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Abstract

A recent region-wide study determined that the central California coyote (

 

Canis latrans

 

)
population was genetically subdivided according to habitat bioregions, supporting the
hypothesis that coyotes exhibit a dispersal bias toward their natal habitat type. Here, we
further investigated this hypothesis using radio-collared coyotes captured on a 150-km

 

2

 

study site on the border of (i.e. overlapping) two bioregions (Great Valley and Cascade
Mountains). As predicted, most coyotes were assigned (based on a priori genetic criteria) to
genetic clusters corresponding to one of these two bioregions. All of those assigned to the
Great Valley genetic cluster were caught in (and for the most part, remained in) the Great
Valley bioregion. However, contrary to expectations, the coyotes assigned to the Cascades
genetic cluster occurred commonly in both bioregions. Nearly all resident individuals on
the study site, regardless of the particular bioregion, were assigned to the Cascades genetic
cluster, whereas a sizable fraction of nonresident (transient or dispersing) coyotes caught
in the Great Valley bioregion were assigned to the Great Valley cluster. Even among
resident coyotes, interrelatedness of packs was greater within than between bioregions,
and packs with territories overlapping both bioregions were more closely related to those
with territories completely within the Cascades bioregion than territories completely
within the Great Valley bioregion. Finally, direct estimates indicated that gene flow was
twice as high from the Cascades bioregion to the Great Valley bioregion than in the reverse
direction. Collectively, these findings reveal the anatomy of the genetic subdivision as
beginning abruptly at the bioregion boundary and ending diffusely within the Great
Valley bioregion.
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Introduction

 

Recent methodological advances in spatial analysis of
population genetic data (reviewed by Manel 

 

et al

 

. 2003)
have led to varying degrees of evidence for the occurrence
of cryptic population genetic structure in continuously
distributed terrestrial mammals (Carmichael 

 

et al

 

. 2001;
Ernest 

 

et al

 

. 2003; Rueness 

 

et al

 

. 2003; Sacks 

 

et al

 

. 2004).
‘Cryptic’, for our purposes, implies discrete genetic sub-

divisions corresponding to borders between spatial units
with no gaps in a species’ distribution and no physical
barriers to movement. Such cryptic subdivisions are of
great interest both in terms of the behavioural and social
processes they reflect and because of their potential role in
ecological and evolutionary processes. An exciting implication
of cryptic population structure is that animal populations,
rather than being simple assemblages of individuals, are
spatially organized at higher hierarchical levels than the
family group. Such levels may correspond to higher-order
social groupings such as neighbourhoods (Temeles 1994),
or they may reflect interactions between ontogenetic
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tendencies in the individual or the physical landscape
(Davis & Stamps 2004), or both. Difficulties in tracking
movements of large numbers of individuals have hampered
the study of higher-order social organization and dispersal
behaviour in large mammals and, until recently, lack of
methods for spatial analysis of genetic data have likewise
prevented visualization of cryptic population structure.
Here, we merge field-based monitoring of coyote (

 

Canis
latrans

 

) movements and relationships with a landscape
genetic approach to examine more closely the social fabric
of coyotes captured along the border between two habitats
corresponding to a recently described cryptic population
genetic subdivision in this species (Sacks 

 

et al

 

. 2004).
In the earlier regional-scale study, Sacks 

 

et al

 

. (2004)
found that the central California coyote population was
genetically subdivided into four groups along habitat
breaks consistent with the a priori hypothesis that coyotes
dispersed preferentially into habitat similar to their natal
habitat. However, because that study used single capture
locations of coyotes over a large portion of California, it
lacked the focused information about individual coyote
movements necessary to conclusively test the hypothesis.
Moreover, even if the natal-habitat-biased dispersal
hypothesis proves to be essentially correct, that is, that
population genetic structure of coyotes ultimately arises
from a tendency of coyotes to disperse into habitat similar
to their natal habitat, the reality may be more complex.
For example, coyotes are highly social, not only within
packs (i.e. territorial family groups) but among them
(Bekoff & Wells 1986; Gese 2001). Although they com-
monly disperse over long distances (Harrison 1992), they
frequently settle in nearby territories (Williams 

 

et al

 

. 2003),
suggesting neighbourhood structure could mediate any
natal-habitat-biased dispersal tendencies. The strength of
dispersal biases could also vary depending on the type or
quality of natal habitat, possibly resulting in asymmetric
patterns of gene flow. Understanding how behaviour,
sociality, and landscape patterns interact in determining
population structure is important in assessing their likely
roles in ecological and evolutionary processes.

In this study, we investigated the behavioural under-
pinnings of earlier findings using additional, radio-collared
coyotes from a relatively small site (150 km

 

2

 

), the Dye Creek
Preserve (DCP), straddling the border of two habitat bio-
regions (Fig. 1). Our approach was twofold. First, we assigned
each DCP coyote to one of the four central California
genetic clusters identified by Sacks 

 

et al

 

. (2004) and exam-
ined their habitat use in this context. Assignments of 98
DCP coyotes to genetic clusters was accomplished using
prior information based on genotypes of 517 central
California coyotes external to the DCP (including the 457
individuals used by Sacks 

 

et al

 

. 2004). Symmetry of gene
flow was also investigated between the two habitat bio-
regions. Second, we investigated the social cohesion of packs

in relation to the habitat divide, irrespective of genetic
cluster assignment.

 

Materials and methods

 

Study area

 

The DCP (40.11

 

°

 

N, 122.04

 

°

 

W) is a 150-km

 

2

 

 area located
partly in the Cascades bioregion (CAS), characterized by
blue-oak (

 

Quercus douglassii

 

) woodland and annual grassland
vegetation on rolling hills varying in altitude from 150 to
710 m above sea level (a.s.l.) (‘hill’ habitat) and partly in
the Great Valley bioregion (GV), flat terrain dominated by
agricultural fields and grasslands (75 to 150 m a.s.l.; ‘valley’
habitat) (Hickman 1993; Mitchell 2004; Fig. 1). The exact
boundary between these two bioregions was as defined by
Hickman (1993).

 

Field and laboratory methods

 

Coyotes were captured alive using snares or padded-jaw
foothold traps from March 1998 to July 2002, radio collared,
and released. Blood and/or ear tissue were collected for

Fig. 1 Map of the study area, illustrating the location of the Dye
Creek Preserve on the boundary of the Great Valley and the
Cascades bioregions. Four previously identified coyote genetic
clusters corresponded to bioregions as follows: (1) Great Valley
(2) Cascades, Sierra-Nevada, Modoc (3) Northwestern, and (4)
Central Western (Sacks et al. 2004).
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DNA extraction. Coyotes were radio-tracked for up to
5 years (

 

X

 

 = 1.5 years). Determination of each coyote’s social
status — resident (i.e. using a regular territory, including
breeding adult, nonbreeding pack associate, pup) or trans-
ient (wandered widely, did not use a regular area) — and
pack affiliation was described in detail by Mitchell (2004)
and was based on space use (radiotelemetry data), beha-
viour observations (including social interactions), age, and
reproductive condition (as observed at capture). Parentage
tests were also used to aid in determination of pack affili-
ations (B. R. Mitchell, unpublished). In general, coyotes were
considered residents if they occupied regular territories
and transients if they did not. Animal care and use protocols
were approved by the University of California, Berkeley
(R139) and the United States Department of Agriculture,
National Wildlife Research Center (QA 586).

Sample collection, DNA extraction, purification, and
polymerase chain reaction (PCR) amplification procedures
were as detailed by Sacks 

 

et al

 

. (2004) and Williams 

 

et al

 

.
(2003), as were genotyping procedures, except that in this
study, 13 of the loci (those used by Sacks 

 

et al

 

. 2004) were
genotyped using an ABI 3730 capillary DNA analyser.
Hardy–Weinberg and linkage equilibria were assessed in
the DCP coyotes using 

 

arlequin

 

 version 2.000 ( Schneider

 

et al

 

. 2000; Guo & Thompson 1992) and 

 

genepop

 

 version 3.3
(Raymond & Rousset 1995), respectively. Hardy–Weinberg
and linkage equilibrium tests for other central California
coyotes were presented previously (Sacks 

 

et al

 

. 2004).

 

Assignment of DCP coyotes to regional clusters

 

Assignment tests were performed in the program

 

structure

 

 2.0 (Pritchard 

 

et al

 

. 2000) based on genotypes at
the 13 loci used by Sacks 

 

et al

 

. (2004) (

 

FH2001

 

, 

 

FH2004

 

,

 

FH2010

 

, 

 

FH2054

 

, 

 

FH2079

 

, 

 

FH2088

 

, 

 

FH2096

 

, 

 

FH2100

 

, 

 

FH2161

 

,

 

FH2289

 

, 

 

FH2328

 

, 

 

FH2380

 

, and 

 

FH2457

 

; Breen 

 

et al

 

. 2001). A
total of 615 coyotes was used for this study. First, 517
central California coyotes (457 coyotes used by Sacks 

 

et al

 

.
2004 and 60 additional specimens) external to DCP were
assigned to one of four genetic clusters corresponding to
four California bioregions (Fig. 1) based on 13 microsatellite
loci (Sacks 

 

et al

 

. 2004). This prior information was then
used as per Pritchard & Wen (2002) to assign 98 DCP
coyotes to one of the four clusters. Assignments were defined
conservatively as the most probable cluster. Additional
analyses using a stricter criterion for assignment (

 

≥

 

 80%
probability) did not qualitatively change results and are
therefore not presented. Further, a second run perfor-
med on all 615 coyotes without using prior information
produced nearly identical assignments and a third run
assuming five clusters did not qualitatively improve the
fit over the four-cluster model according to the log
Pr(X 

 

| 

 

K) or geographical criteria (Pritchard 

 

et al

 

. 2000;
Sacks 

 

et al

 

. 2004).

 

Habitat use and residence on the DCP relative to cluster 
assignment

 

We tested the predictions that coyotes assigned to the GV
cluster primarily used the valley and that those assigned
to the CAS cluster primarily used the foothills. We did this
both for capture locations and for last-known locations
(e.g. radiotelemetry locations, mortality sites). The average
time between capture and last known location was 1.5 years
(range: 1–1874 days). Fisher exact tests were used to test
the null hypothesis: coyote location (valley vs. hills) is
independent of genetic cluster assignment.

 

Directionality of gene flow

 

We investigated symmetry of gene flow between habitats
among the 98 DCP coyotes in two ways. First, we compared
genetic admixture between genetic clusters (GV, CAS) and
between habitat-use categories (hills, valley, both, based
on first and last-known locations). If gene flow was asym-
metrical, admixture should have been greatest on average
among individuals in the cluster or habitat that received
the highest proportion of migrants from the other(s). The
extent of an individual’s genetic admixture was estimated
based on the 

 

Q

 

 values (estimated proportions of ancestry)
calculated in the 

 

structure

 

 analyses (Pritchard 

 

et al

 

. 2000).
Although four 

 

Q

 

 values are calculated for each individual
(one for each genetic cluster), we used only the 

 

Q

 

 values
corresponding to each individual’s cluster assignment (i.e.
their largest 

 

Q

 

 value). Because of the highly non-normal
nature of 

 

Q

 

 distributions, statistical differences were assessed
using a nonparametric Kolmogorov–Smirnov test (for the
two-group comparison) and a Kruskal–Wallis test (for
the three-group comparison), both performed in 

 

systat

 

version 9.0 (SPSS Inc.) (Zar 1999).
To investigate gene flow between genetic clusters and

between habitat-use categories more directly, we used the
program 

 

bayesass

 

 version 1.2 (Wilson & Rannala 2003).
This program uses a Bayesian approach that produces
estimates of recent migration rates between groups in
each direction without depending on potentially unreal-
istic assumptions such as equilibrium between gene flow
and random drift. Default settings were selected for all
parameters.

 

Pairwise relatedness of individuals and packs with respect 
to habitat

 

These analyses focused on resident packs as the sample
units and compared social connections among their terri-
tories within vs. between habitats. We used the 98 DCP
coyotes and the seven new loci (

 

CXX2235

 

, 

 

FH2140

 

, 

 

CXX140

 

,

 

FH2062

 

, 

 

FH2137

 

, 

 

FH2159

 

, 

 

FH2441

 

; Breen 

 

et al

 

. 2001) in
addition to the 13 loci used by Sacks 

 

et al

 

. (2004; given
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previously) for a total of 20 loci. We examined the relation-
ships among packs in two ways. First, we calculated
the relatedness, 

 

R

 

, between all pairs of individuals and
determined linkages between territories in terms of related
individuals, defined as 

 

R

 

 > 0.25 (implies an estimate that
> 25% of genes are shared) (Queller & Goodnight 1989).
We chose 0.25 as the cutoff value because this corresponds
to the expected value for second-order relatives and was
sufficiently low to include most first-order relatives (expected

 

R

 

 = 0.50) while excluding most nonrelatives. For example,
97% of known first-order relatives (average 

 

R 

 

±

 

 SD = 0.44 

 

±

 

0.10, 

 

n

 

 = 32) had 

 

R

 

 > 0.25 and of 95% of nonfirst-order
relatives (but possibly including some second-order relatives)
(0.00 

 

± 

 

0.13, 

 

n

 

 = 88) had 

 

R

 

 < 0.25. We used 

 

relatedness

 

 5.0
(http://www.gsoftnet.us/GSoft.html) to calculate 

 

R

 

. We
used Yates-corrected chi-squared goodness-of-fit tests to
determine whether the frequency of linkages connecting
territories within the same habitat vs. between habitats
differed proportionally from chance expectation. To assess
the potentially confounding effect of geographical distance,
we tested whether linkages occurred more frequently
than expected by chance in adjacent territories using a
Yates-corrected chi-squared goodness-of-fit test. Expected
numbers were calculated as the total number of interpack
relative-pairs multiplied by the proportion of all possible
pairings within the same habitat (former analysis) or in
adjacent territories (latter analysis).

The use of 

 

R

 

 values was useful in that we could pinpoint
social relationships among packs directly. However, most
pairs of individuals were not first- or second-order relatives
and 

 

R

 

 values do not indicate more distant relationships.
Therefore, we also calculated pairwise 

 

f

 

ST

 

 values among
packs. These estimates were expected to be biased, in
an absolute sense, because of high levels of within-pack
relatedness, but nevertheless should have provided an
unbiased index of relative genetic distance among packs.
We investigated partial correlations among pairwise
distance (expressed as 

 

f

 

ST

 

/(1 

 

−

 

 

 

f

 

ST

 

), Slatkin 1995) matrices
calculated from eight packs (those with 

 

≥

 

 3 members
genotyped), using a multiple factor Mantel permutation
test (Smouse 

 

et al

 

. 1986). We wished to determine whether
genetic distance was greater between packs from different
bioregions than between packs from the same bioregion,
over and above that expected because of geographical
distance between territories. Independent variable matrices
were of pack distance and bioregion. Pack distance was
measured in numbers of territories separating packs
(range 1–5). The bioregion matrix was composed of
zeros and ones, where 0 corresponded to packs in the
same bioregion and 1 corresponded to packs in different
bioregions. In these analyses, the partial correlation coef-
ficient between pack distance and bioregion effectively
controlled for effects of pack distance, such that its signifi-
cance would support the hypothesis that bioregions

accounted for genetic distance over and above that explained
by pack distance alone. We calculated the genetic distance
matrix and performed Mantel tests using 

 

arlequin

 

(Schneider 

 

et al

 

. 2000).
Some packs had territories that overlapped both bio-

regions. Therefore, we performed the individual-based (i.e.

 

R

 

) and pack-based (i.e. 

 

f

 

ST

 

) analyses twice, once consider-
ing packs with territories overlapping both habitats to be
in the valley and a second time considering packs with
territories overlapping both habitats to be in the hills. To
compensate for the possible inflation of type I error rates
caused by multiple comparisons, we used a Bonferroni
correction (i.e. doubling 

 

P

 

 values).

 

Terminology

 

To avoid confusion, we used the abbreviations ‘CAS’ and
‘GV’ strictly to refer to genetic cluster assignments and use
the terms ‘hill’ and ‘valley’ strictly to refer to the physical
location of coyotes (i.e. captures, final locations, territories).
Nevertheless, ‘hills’ implies the Cascades bioregion and
‘valley’ implies the Great Valley bioregion.

 

Results

 

Hardy–Weinberg and linkage equilibria in DCP coyotes

 

We detected 214 alleles among the 20 loci (4–23 alleles
each) in the 98 DCP coyotes. Three loci (

 

FH2001

 

, 

 

FH2140

 

,

 

FH2441

 

) were significantly out of Hardy–Weinberg equi-
librium after correcting for multiple comparisons. In all
three cases, observed heterozygosity (average = 0.69) was
lower than expected heterozygosity (0.85). Average expected
heterozygosity among the 20 loci was 0.80 (range = 0.55–
0.91). Of 190 pairs of loci, eight showed significant linkage
disequilibrium after correcting for multiple comparisons
(

 

CXX140-FH2054, FH2004-FH2079, FH2088-FH2161, FH2010-
FH2328, FH2088-FH2328, FH2289-FH2441, FH2140-FH2457,
FH2289-FH2457). Loci were not physically linked in any
of these cases (Neff et al. 1999). These instances of Hardy–
Weinberg and linkage disequilibrium were consistent with
population substructure in the DCP sample.

Habitat use and residence on the DCP relative to genetic 
cluster assignment

Indeed, the DCP sample did not reflect a panmictic
population. Of the 98 DCP coyotes genotyped, 19 were
assigned to the GV cluster, 66 were assigned to the CAS
cluster (equivalent to the Sierra Nevada/Cascades/Modoc
cluster; Sacks et al. 2004), and 13 were assigned to the other
two clusters (central western, northwestern). All 19 GV
coyotes were initially captured in the valley section of DCP
(i.e. no GV coyotes were initially captured in the hills portion
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of DCP) (Fig. 2). In contrast, initial capture locations of the
66 CAS coyotes were split between valley (66%) and hills
(34%) sections of DCP (Fig. 2). This difference between GV
and CAS coyotes in capture habitat was highly significant
(Fisher exact P < 0.001). Similarly, last known locations of
GV coyotes were more frequently in the valley (89%; Fig. 2)
than were those of CAS coyotes (72%; Fig. 2; Fisher exact
P = 0.08).

Interestingly, final locations of GV coyotes were more
dispersed than those of CAS coyotes (Fig. 2), suggesting
that GV coyotes primarily originated from elsewhere in the
valley (i.e. outside of the DCP) and were initially captured
while passing through the DCP. Indeed, of 30 residents on
DCP (classified by radiotelemetry), one was a GV coyote
and 26 were CAS coyotes (three were assigned to other
clusters), whereas 54 transient coyotes (or residents
outside of DCP) were more evenly split between GV (31%)
and CAS (69%) clusters (Fisher exact P < 0.01). Eight
transients were assigned to other clusters and six coyotes
lacked sufficient radiotelemetry data to be classified as

residents or transients. The single GV coyote classified as
a resident was paired with a CAS male and occupied a
territory in the valley portion of DCP.

Overall, half of the 98 DCP coyotes had Q values (i.e.
estimated proportion of ancestry from the assigned cluster)
> 90%, and two-thirds of the sample had Q values > 80%.
The remaining one-third of Q values was spread approxi-
mately evenly between 0.25 and 0.80. However, distribu-
tions of Q values differed between CAS and GV clusters
(Dmax = 0.39; P = 0.02), with CAS coyotes tending to exhibit
less admixture than GV coyotes (Fig. 3). Similarly, when
analysed by habitat use, hill coyotes (i.e. initially captured
and last located in the hills) showed less admixture (19%
individuals with Q < 0.80) than valley coyotes (31% indi-
viduals with Q < 0.80), which had less admixture than coyotes
initially captured in one habitat but last located in the other
(48% individuals with Q < 0.80), although these differences
were not significant (H2 = 1.66; P = 0.43).

Estimated migration rate (± SD) from the CAS cluster to
the GV cluster (0.32 ± 0.02) was nearly twice of that from

Fig. 2 Initial capture locations (top graphs)
and last known locations (bottom graphs)
of coyotes (black dots) assigned to Great
Valley (GV, left graphs, n = 19) and
Cascades (CAS, right graphs; n = 66)
genetic clusters. Locations are shown
relative to the Dye Creek Preserve (DCP,
shown in grey) and hill and valley habitat
types (separated by tortuous line). All
initial captures of GV coyotes were in
valley habitat and their final locations
were scattered widely, whereas initial
captures of CAS coyotes were in both
habitats and their final locations tended
to remain on the DCP. Note: the lack of
locations in the hills outside of the DCP
was caused by radiotelemetry problems
in this terrain and was not indicative of
lack of coyote use.
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the GV cluster to the CAS cluster (0.18 ± 0.03). Similarly,
estimated migration rate from the hills to the valley
(0.26 ± 0.02) was twice of that from the valley to the hills
(0.13 ± 0.04).

Pairwise relatedness of individuals and packs with respect 
to habitat

We found 14 pairs of interpack relatives (Fig. 4). When
four territories that straddled valley and hill habitats were
pooled with four hill territories (i.e. straddling territories
were assumed to be hill packs that spilled out into the
valley), there were 11 within-habitat pairs of relatives,
which was more than expected by chance (n = 6.4 within-
habitat relatives;  = 3.70, Bonferroni-corrected P = 0.056).
When straddling territories were pooled with six valley
territories, however, there was no significant difference
between numbers of observed and expected within-habitat
pairs of relatives (  = 0.02, Bonferroni-corrected P > 0.88).
These results suggest that territories overlapping or com-
pletely within the hills were socially distinct from those
completely within the valley. Excluding straddling territories,
there were no instances of relative pairs between valley

and hill territories compared to five instances of within-
habitat relative pairs. Of the 14 pairs of relatives, six instances
were between adjacent territories and eight were between
nonadjacent territories, which did not differ significantly
from chance expectations (3.2, 10.8, respectively;  = 2.26,
P = 0.13), suggesting interpack distance was not an important
confounding variable in this situation.

Genetic distance (fST) also was greater between packs
in different bioregions than between packs in the same
bioregion. When territories straddling bioregions were
considered hill territories, this difference was significant
(Fig. 5; average fST = 0.08 within bioregions vs. fST = 0.15
between bioregions; rY2-1 = 0.14, Bonferroni-corrected P =
0.046). When territories straddling bioregions were con-
sidered valley territories, the difference was less pronounced
(average fST = 0.10 within bioregions vs. 0.13 between bio-
regions) and nonsignificant (Bonferroni-corrected P = 0.12).
There were no significant correlations between fST and
pack distance in terms of either univariate or partial corre-
lation coefficients and regardless of whether packs with
territories straddling bioregions were considered valley or
hill packs (P > 0.70). Thus, again, geographical distance
appeared irrelevant on the scale of this study.

Although sample sizes were too low for statistical
comparison, it is worth noting that coyotes from hill
packs had the highest average Q value (0.92, range:
0.79–0.97), followed those from straddling packs (0.86,
range: 0.56–0.95), and then those from valley packs (0.82,
range: 0.48–0.98).

Fig. 3 Distributions of Q values (estimated proportion of ancestry
from the assigned cluster) of coyotes captured at Dye Creek
Preserve assigned to CAS (n = 66) and GV (n = 19) genetic clusters.
The greater proportion of low Q values among GV than CAS
coyotes indicates greater admixture among coyotes in the GV
cluster.

χ1
2

χ1
2

Fig. 4 Territories of radio-collared coyotes in and around the Dye
Creek Preserve with connecting lines to indicate an individual in
one pack related to an individual in another pack (R > 0.25).
Numerals indicate numbers of individuals genotyped in each
pack. No coyote from a valley territory had a relative in a hill
territory, although territories straddling the boundary between
hill and valley habitats shared relatives with coyotes in both
habitats.

χ1
2
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Discussion

Several recent coarse-scale studies have presented evidence
or argument for the occurrence of habitat-related cryptic
population genetic subdivisions in terrestrial vertebrates
(Carmichael et al. 2001; Ernest et al. 2003; Rueness et al.
2003; Geffen et al. 2004; Sacks et al. 2004; Stenseth et al.
2004). However, there is little empirical evidence for any
particular behavioural, social, or demographic cause of
these subdivisions. At the other end of the spectrum, many
studies have focused on the ontogeny of habitat-selection
behaviour of individuals (reviewed by Davis & Stamps
2004), but largely without regard to the population-level
consequences of it. To extract a general understanding
applicable to evolutionary theory, it is imperative to com-
bine coarse landscape genetic approaches with fine-scale
behavioural studies as we have attempted here.

Our study followed up the regional study by Sacks et al.
(2004), which provided qualitative evidence that coyotes
selectively dispersed to habitats similar to their natal
habitats. Because of the necessarily coarse sampling, the
previous study did not provide much resolution of the
nature of the cryptic subdivisions. For example, because
coyotes used in that study were ones that had been killed
upon their initial capture, it was not possible to differenti-
ate residents from those just passing through, e.g. during
dispersal. In general, coyotes range widely and tend to be
most vulnerable to capture when they are away from their

territories or dispersing (Sacks et al. 1999a); it is therefore
likely that many of these coyotes were caught far from their
birth or breeding sites. Genetic structure stems from
animal movements only in so far as the animals settle and
breed. Therefore, it is important not only to understand
how habitat affects the movements of individuals but, more
directly, how it affects where they settle and reproduce. In
this study, we radio-collared coyotes, which enabled us to
distinguish residents from transients or dispersers, to map
territories relative to habitat types, and to determine the
relatedness among packs with respect to habitat divides.

First, our findings strengthened the conclusions by Sacks
et al. (2004) that genetic structure of central California
coyotes corresponds to habitat breaks and that this pattern
relates to natal-habitat-biased dispersal. Although the
coyotes in this study captured in the valley portion of the
DCP were assigned commonly to both GV and CAS genetic
clusters, this stood in stark contrast to the coyotes captured
in the hill portion of the study area, none of which were
assigned to the GV. Additionally, the DCP was quite
distant from most sampling sites in the Sierra Nevada/
Cascades bioregion used by Sacks et al. (2004), making it a
highly informative and independent validation of earlier
findings.

To our knowledge, ours is the only study to explore the
anatomy of a cryptic population genetic subdivision on a
fine scale. An especially interesting finding of this study
was an asymmetry with respect to coyote movement and
gene flow between habitats. This asymmetry was sup-
ported consistently from several lines of evidence. First,
the GV coyotes strongly avoided the hill habitat, whereas
the CAS coyotes more commonly entered the valley
habitat. Second, coyotes assigned to the GV genetic cluster
tended to exhibit more admixture than those assigned to
the CAS cluster. Likewise, coyotes located in valley habitat
(regardless of genetic cluster assignment) tended to exhibit
greater admixture than those located in hill habitat, although
this trend was not statistically significant. Admixture
tended also to be higher in packs resident in the valley
portion of the DCP than in packs resident in the hill portion
of the study area. Finally, direct estimates indicated approx-
imately twice as much gene flow from the CAS cluster to
the GV cluster and from the hills to the valley than in the
reverse directions.

There are several possible explanations for the observed
asymmetry in movement and gene flow between hill and
valley habitats. One possibility is that hilly terrain may
constitute a more complex environment than flat (valley)
terrain, requiring greater sensory acuity. If so, coyotes may
be better able to acclimate from hilly terrain to flat terrain
than vice versa. Alternatively, or additionally, the valley
may generally represent higher quality habitat than the
hills and could therefore draw coyotes from the hills. For
example, during summer, water is extremely scarce in the

Fig. 5 Pairwise fST between packs within and between habitats as
a function of interpack distance. The difference in the elevations of
the trend lines indicates a difference in within-habitat (dashed
line) vs. between-habitat (solid line) fSTvalues; that these lines are
approximately horizontal indicates no relationship between fST
and interpack distance. Corresponding Mantel test statistics
reported in the text were based on linearized fST, fST/(1 − fST).
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hills but, because of agricultural irrigation, is relatively
abundant in the valley (B.R. Mitchell, personal observa-
tion), such that prey biomass is likely to be greater per unit
area in the valley than in the hills. Coyote territories were
somewhat smaller on average in the valley than in the
hills (even more so than indicated in Fig. 4 if topography is
accounted for), suggesting that resources may well have
been denser in the valley. Further, there were several
instances of valley packs sharing relatives, indicating
short-distance dispersal within the valley. However, no
nonstraddling hill packs were linked through relative
pairs, suggesting that hill coyotes were less likely to dis-
perse to nearby locations in the hills except to territories
overlapping the valley.

Regardless of the reasons for the asymmetries in move-
ment between habitats, it is important to note that even in
the hill-to-valley direction, dispersal appeared to be slowed
by the habitat break. That is, the pairwise relatedness and
pack genetic distance analyses indicated that there was a
tendency within the resident population (primarily CAS
coyotes) for social units to situate on one or the other
side of the boundary. For example, packs with territories-
straddling habitats were connected through relatives to
packs in both habitats but no packs solely in one habitat
shared a relative with a pack solely in the other habitat.
These patterns suggest that coyotes readily disperse from
the hills to territories that include both habitats, and that
the offspring of these straddling packs, which will have
been exposed to both habitats, may readily disperse to
territories in valley habitat. However, coyotes apparently
did not disperse from interior hill territories to interior
valley locations.

Another interesting observation in this study was that
individuals assigned to the GV cluster were rarely resident
on the valley portion (or hill portion) of the DCP. Coyotes
in the valley just 30 km to the southwest of DCP were pri-
marily assigned to the GV (Sacks et al. 2004), indicating that
the relative proportions of GV and CAS resident coyotes
changed substantially between the valley, where it abuts
the bioregion boundary, and a little further into the valley
interior. A possible explanation for how CAS coyotes
could dominate the valley habitat directly adjacent to the
bioregion boundary is if coyotes from straddling territor-
ies, which were genetically clustered with coyotes from
interior hills (i.e. CAS coyotes) but exposed to both hill and
valley vegetation, perceived their natal habitat based on
the prey base as opposed to vegetation as a primary cue.
Prey as a habitat cue has also been put forth as an explana-
tion for population subdivision in wolves (Canis lupus)
(Carmichael et al. 2001).

At DCP, the prey base associated with the hills extended
into the valley for some distance. In particular, wild pigs
(Sus scrofa) and, for part of the year, deer (Odocoileus hemi-
onus), were associated with the hill habitat but frequently

moved into the adjacent valley areas, e.g. to find water
(especially in the summer; B. R. Mitchell, unpublished).
Analysis of coyote scats indicated that these ungulates
composed a seasonally important part of the diet in valley
areas of the DCP as well (Barrett 1983; B. R. Mitchell,
unpublished). Other than cattle, which were unlikely to
compose a large part of the coyote diet, ungulate prey was
essentially unavailable to coyotes further into the valley.
Predation on ungulates by coyotes is a specialized beha-
viour that less experienced individuals tend to avoid (Gese
& Grothe 1995; Sacks et al. 1999b; Sacks & Neale 2002).
Therefore, it is conceivable that in valley areas adjacent to
hills containing ungulate prey, CAS coyotes (born in or
near the hills) hold a competitive advantage over GV
coyotes (born in areas without ungulate prey). It would be
informative in future studies to determine the diets of indi-
vidual coyotes (e.g. via use of stable isotopes) with respect
to genetic cluster assignment. Additionally, domination of
the valley section of the DCP by CAS coyotes could be
reinforced by social cohesion if, for example, territory
establishment is better tolerated by neighbours that are
closely related (Temeles 1994; Girman et al. 1997).

Conclusions

Our study has shown that cryptic genetic subdivisions in
terrestrial carnivores can be sufficiently sharp to disrupt
social fabric and be apparent at the smallest relevant spatial
scale, that of the neighbourhood. We have provided further
evidence that natal experience is likely to be important in
limiting an individual’s habitat selection during dispersal.
However, the observed asymmetry in movements, gene
flow, and settlement between habitats indicates that
natal-habitat-biased dispersal in its simplest formulation
may be insufficient to describe the complexity of cryptic
population subdivisions, at least in the present case. It
seems that overall habitat quality and social cohesion may
be important contributors as well. Further, although beyond
the scope of the present study, demographic aspects also
could play a role, as has been suggested for other systems
(Stenseth et al. 2004). We are optimistic that future work
combining fine-scale field study of individuals and family
groups with landscape genetic approaches will bring us
closer to understanding the emergence of population
genetic structure from animal behaviour, and that this
knowledge will significantly advance our understanding
of evolutionary processes.
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