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suggests two potential impacts due to skip-row adop-
tion that are relevant for insurance: impacts on aver-
age production capabilities (i.e. the mean, or expected 
yield), and impacts on yield risk (i.e. insurance costs, 
variance, and other higher order moments). Accord-
ingly, the adoption of skip-row will have two pri-
mary impacts on its actuarial profile versus conven-
tional practices. The first is the impact on the APH, 
the measure used to determine insurance guarantees. 
APH equals the average of the last four to ten years of 
farm-unit data. The second impact is on the expected 
insurance losses. 

Recall that under the current 2009 RMA rules, 
skip-row and conventional practices are insured to-
gether and assigned a common APH and insurance 
rate. Whether the expected changes in risk and ex-
pected yields from using skip-row patterns relative 
to conventional patterns are such that they justify 
the use of the same APH guarantee and rating struc-
ture (i.e. schedule of insurance rates) is an empirical 
question. Because skip-row corn may have higher or 
lower expected yields on average, if the APH is es-
tablished for conventionally-planted corn but ap-
plied to skip-row insured corn, the APH may be bi-
ased up or down. This may result in artificially high 
(or low) insured APH’s for skip-row, and subse-
quently may impact indemnities under any particular 
loss event. Second, even independent of skip-row im-
pacts on APH, skip-row cropping may also embody a 
lower risk of insured loss. Thus, skip-row may have 
lower expected insurance losses relative to conven-
tional losses for any given level of equivalent bushel/
acre coverage. If not properly accounted for, these in-
surance coverage and rate effects have the potential 
to impact technology adoption and lead to adverse 
planting incentives. 

To provide context, Figure  1 presents agronomic 
trial data from Lyon et al. (2009) of matched skip-
row and conventionally-planted corn yields for se-
lected counties in the Central Great Plains. The data  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
were collected from 2004-2006 from 23 trials con-
ducted in Nebraska, Kansas and Colorado; several 
measures were taken to ensure that the data are ex-
tensible over the region.2 In Figure  1, the conven-
tionally-planted yield outcome (bu./acre) is plot-
ted on the x-axis, while the corresponding skip-row 
yield is on the y-axis (N = 270 observations). The 
dashed line is a 45° line emanating from the origin. 
The solid line is a trend line from an OLS regression. 
We do not argue that a linear OLS is the best specifi-
cation, but include it for expositional purposes. Fig-
ure  1 indicates that, on average, skip-row planting 
tends to outperform conventionally-planted when 
conventionally-planted yields are less than approx-
imately 80-90 bu./acre, and vice-versa when yields 
are above 80-90 bu./acre. This is indicated by the 
intersection point of the dashed line and the solid 
trend line. Summary statistics for the data are pre-
sented in Table  2. Skip-row production has lower 
yield variability (according to variance, semi-vari-
ance, and distances between quantiles), and outper-
forms conventional planting at quantiles below the 
mean, and vice-versa above the mean. 

Empirical Analysis

The empirical analysis seeks to address three pri-
mary questions. First, which practice/technology 
(skip-row or conventional) would be preferred in the 
absence of insurance? Second, did the 2008 RMA in-
surance rules disincentivize the adoption of skip-
row production? And third, are the practices suitably 

Figure 1. Corn Yield (bu./acre) Trial Data, Skip-Row vs. Con-
ventional (Lyon et al. 2009) 

Table 2. Summary Statistics-Agronomic Trial Data

	 Conventional	            Skip-Row

Mean	 95.427	 92.530
Standard Deviation	 47.979	 39.770
Semi-Variance	 1197.244	 823.063
1st Percentile Yield	 2.090	 10.047
5th Percentile Yield	 17.047	 21.986
10th Percentile Yield	 23.149	 40.084
Median	 97.024	 96.069
90th Percentile Yield	 155.876	 145.839
95th Percentile Yield	 173.656	 154.968
99th Percentile Yield	 194.240	 170.438

This table presents summary statistics for skip-row and con-
ventional matched yields (N=270) from Lyon et al. (2009). The 
correlation between skip-row and conventionally-planted 
yields was 0.954. 

2. We refer the interested reader to Lyon et al. (2009) for more in-depth details on the trial data. 
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similar to justify being combined as a single insur-
able practice as under the current rules, or should 
they be maintained as separate insurable practices? 
To address these questions, first a crop yield simu-
lation model of skip-row and conventional yields is 
developed. Next, an expected utility analysis is con-
ducted to evaluate insurance and technology adop-
tion choices. 

Skip-Row Crop Yield Simulation Model

Empirical assessment of skip-row risk presents a 
special challenge since the practice has only recently 
been introduced to the region, and skip-row perfor-
mance has not yet been observed over a large num-
ber of years in any single location. However, reliable 
trial data do exist, which contain side-by-side com-
parisons of skip-row and conventionally-planted 
yields over a wide range of weather outcomes and 
regions. We develop a simulation to derive credible 
skip-row distributions by combining information 
from agronomic side-by-side trial data with a larger 
farm-unit level dataset. By combining information 
from the two datasets, more efficient estimates of 
the skip-row distribution can be obtained. The trial 
data are from Lyon et al. (2009) and span from 2004-
2006 (N = 270). The larger dataset of conventional 
yields is obtained from the RMA Type 15 producer 
yield records, and consists of 130,080 conventional 
corn yield observations from 1996-2008. The Type 15 
database is the RMA database where producer-level 
historical yields are maintained; they were provided 
by RMA and deemed appropriate for use in this ap-
plication. Unless otherwise noted, usage of the Type 
15 yields are assumed to refer to detrended yields 
in order to accurately account for technology gains 
through time. The yield detrending process is de-
tailed in the next section. 

The simulation methodology employs a multi-
variate nonparametric simulation technique to de-
rive augmented skip-row yield distributions, in-
surance rates, and to perform expected utility 
analyses. The methodology involves several steps. 
First, a nonparametric bivariate density of the dif-
ference between skip-row and conventional yields 

is constructed using the yield trial data to estab-
lish the relationship between skip-row and con-
ventional yields. We augment the trial data with 
the larger database of conventional yields by em-
ploying a resampling procedure, whereby a con-
ventionally-planted yield is first sampled (based 
on models calibrated with the Type 15 data), and 
then a skip-row yield is constructed by simulating 
a skip-row difference yield from the estimated bi-
variate density, conditional on the level of the conven-
tional yield sampled from the Type 15 data.3 Explicitly, 
the procedure is as follows. First, a variable is con-
structed for the difference between skip-row and 
conventionally-planted yields using trial data as  
xi = yi

S – yi
F ∀ i ∈ {1, 2, … N}, where i is the observa-

tion index, and yi
S and yi

F are paired skip-row and 
convention yield observations from the trial data. 
Alternatively, in matrix notation we have 

xN × 1 = yS
N × 1 – yF

N × 1 , 

where for exposition we include the dimensions of 
the matrices. Next, a bivariate density is constructed 
of x = yS − yF and yF, f(x,yF ). Using this density, we 
then construct the conditional density of f(x|yF). With 
this density in hand, conventional yield draws, ȳT15, 
are simulated from the empirical detrended yield 
density from the Type 15 yield dataset, f̂ (yT15). Skip-
row differences, x̄, are then simulated from  f̂ (x|ȳ T15) 
conditional on ȳT15. Unit-level simulated skip-row 
yields are then calculated as ȳ S = ȳT15 + x̄ .

We estimate the joint density of x and yF, f(x,yF) as 
a bivariate Gaussian kernel density using a product 
kernel and bandwidth, h1×2, as suggested by Bowman 
and Azzalini (1997, p. 31).4 Letting 

ZN×2 = [xN×1, yF
N×1 ], 

we can calculate the bandwidth as 

h1×2 = MED[|Z – REP[MED[Z],N,1]|]  ∙ (0.6745 × N
1/6)–1, 

where the matrix function REP[Z,N,M] is an N×M til-
ing of matrix Z, and the function MED[Z] results in 
an N×1 vector with mth element equal to the median 
of the mth column of Z. Next, the bivariate Gaussian 
kernel density is estimated as 

3. The primary advantage of our simulation approach is that it is not necessary that the marginal distribution of conventional yields from the trial 
data be a “good” estimate of the underlying “true” marginal distribution, only that it suitably spans the support of the “true” marginal distribu-
tion, and that the data are extensible across the region as it regards impacts from management practices, soil characteristics, etc. From a statisti-
cal point of view, the only relevant information contained in the trial data is that which pertains to the relationship between skip-row and con-
ventional yields, conditional on the conventional yield outcome. Indeed, the marginal distributions derived from the trial data are otherwise not 
relevant, nor is it required that they be accurate depictions of the “true” underlying marginals in order to effectively implement our procedure. 
In practice though, care should be taken to ensure that the data generated in the agronomic trials are representative of yields in the region. 

4. We also investigated using a shaped multivariate normal kernel with bandwidth h = (4/5N)1/6 in lieu of the product kernel as outlined in Simar 
and Wilson (1999), but found little practical difference in the results. 
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 f̂ (z1×2) = N–1 hι–1 ∑N
i=1

 K ((z – Zi)./h), 

where      ι = [1,1]′, 

Zi is the ith row of the original data, Z = [x, yF], 

                         –t2
1          –t2

2 
K([t1, t2])  =    e  2    ∙    e  2

                      √2π       √2π           , 

and “./” denotes element-by-element matrix divi-
sion. The marginal density of yF is obtained by inte-
grating out x as 

 f̂ (yF) =  ∫ ∞
–∞  f̂ (z)dx =  ∫ ∞

–∞ f̂ ([yF, x])dx. 

Estimates of the conditional density of x conditional 
on yF, f̂ (x|yF) can then be constructed using the defi-
nition of a conditional density. Note that this density 
is used to simulate skip-row difference variables, x̄, 
conditional on the simulated conventionally-planted 
variates, ȳ F, whereby the simulated conventionally-
planted conditioning yield will be drawn from the 
empirical yield distribution from the larger dataset,  ȳ 
T15(in our case, the Type 15 data). The simulated skip-
row yield is then calculated as the sum of the simu-
lated conventionally-planted conditioning yield and 
the simulated skip-row difference yield to obtain  
ȳ S = ȳT15 + x̄. Since the skip-row simulated yield is 
bounded below at zero, we must truncate our condi-
tional distribution of x̄  from below at  – ȳ F to ensure 
that   ȳ S is always greater than zero. Put simply, this 
avoids drawing negative yields. This is accomplished 
by employing the reflection method of Silverman as il-
lustrated in Simar and Wilson (1999). The conditional 
distribution of x on yF is itself a univariate distribution, 
thus a reflection point is needed at – ȳ F for x. The re-
flection method in this case with only a lower bound 
is implemented by assigning a zero value to  f̂ (x|ȳ F ) 
when x is less than – ȳ F; and, when x is greater than  
– ȳ F, the density of  f̂ (x| ȳ F ) is equated to the un-
truncated density evaluated at x, plus the un-trun-
cated density value evaluated at the reflected value of 
x around −yF, or xr = – ȳ F– (x – (– ȳ F). Thus we have 

	 0                                                 if   x < yF,

 f̂ (x|ȳ F )
 
=

 { 	f (yF )–1 N–1 hι–1 (∑N
i=1

 K ((z – Zi)./h)  

	    + ∑N
i=1

 K ((zr – Zi)./h))          otherwise 

where zr=[xr,yF]. The empirical distribution for draw-
ing from the Type 15 data is constructed using the de-
trended yields as described below. We simulate 500 
draws from the empirical distributions for each unit, 
and then simulate 500 draws from the conditional 
difference distribution in order to calculate simu-
lated skip-row yields for each practice for each of the 
farm units in the sample.5 ,6 Insurance loss costs, ex-
pected yields, risk measures, and expected utility for 
each practice are then calculated using the simulated 
draws. 

Constructing Forward-looking Empirical Distributions of 
Conventional Yields

To construct forward-looking conventional yield 
distribution estimates from the Type 15 data for use 
in the crop yield simulation model above, yields 
from the Type 15 data are first detrended to account 
for technological advances through time. The result-
ing yields deviations from trends are then used to 
construct empirical farm-unit level yield distribu-
tions. The fact that the typical farm-unit yield se-
ries in these data are short (10 years or less)–cou-
pled with the frequent presence of total yield losses 
in the Central Great Plains region–render farm-unit 
level OLS trend estimation unattractive. The typi-
cal approach to increasing the estimation efficiency 
in this case is to pool units together and then es-
timate trends for some region or group of simi-
lar units. This allows for a reduction in the impact 
of sampling variability on estimated trends (At-
wood, Shaik, and Watts 2003). One typical man-
ner in which this is implemented is to estimate 
county-level trends and then apply the estimated 
county trend to detrend the farm-level unit yields. 
This caˆˆn be justified with the reasoning that farms 
within a county are typically subject to similar tech-
nology trends and climactic conditions, and thus 
pooling can increase estimation efficiency with little 
risk of inducing bias. Thus, we utilize county-level 
yields when detrending. Specifically, county level 
yields from the National Agricultural Statistics Ser-
vice (NASS) are used to estimate robust trends us-
ing data from 1972-2008. The basic concepts under-
lying this approach are well-established (see e.g. 
Atwood, Shaik, and Watts 2003; Woodard, Sherrick, 
and Schnitkey 2011). 

5. We assessed the impact of using a sample size of 5,000 versus 500 for one of the coverage level/plant configurations combinations. The differ-
ence at the farm-unit level was negligible, and the difference for the county level summaries of the 40,336 farm-unit level simulations was essen-
tially zero. This was not surprising, given that Latin Hypercube sampling was employed. 

6. The Mersenne-Twister algorithm is employed to generate the uniform variates needed for the inverse transform sampling. Latin Hypercube 
sampling is employed to increase simulation sampling efficiency. Descriptions of these well-established methods can be found in most elemen-
tary simulation textbooks. 



Sk i p-Ro w Cr o p In s ur a n c e Pr o g r am De s i g n, In c e n ti v e Ef f ec ts,  an d Te c h n o l o g y Ad o p ti o n    831

A feature of county-level yields in this region is 
that there is extreme volatility in yields from year-to-
year, and the occurrence of near-total loss years can 
potentially create outlier problems. To address this is-
sue, we employ a robust Iterative Reweighted Least 
Squares Huber Estimator when estimating the trend. 
With the trend estimate in hand, we can then obtain 
detrended unit-level yields as

             
yt

T15 = yt
uT15 ×

 YTr
2009

                                      Yt
Tr

where Yt
Tr = β̂1 + β̂2t  is the county trend yield in year t, 

yt
uT15 is the trended farm-unit level conventional yield 

from the Type-15 data,  Yt
Tr is the fitted county yield 

from the regression of time on NASS yields (i.e. the 
“trend yield”), t is the year, and β’s are coefficients 
to be estimated from the regression of time on NASS 
county yields. In our case, the Type 15 data con-
tain historical yields from 1996-2008 at the farm-unit 
level. Thus,  to construct estimates of the 2009 con-
ventional yield distributions, yields are detrended 
to 2009. Note that this detrending method implicitly 
assumes constant relative yield risk growth through 
time. As Woodard (2008) and Woodard, Sherrick, 
and Schnitkey (2011) point out, this assumption is 
consistent with RMA’s loss cost system require-
ments and assumptions. The high frequency of to-
tal yield loss events in this region suggests that this 
assumption is likely reasonable for this application. 
Assuming other forms of yield risk or yield trend 
form would impact the nominal estimated rate and 
loss levels for skip-row and conventionally-planted 
production, but should not change the results con-
cerning the relative relationships between skip-row 
and conventional yields significantly. 

Estimation of Insurance Loss Costs

Since adopting skip-row practices has a primary 
impact on the yield loss component, we restrict at-
tention to the traditional APH yield insurance prod-
uct in the insurance analysis. As noted, we simulate 
yield observations of  ȳ T15 and  x̄  from    f̂ (yT15) and    
f̂ (x| ȳ T15 ), then calculate simulated skip-row yields 
conditional on   ȳ T15 as   ȳ S  = ȳ T15 +  x̄.  Thus, we can 
calculate loss cost in a particular case for the standard 
yield insurance, as well as expected loss costs as, 

LC =
 Max(0, APH × Cover – ỹ) 

               (APH × Cover), 

and

E(LC) =
 ∑I

i=1
 Max(0, APH × Cover – yi)

                      APH × Cover × I

where I is the number of yields available (or simu-
lated), APH is the unit APH, yi is the simulated yield 
outcome (skip-row or conventional), and Cover is the 
(%) coverage level. 

Expected Utility Analysis

To investigate the impacts of various insurance 
program designs on skip-row adoption in an eco-
nomic framework, we conduct an expected utility 
analysis using the simulated yields obtained from the 
crop simulation model described above. Since pro-
duction costs for skip-row and conventional are typi-
cally similar, we focus on the expected utility of crop 
revenues net of insurance costs (price normalized). 
Actuarially fair insurance costs are estimated from 
the simulation model for skip-row and conventional 
planting practices, where the indemnity function for 
the yield-based insurance is defined above.7 The anal-
ysis adjusts farmer-paid premiums using the cur-
rent subsidy structure as published by RMA. Follow-
ing Holt and Laury (2002), we adopt a power utility 
function. This utility function exhibits constant rel-
ative risk aversion (CRRA) and can be expressed as 
U(x)=x1−r/(1−r), where x is the relevant return (rev-
enue plus any insurance indemnity) net of insurance 
costs, and r is the risk aversion coefficient. Expected 
utility can then be calculated as 

EU = ∫0
∞

 U(x)dG(x), 

where G(x) is the distribution of returns from the sim-
ulation model. Results are presented at the 85% cov-
erage level for a representative producer in Thomas, 
Kansas at various levels of risk aversion as character-
ized by Holt and Laury (2002). 

Expected utility is evaluated over four different 
scenarios for both conventional and skip-row prac-
tices: (1) no insurance, (2) insurance under 2008 rules, 
(3) insurance under 2009/current rules, and (4) in-
surance under our proposed rules. Recall that un-
der 2008 RMA rules, skip-row producers without es-

7. While revenue insurance is also popular in this region, we focus the analysis on a yield-based insurance product in order to maintain focus on 
the component impacted by skip-row adoption (i.e. yields). The results likely hold similarly for revenue products, however, since skip-row and 
conventional yields are highly correlated. 
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tablished databases received effectively one-half of 
the T-yield APH for insurance purposes, and the in-
surance cost was also one-half the conventional pre-
mium.8 Under the current 2009 RMA rules, skip-row 
is combined with conventional production for in-
surance purposes, and also is charged the same rate. 
Thus, new skip-row producers will receive an APH 
equal to their conventional APH, and also receive the 
established conventional yield premium rate. Based 
on previous research about skip-row yields in this 
region–which suggests that skip-row in this region 
has a higher expected yield and lower risk/expected 
loss costs than conventional–we propose an alter-
native set of rules which would establish skip-row 
and conventional as separate practices with separate 
rates and APH databases. In the analysis, the insur-
ance premium rate and APH’s are determined by the 
expected loss cost (minus subsidy) and the expected 
yield from the simulated yields, respectively. 

Results — Distribution and Expected Loss Cost 
Impacts of Skip-Row Technologies

Figure  2 presents the truncated joint distribu-
tion of x and yF estimated from the trial data. As ev-

idenced by Figures  1 and  2, the data cover a large 
spectrum of possible outcomes. In general, the dif-
ference between skip-row and conventional produc-
tion increases as the conventionally-planted yield in-
creases, which is consistent with previous research. 
However, there is still some variability in the rela-
tionship between skip-row and conventional pro-
duction over different events. Thus, in regions with 
high frequencies of yields below 80-90 bu./acre, 
more mass will be contained further away from 
zero for skip-row relative to conventional cropping. 
As noted by Lyon et al. (2009), the expected value 
of skip-row yields exceeds that of conventionally-
planted when conventionally-planted yields are less 
than approximately 80-90 bu./acre. This does not 
imply that skip-row yields will always exceed those 
of conventionally-planted yields when convention-
ally-planted yields are below 80 bu./acre, but only 
on average. The nature of the bivariate joint density 
explicitly takes this into account. 

To illustrate the impact of skip-row in terms of the 
simulated augmented distribution, Figure  3 pres-
ents kernel distributions from the simulated values 
for skip-row and conventional yields for Thomas 
County, Kansas, a high production county. Figure 3 

8. We proxy the T-Yield and the conventionally-planted APH by the expected conventional fully-planted yield from the simulations. 

Figure 2. Joint Distribution of  x = yS − yF and yF (N = 270) 
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illustrates that density is redistributed closer to the 
mean for skip-row, and that skip-row also has less 
density far out in the tails. This is a result of the fact 
that there is a high frequency of total loss (or near-
total loss) events for conventional yields in this 
county. Also, the conventionally-planted distribu-
tions have more mass at higher yield levels, an effect 
attributable to the fact that conventionally-planted 
yields tend to outperform skip-row when conven-
tionally-planted yields are above 80-90 bu./acre. 
Figure 4 presents a map of the ratio of skip-row and 
regular planted expected yields. As the Figure il-
lustrates, in the eastern region, skip-row and con-
ventional production performed similarly in terms 
of expected yield (with skip-row modestly outper-
forming); in the western region, skip-row tended 
to significantly outperform (30% to 50% higher ex-
pected yield in some counties). This result is some-
what expected since this region tends to be more 

drought-prone, and has lower expected yields (map 
not presented). 

To assess the impact of skip-row patterns on ex-
pected insurance losses, the average simulated insur-
ance loss costs (expressed as a percentage of the lia-
bility, or bu./acre coverage) are estimated using the 
simulation procedure described.9 Table 3 reports re-
sults for the expected loss cost analysis for skip-row 
and conventionally-planted yields at different cover-
age levels, aggregated over all units in the region.10 
The first block column of results in Table  3 report 
conventionally-planted expected loss costs at each 
coverage level; the second block column reports skip-
row loss costs, and contains three individual sub-col-
umns, one for each of the three methods for deter-
mining skip-row APH: (1) T-Yield APH (reflecting 
2008 rules), (2) Conventional Planted Expected yield 
(reflecting 2009 and current rules), and (3) Skip-Row 
Expected Yield (reflecting proposed rules). 

Figure 3. Simulated Augmented Yield CDF’s, Thomas KS

Figure 4. Ratio of Expected Yield, Skip-Row to Conventional

9. The county expected unit loss costs generated from the simulations should not be construed as final rates for FCIC premium determination 
purposes. In practice, RMA makes several adjustments to base loss costs/rates, and also implements specific weightings both across units and 
across years. We do not replicate all of those steps, nor is doing so necessary to evaluate the impacts of skip-row which are of interest here. 

10. Our results were consistent across all seed densities and skip-row planting configurations regarding rankings relative to conventionally-
planted practices (results not reported). Please see Lyon et al. (2009) for a discussion of planting configurations and seed densities used in the 
trials. 
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In general, loss costs are substantially lower for 
skip-row production. The corresponding convention-
ally-planted yield expected loss cost was typically 
about 50% to 100% in excess of that for skip-row. 
For example, the skip-row rate (under the conven-
tional APH, sub-column 2) at 85% (50%) coverage 
is approximately 19.65% (11.31%), versus a rate of 
30.20% (23.28%) for conventional production. Skip-
row rates (i.e. loss costs) were slightly higher for the 
skip-row adjusted APH (sub-column 3), versus un-
der the conventional APH (sub-column 2), reflecting 
the fact that the skip-row expected yield was higher 
than the conventionally-planted, on average, in the 
sample. However, it was still much less than the loss 
cost for conventional practices. This finding suggests 
that even if skip-row APH’s are allowed to adjust up-
ward over time in a combined practice insurance pro-
gram (as under the current rules), producers adopt-
ing skip-row cropping will still receive rates that 
are too high since they are lower than conventional 
yield loss costs. Recall that under the 2008 rules, new 
skip-row producers effectively received a fraction of 
the quoted T-Yield as their yield guarantee (approx-
imately 50%) because of the manner in which FSA 
factors were used to determine acreage. To illustrate 
what the expected impacts were from imposing this 
deflated T-Yield as the APH for skip-row under the 
2008 rules, the first sub-column under skip-row pres-
ents expected loss costs using the T-Yield and FSA 
planted acreage factors when calculating indemnities. 

The results of our study imply that rates for skip-
row are massively overpriced relative to conventional 
practices at all given levels of coverage. This is some-
what expected, though since under the 2008 rules, a 
skip-row producer effectively received a fraction of 

the coverage that would have been provided for con-
ventionally-planted (as determined by the FSA fac-
tor) at a fraction of the rate. However, generally there 
is not a one-to-one proportional tradeoff between the 
coverage level and the expected loss rate. For exam-
ple, suppose the published conventional planted rate 
was estimated as 30.20% (as a percentage of liability). 
If this were the rate charged on conventional pro-
duction, then producers would pay a rate of 15.10% 
for insuring skip-row cropping. Yet, the expected 
loss cost for a skip-row producer in this case was 
only 6.40% (not 15.10%), nearly 60% less than the ex-
pected loss cost of 15.10%. Thus, not only was cover-
age availability severely restricted relative to conven-
tional under the 2008 rules, but the rates were also 
severely inflated for any effective level of coverage 
for skip-row production. 

In order to assess spatial patterns in the results, 
Figure  5 presents a map of the ratio of skip-row to 
conventionally-planted production expected loss 
costs for the 85% coverage level product when the 
conventionally-planted APH is employed for both. 
The simulated average unit-level loss costs are aver-
aged together at the county level of aggregation for 
exposition. The figures suggest substantial heteroge-
neity in the relationship between skip-row and con-
ventional insurance loss rates across the region. All of 
the counties have lower expected skip-row loss costs 
than their conventionally-planted counterparts when 
using the conventionally-planted APH (Figure  5). 
However, the expected difference is smaller in the 
high-yielding eastern region, as expected. This indi-
cates that, (relative to a given level of bu./acre cov-
erage) skip-row was always less risky by this metric. 
Some regions have expected positive rate differen-

Table 3. Simulated Expected Loss Costs - Average of All Units/Counties

         Practice →                 Conventional                Skip-Row

                  APH                  Conventionally-                                                   Conventionally-                          Skip-Row  
          Determination         Planted Expected              T-Yield                       Planted Expected                    Expected Yield  
                     →                                 Yield                  (2008 Rules)               Yield (Current Rules)               (Proposed Rules)

Coverage 	 85%	 30.20%	 11.35%	 19.65%	 23.23%
Level	 80%	 29.18%	 10.65%	 18.43%	 21.86%
	 75%	 28.17%	 9.95%	 17.22%	 20.49%
	 70%	 27.19%	 9.24%	 16.03%	 19.13%
	 65%	 26.20%	 8.54%	 14.85%	 17.78%
	 60%	 25.22%	 7.82%	 13.67%	 16.42%
	 55%	 24.25%	 7.11%	 12.49%	 15.05%
	 50%	 23.28%	 6.40%	 11.31%	 13.68%
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tials between skip-row and conventional expected 
loss costs, while others have negative differentials 
when using an adjusted skip-row APH for skip-row 
insurance (map not presented). This indicates that 
as APH’s adjust to reflect skip-row average produc-
tion capacity, the expected loss rates for skip-row and 
conventional production will not necessarily con-
verge. The implication is that the 2009 rules will not 
result in equal expected loss rates for skip-row and 
conventionally-planted crops, even after APH’s have 
adjusted. Thus, initially we would expect all regions 
to have significantly lower expected loss rates for 
skip-row cropping if the conventional APH is applied 
for both. Thus, combining both practices into the 
same insurance program as under the current rules is 
probably not warranted. 

Overall, we find consistent evidence that adopt-
ing skip-row cropping will result in lower yield risk 
(relative to a given level of bu./acre coverage) and 
higher average yields. These results suggest that 
RMA should do one of two things, either (1) con-
sider insuring skip-row and conventionally-planted 
crops separately, and maintain them as separate in-
surable practices (similar to how non-irrigated and 
irrigated practices are maintained separately), in-
cluding keeping separate APH records, and main-
taining separate rates and T-Yields, or (2) that RMA 
implement rate and APH corrections for the pro-
portion of acreage in the insurable unit allocated to 
skip-row so that the effective coverage levels and 
rates charged reflect the actual production capabil-
ities and risks of the practices appropriately. Failure 
to modify the current rules may incentivize produc-
ers to not adopt skip-row production in cases where 
they otherwise might if the provisions for insurance 
were fair across practices, or if no insurance existed. 
We investigate this further in the expected utility 
analysis in the next section. 

Results - Expected Utility Analysis and Technology 
Adoption

Table 4 presents results for expected net returns, 
risk (LPM), and expected utility of returns for con-
ventional and skip-row practices under various in-
surance regimes for a representative producer in 
Thomas, Kansas. Four scenarios are evaluated: no 
insurance, insurance under the 2008 rules, insur-
ance under the current rules, and insurance under 
the proposed rules. Recall that net returns are cal-
culated as the yield plus any insurance indemnities, 
minus insurance costs (net of premium subsidy), 
and results are presented for 85% coverage level in-
surance. Table  4 summarizes the expected utility 
maximizing technology choice (skip-row or conven-
tional) in each case. 

Under no insurance, skip-row has both a higher 
expected return and greater expected utility than 
conventional production, as well as lower risk. Under 
the 2008 rules, however, the insured skip-row net re-
turn had both a lower return and higher risk than an 
insured conventional crop. This reflects the fact that 
coverage was restricted for skip-row relative to con-
ventional (and had an inflated premium) under those 
rules due to the use of FSA factoring, and also that 
the rules were inhibiting the adoption of skip-row 
production. Similar results are found under current 
insurance rules. While the insured risk for skip-row 
cropping is slightly lower than insured conventional, 
the expected return and expected utility are also 
lower, reflecting the fact that skip-row expected 
loss costs are lower than conventional; yet they re-
ceive the same premium rate as conventional crop-
ping under current rules. This result was consistent 
for expected utility across all reasonable levels of risk 
aversion, and indicates that an expected utility maxi-
mizing producer would typically adopt conventional 

Figure 5. Ratio of Expected Loss Costs, Skip-Row to Conventional (Conventional APH, 85% Coverage Level)
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planting under current insurance rules. Last, under 
the proposed rules, insured skip-row planting has 
both higher expected utility and a higher expected re-
turn than conventional production, as well as lower 
risk. Thus, an expected utility maximizing producer 
would adopt skip-row under the proposed rules. We 
believe that the proposed rules would be the most 
actuarially appropriate, as the 2008 and current in-
surance rules were both shown to (1) incorrectly re-
flect skip-row production potential in APH’s, and (2) 
overcharge for skip-row insurance relative to a given 
bu./acre level of coverage for conventional planting. 
The expected utility analysis also indicates that the 
new proposed rules would not disincentivize skip-
row adoption, whereas the existing rules do. 

Conclusion

This study investigates the performance of skip-
row corn planting in the Central Great Plains by de-
veloping a multivariate nonparametric simulation 
technique that allows yield trial data to be efficiently 
combined with larger existing databases of yields in 
order to derive augmented skip-row yield distribu-
tions and insurance rates using the conditional dis-
tribution generated from the trial data. The results 
suggest that skip-row corn planting embodies both 
higher average productivity and lower risk in this re-
gion. The expected impacts of skip-row adoption on 
loss rates are quite large, with 100% differences be-
tween conventional and skip-row loss rates appear-
ing to be typical. The implication is that skip-row 
corn in this region embodies an essentially different 
set of risks than conventional practices, suggesting 
that separate insurance programs for skip-row and 
conventional crops may be warranted. Overall, the 
results indicate that under the 2008 rules, and even 
under the current rules, skip-row adoption is likely to 
be crowded out due to the unfair provision of insur-
ance across practices, whereas it otherwise would be 
optimal to adopt if no insurance were available, or if 
a coherent insurance program were in place. 

We acknowledge that the implied insurance loss 
cost differences suggested by this study are large. 
While those presented are the best estimates of the 
actuarially fair rate differentials based on avail-
able data, and while it is conceivable that the actual 
rate adjustments may indeed be this large, we cau-
tion that they are based mainly on trial data–the 270 
yield trial observations from Lyon et al. (2009)–and 
thus in practice may lack the proper credibility for a 
full and immediate rate adjustment. In practice, skip-
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row planting could initially employ the conventional 
planted insurance rate and APH, along with modest 
rate and APH adjustments, which could be updated 
through time as more data become available. Never-
theless, the results of this analysis and other research 
appear to provide a sound basis for splitting skip-
row and conventional planting practices into separate 
insurable practices. Thus, future research should fo-
cus on continued evaluation of skip-row performance 
in the Central Great Plains. 
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