University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

DBER Speaker Series

Discipline-Based Education Research Group

3-2014

Data Connections RETA: DBER, Quality Improvement in Education and Statistical Modeling

Walter Stroup *University of Nebraska - Lincoln*, wstroup1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/dberspeakers

Stroup, Walter, "Data Connections RETA: DBER, Quality Improvement in Education and Statistical Modeling" (2014). DBER Speaker Series. Paper 58.

http://digitalcommons.unl.edu/dberspeakers/58

This Presentation is brought to you for free and open access by the Discipline-Based Education Research Group at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in DBER Speaker Series by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Data Connections RETA

DBER, Quality Improvement in Education and Statistical Modeling

Walt Stroup

Professor, Department of Statistics, UNL

Data Connections

- \$1.2 million NSF RETA (Research and Evaluation Technical Assistance), 2011-2014
- Partnership between University of Nebraska-Lincoln (UNL) and Lincoln Public Schools (LPS)
- Focused on developing, evaluating and sharing statistical models to better estimate value-added teacher effects on student learning

"Coherent picture of teaching and learning"

Time Line I

 2004-: Math in the Middle; Nebraska Math; Statistics Department GTA Training; collaboration with Math, TLTE, English

Time Line I

- 2004-: Math in the Middle; Nebraska Math; Statistics Department GTA Training; collaboration with Math, TLTE, English
- 2009: At NSF-MSP conference, Dept of Ed in new Obama admin speaks of using data to identify successful MSPs to scale up
- 2009: problem then existing statistical methods to do so were underdeveloped, controversial, poorly understood
- much data-free ideology

Time Line II

- 2011: received RETA grant
- back to 1980s
 - value added models (VAMs)
 - origins: W. L. Sanders in Knoxville, TN
 - UTK & Knox County schools
- 1990s to present
 - increased use of VAMs in education
 - many states mandate their use for evaluation
 - close VAM/No Child Left Behind/Race to the Top connection

What is Value-Added?

What is Value-Added?

Ballou, Sanders, & Wright (2004)

What is a Layered Model?

What is a Layered Model?

What is a Layered Model?

Usual statistical model

$$score_{g+1} = \mu + student + teacher_1$$

 $score_{g+2} = \mu + student + teacher_2$

Layered model

```
score_{g+1} = \mu + student + teacher_1

score_{g+2} = \mu + student + teacher_1 + teacher_2
```

What is a Program Effect?

What is a Program Effect?

Layered Model with Program Effect

$$score_{g+1} = \mu + student + teacher_{1,P}$$

 $score_{g+2} = \mu + student + teacher_{1,P} + teacher_{2,N}$

Definition?

```
program\ effect = teacher_{1,P} - teacher_{1,N}
```

- For teachers in the program
 - you need to know their effect before as well as during the program
 - you need some assurance that their effect is stable

Two Statistical Issues

- Fixed versus Random Model Effects
- Impact of type of effect on how we estimate
 - teacher effect
 - program effect

Types of Model Effects

- If multiple studies done independently would all studies use the same *levels* (e.g. in pgm or not)?
- Anything special about levels in the study?
- Do the levels represent a target population?

Types of Model Effects

- If multiple studies done independently would all studies use the same *levels* (e.g. in pgm or not)?
- Anything special about levels in the study?
- Do the levels represent a target population?
- Fixed
 - yes
 - yes
 - no
- Random: opposite of fixed

Types of Model Effects

- If multiple studies done independently would all studies use the same *levels* (e.g. in pgm or not)?
- Anything special about levels in the study?
- Do the levels represent a target population?
- Fixed
 - yes
 - yes
 - no
- Random

Effects in the model

- Program (P or N)
- Teachers

How do they fit these criteria?

Estimating Model Effects

- Fixed
 - familiar to all
 - compute the mean
- Random
 - they don't teach this in intro stat
 - key to estimating teacher and program effects

Estimating a Random Effect

- Example: student "mastery"
- Let M denote mastery
- M varies among students
 - mean, denote as μ_M
 - variance, denote as $\sigma_{\rm M}^{2}$
- Measure "mastery" by a test, denoted S
- S has measurement error
 - mean, denote as μ_S
 - variance, denote as σ_s^2

Teacher Effect on Mastery

- M varies among students
 - mean, denote as μ_M
 - variance, denote as σ_M^2
- S has measurement error
 - mean, denote as μ_s
 - variance, denote as σ_S^2
- Student mastery under teacher T
 - M+T
- Teachers in study represent target population
 - mean, denote as μ_T
 - variance, denote as σ_T^2

Estimating a Random Effect

- We want to estimate teacher effect T
- We do so via student mastery M+T
- We measure M + T by S
- Question: what is the best estimate of M+T?
- Hint: it is NOT the test score S

Estimating a Random Effect

- We want to estimate teacher effect T
- We do so via student mastery M+T
- We measure M + T by S
- Question: what is the best estimate of M+T
- Hint: it is NOT the test score S
- What is it?
 - E(M+T|S)
 - depends on means and variances of M, S and T

Some Issues Addressed by RETA

- Mixed Model Methodology
 - teacher effects
 - program effects
- Requirements for valid estimates vs real world
 - models assume
 - students randomized to teachers
 - tests do not have ceiling or floor effects
 - in reality
 - student assignment not random (for good reasons)
 - tests often have ceiling / floor effects

Findings

Randomization

- previous studies address extreme nonrandomization to "game" the VAM
- we looked at non-random processes schools actually use
- no impact on accuracy, some impact on precision

Ceiling

- sufficient impact to invalidate estimates
- exacerbated by non-randomization
- assessing teacher & program effect requires tests with adequate "stretch"

Implications

- VAMs can help inform quality improvement in education
- Help inform re: "how are we doing?"
- Estimates from VAMs have Variability

Implications

- VAMs can help inform quality improvement in education
- Help inform re: how are we doing
- Variability
 - estimates of teacher / program effects involve a mean AND a standard error
 - often reported w/o std error not good
 - std errors tend to be large enough so that precise statements about individual teachers require extreme caution
 - e.g. high likelihood of ranking teachers incorrectly
 - help improve: yes; high stakes evaluation: no

Final Thought
re: statistical modeling
and estimation of
teacher & program effect

this is fundamentally a quality improvement enterprise

Quality Improvement

W Edwards Deming

- Preeminent figure/founding father of statistical process/quality improvement
- "Not enough to do your best. You have to know what to do, then do your best."
- "Profound Knowledge" –
 understanding and working with
 variation
- 14 Points
- -3: cease dependence on inspection
- -11: eliminate management by numbers& numeric goals
- 85/15

Deming, QI and VAM

- Deming advocated data-informed quality improvement
- Deming deplored merit evaluation in any form
- VAMs can be effectively used for QI in education IF they are used in a manner consistent with guidelines Deming articulated
 - VAMs can provide useful information when implemented appropriately
 - VAM is one tool among many