID is to achieve a significantly improved performance (similar 
to RAID0 in the best case) by sacrificing a small amount of data redundancy. AFRAID eliminates the 
small update penalty by delaying data update until the idle period of users’ workload. AFRAID regulates 
the parity update policy to allow a smooth tradeoff between performance and availability. By comparison, 
our SPP approach improves system reliability and availability by supplementing extra yet efficient data 
redundancy without sacrificing performance. More importantly, our SPP approach provides extra redun-
dancy protection, in addition to the existing full-parity redundancy, instead of the fre-
quent-but-non-guaranteed redundancy provided by AFRAID, meaning that the AFRAID approach may 
result in data loss because full parity update is postponed to a later time. 

On the other hand, VSP presents an extension to the RAID5 architecture by using a variable scope protec-
tion, in which full parity units are maintained for arbitrary subsets of the data blocks in each stripe. The 
VSP parity only protects the in-use data blocks. However VSP does not specify how to differentiate data 
blocks that are in-use. While SPP also covers variable subsets of data units for each parity group, it differs 
from VSP in two important ways. First, SPP augments a parity-encoded RAID by providing a supple-
mentary partial parity protection that can be updated asynchronously. Second, the SPP Level-1 and Lev-
el-2 (refer to Section 3 for more details) do not need to obtain the liveness information of the data units, 
so they can be easily integrated with any existing hardware or software RAID systems. 

To some extent, the SPP approach leverages the advantages of both AFRAID and VSP while avoiding 
their drawbacks. By exploiting the unique feature of XOR, SPP greatly improves reconstruction time and 
user response time during recovery, in addition to achieving higher failure tolerance. 

Parity Declustering [27, 28] reduces the additional load on survival disks during recovery by distributing 
data and parity groups over a larger number of disks, thus balancing cost against reliability and perform-
ance during recovery. To address the “read-modify-write” problem in parity encoded disk arrays, the Par-
ity Logging approach [29] applies journaling techniques to log the parity update record, while the Float-
ing Parity method [30] updates data and parity units to free blocks that are near the disk heads, thus im-
proving the small write performance during the fault-free operational mode. Both of these two approaches 
favor performance during the operational mode over availability, but our SPP favors availability without 
sacrificing performance during the recovery mode.  

Bachmat et al proposed a greedy reconstruction algorithm [31] to exploit the locality of user’s accesses in 
the recovery process in RAID1 disk arrays. Similarly, Tian et al. proposed PRO [7] to deploy a popular-
ity–based multi-threaded scheduling algorithm to rebuild the frequently-accessed areas prior to rebuilding 
infrequently-accessed areas for both mirroring and parity-encoded disk arrays, to exploit access locality 
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and disk sequentiality. Sivathanu et al. proposed a live-block recovery [6] approach in their D-GRAID 
model, which recovers only those data blocks that are live from the perspective of file systems and data-
bases. Because our SPP approach is an architectural approach orthogonal to PRO and D-GRAID, inte-
grating them into our SPP will further improve system reliability and performance of parity-encoded 
RAID systems during recovery. 

Finally, the TRAP-array approach [32] leverages the XOR operations performed upon each block write in 
RAID4/5 controller, so it can rewind the sequence and history of XORs resulting from writes to recover 
data to any point-in-time upon data damage, as a means to achieve effective snapshot. Interestingly, to 
guarantee high system reliability, our SPP exploits the XOR operations among the dataset space (i.e., 
along the spatial dimension) while TRAP exploits the XOR operations among the timeline space (i.e., 
along the temporal dimension). 

7. Conclusions and Future Work 

In this paper we propose a Supplementary Partial Parity (SPP) mechanism, an architectural approach to 
improving the availability of parity-based RAID systems. The basic idea of the SPP architecture is to in-
corporate partial parity into the existing parity encoded protection mechanism for redundant disk arrays to 
improve system reliability and availability. In particular, SPP exploits free storage space and idle or 
lightly-loaded periods to generate and update the partial parity units during fault-free operations, thus 
achieving significant reduction in reconstruction overhead and improving failure-resistant capability. Via 
leveraging the exclusive OR operation appropriately among partial parity, full parity and data units, SPP 
not only can reconstruct the data on the failed disks with a fraction of the original overhead compared 
with the conventional full parity, thus significantly reducing the overhead of data regeneration, especially 
under heavy workload, but also can tolerate more than one disk failure with much better flexibility. 

We implement a prototype of the SPP architecture and incorporate it into Linux software RAID. Exten-
sive trace-driven experiments are conducted to evaluate the performance advantages of SPP. The experi-
mental results demonstrate that our SPP approach can significantly improve the reconstruction time and 
response time performance during recovery with high flexibility, adaptability and scalability. 

Since SPP is an on-going project, we feel that supplementary partial parity and related performance/cost 
tradeoffs is an area rich in research issues that we will address as our future work. For example, we will 
implement prototypes for SPP Level 2 and Level 3 to examine their performance advantages by exploit-
ing the workload characteristics and semantic knowledge and evaluate implementation complexity and 
design tradeoffs. Additionally, we will exploit the impacts of the SPP approach on the non-standard parity 
encoded disk arrays such as systems incorporated with the Parity Declustering and Parity Logging tech-
niques. Finally, we will extend the SPP approach to a distributed storage system or a mobile data center 
and evaluate the new design issues and challenges in these new environments. 
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