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An Inside-Out Approach to Storing
Electrostatic Energy
Stephen Ducharme*

Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0111

F
or millennia, scientists, engineers, in-
ventors, and the curious have sought
better ways to store electrostatic en-

ergy, nearly all of which amount to separat-
ing and storing charge. The ancient Greeks
recognized that they could separate charge
by rubbing certain dissimilar materials and
that charge could do work, for example, by
letting the rubbed surfaces pull themselves
back together. Although the current pre-
ferred means of electrostatic energy separa-
tion is through magnetic induction, charge
storage still amounts to separation of ions
and electrons. This was epitomized over
two centuries ago by the Leyden jar and
Volta’s pile, the forerunners of the modern
capacitor and battery, respectively. The en-
ergy stored is typically equal to the product
of the charge and the potential difference.
Capacitors develop increasing potential as

they are charged, while batteries are
charged at a (nearly) constant potential.
Both batteries and capacitors are in wide
use, but batteries are by far the dominant
rechargeable power source for reasons of
both cost and performance (see box text).
The report by Kim et al.1 in this issue under-
lines the potential for nanostructured di-
electric materials to make capacitors an at-
tractive energy storage option.

Contortions and Convolutions. To
store more charge, it helps to in-
crease the electrode surface area
(see Figure 1). Two common ca-
pacitor types with increased sur-
face area are the cylindrical coil
capacitor with an insulating di-
electric layer of oil-soaked paper
or extruded polymer, and the ce-
ramic multilayer capacitor. Con-
voluted or porous electrodes,
which are commonly used in elec-
trolytic capacitors, can greatly in-
crease the effective area, like the
nanotube forest electrode in-
tended for use in electrochemical
supercapacitors.2

Lining Up Help. The energy den-
sity in a dielectric is proportional
to the product of the dielectric
constant and the square of the
electric field. (To be precise, the en-
ergy density is the integral of the
product of electric displacement
and electric field. In a nonlinear di-
electric, the energy density can be

See the accompanying Article by
Kim et al. on p 2581.
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Figure 1. Capacitors store more charge, and thus energy,
if their electrodes have a larger area. Various ways of ar-
ranging electrodes are (left to right) the Leyden jar is a
glass vessel coated inside and out by conducting elec-
trodes; the cylindrical capacitor is a rolled-up parallel plate
capacitor; the multilayer multilayer with its staggered elec-
trodes; a carbon nanotube forest electrode. Top-right
panel courtesy of Thomas Publishing Company, LLC.
Bottom-right panel courtesy of Riccardo Signorelli, LEES
Laboratory, MIT.

The main approach to

increasing energy density is to

increase the dielectric

constant.

ABSTRACT The ability to achieve

high-energy densities is the central

challenge in energy storage and

recovery. A promising strategy for

increasing energy storage is to use high-

performance dielectric materials, such as

highly polarizable nanoparticles or

polymers, or nanocomposites of the

two. In this issue, Kim et al. use a

molecular coating and clever chemistry

to combine oxide nanoparticles with a

polymer matrix, thereby producing an

improved nanocomposite dielectric.

Some advantages and challenges of

using nanocomposites as improved

dielectric materials are presented in this

Perspective.
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very from the different nominal

value. Further, if the dielectric is dis-

sipative or slow to respond, not all

of this energy can be recovered.3)

The main approach to increasing

energy density is to increase the di-

electric constant. A material with a

large dielectric constant can store

proportionally more electrostatic

energy. Common dielectric materi-

als, such as polypropylene or sili-

cone oil, have dielectric constants

of only 2�3. Much higher dielectric

constants are available from highly

polarizable materials such as barium

titanate (BTO), where the polariza-

tion arises from ion displacements,

or polyvinylidene fluoride (PVDF),

where the polarization arises from

alignment of permanent dipoles. In

both of these cases, the largest di-

electric constants come from being

near, but not in, the ferroelectric

phase, as is the case with BTO nano-

particles4 or with co- and terpolymers

of PVDF.5 Further, because the en-

ergy density increases with the

square of the electric field, it is essen-

tial that the material has a high di-

electric strength, the maximum field

it can withstand without short-

circuiting. For example, the PVDF ter-

polymers exhibit dielectric constants

as high as 65 and have very high di-

electric breakdown strength, mean-

ing that they can be polarized with

electric fields of 500 MV/m or more.6,7

After considering losses and leakage,

this produces capacitors that can

store and recover 8 kJ/kg (13 J/cm3)

or more, which is quite impressive for

a purely electrostatic capacitor.6,7

Polypropylene capacitors have

achieved similar electric field

strengths but, because of the lower

dielectric constant, store much less

energy.8 On the other hand, ion dis-

placive dielectrics such as ferroelec-

FROM GASOLINE TO BATTERIES TO CAPACITORS
Consider the quintessence of personal mobilityOthe automobileOwhich for more than a century

has been almost exclusively powered by an internal combustion engine using gasoline or diesel fuels.
The caloric energy content of gasoline is approximately 43 000 kJ/kg, and modern automobiles can
make use of approximately 20% of this, or 8600 kJ/kg, permitting a range of hundreds of kilometers
from a relatively compact and light on-board fuel supply. The dwindling of fossil fuel supplies and the
recognition of the threat of global warming provoke other approaches. Battery power has been tried
many times but always loses badly to gasoline. The reason is easy to understand: batteries are relatively
heavy. For example, the nickel metal hydride batteries used in some hybrid vehicles store approxi-
mately 100 kJ/kg, meaning that over 3000 kg of batteries is needed to equal the range of 50 L (36 kg)
of gasoline, even considering the high efficiency of electric propulsion. According to the manufac-
turer,13 the 450 kg lithium ion battery pack (with over 6800 AA size cells and one-third of the vehi-
cle’s mass) in the all-electric Tesla Roadster stores over 400 kJ/kg and has an EPA range of approxi-
mately 350 km. Batteries have some drawbacks and limitations mainly stemming from the fact that
they use chemical reactions to store and to release energy, which limits the speed of charge and dis-
charge and also makes them very sensitive to operating temperatures. Further, they degrade over time,
decreasing in capacity and increasing internal resistance due to irreversible reactions. For example, a
lithium ion laptop battery can operate in a temperature range or 0 to 60 °C and last for hundreds of
cycles.

Enter the capacitor, which is sprinkled liberally among the components of electric and electronic de-
vices, with dimensions as small as a virus or as large as a tractor trailer. Each year, hundreds of bil-
lions of discrete capacitors are mounted onto circuit boards. Power capacitors are of particular impor-
tance in many applications, including filtering, load leveling, power conditioning, fast-response back-up
power, and energy accumulation for pulsed power applications. Electrostatic power capacitors, such
as ceramic multilayers, are very insensitive to temperature and can operate indefinitely long but have
limited capacity, typically less than 20 J/kg. Electrolytic capacitors increase capacity by ion separation
through a liquid or solid electrolyte and can store up to 200 J/kg but suffer from some of the drawbacks
of batteries, such as sensitivity to temperature and limited lifetime. A big step above electrolytic capaci-
tors are the electrochemical “supercapacitors” and “ultracapacitors”, which store most of their energy
in an electrochemical double layer and can store 20 000 kJ/kg or more. They offer capabilities ranging
between those of electrolytic capacitors and batteriesOan operating range from �40 to �65 °C and
lifetimes of about a million cycles—and have been powering busses and trucks in Moscow for a de-
cade.14 They have charging and discharging times intermediate between electrostatic capacitors and
batteries and can deliver more power per kilogram than either.

These comparisons are not meant to be a buyer’s guide to electrical energy storage. The choice of
technology also depends on the application, and there are many more factors to consider such as cost,
efficiency, power, recharging time, leakage, cycle life, temperature range, and again cost. In any case,
your mileage may vary.
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tric BTO or relaxors in the lead man-

ganate niobate (PMN) family would

seem much better choices for high-

energy density dielectrics because

they have dielectric constants rang-

ing from hundreds to thousands. Un-

fortunately, they have much lower di-

electric strengths than polymers

and, therefore, cannot take full ad-

vantage of the higher polarizability.

Packing It In. An appealing ap-

proach is to combine the high di-

electric strength of the polymers

with the large dielectric constant of

the oxides by embedding oxide

nanoparticles in a polymer matrix.9

The nanoparticles would increase

the effective dielectric constant of

the composite, and the polymers

would protect against electric

breakdown. The main problem with

this approach is that it takes quite

a lot of high-dielectric constant

nanoparticles (e.g., 25% by volume
or more) to have an appreciable ef-
fect on the effective dielectric con-
stant of the composite material, ac-
cording to effective medium
theory.9,10 The dielectric strength,
on the other hand, drops off precipi-
tously even with only 5�10% nano-
particles by volume.10 The result is
that the maximum energy density
decreases steadily with increasing
particle concentration. Another
challenge is that it is very difficult
to keep nanoparticles from agglom-
erating, especially if they are forced
into an incompatible matrix, weak-
ening the composite electrically as
well as physically. Further, the high
dielectric constant of the particles
effectively expels electric field lines,
making the electric field in the ma-
trix much higher than the average
electric field. This field expulsion
lowers the overall energy storage
density and greatly increases the
probability that the matrix itself
breaks down. One approach to in-
hibiting electric breakdown is to in-
corporate many interfaces and con-
voluted paths between electrodes
to staunch the avalanche of electri-
cal breakdown, much as the con-
trasting dielectric constant does for
multilayer polymer dielectrics (see
Figure 2A).

The approach of Kim et al.1,11 at-
tacks two of the problemsO
agglomeration and percolationO
with the same elegant approach.
They functionalize the nanoparti-
cles with an appropriate molecule,
in this case, pentafluorobenzylphos-
phonic acid, coating them uni-
formly.11 The coating does two criti-
cal jobs, as illustrated in Figure 2B:

(1) it prevents the particles from ag-
glomerating in the polymer matrix
(a copolymer of PVDF and hexafluo-
ropropylene), and (2) it prevents
percolation paths from forming
through the oxide particles. The re-
sult is well-dispersed
nanoparticle�polymer composites
with up to �50% nanoparticles by
volume, accompanied by a three-
fold enhancement in the dielectric
constant.

A drawback to this method is
that the dielectric strength is re-
duced by about half. The pure co-
polymer still achieved the highest
overall energy density; however, the
nanoparticle�polymer composites
did record higher energy densities
at a more conservative electric field
of 164 MV/m, up to 3.2 kJ/cm3 or
�50% more than the pure copoly-
mer. These results are reasonably
consistent with effective medium
theory.10

What happened at concentra-
tions above 50% nanoparticles by
volume was also instructive. Since
the nanocomposites were made by
ball milling the particles and poly-
mer together, they were vulnerable
to mechanical incompatibilities be-
tween the hard particles and soft
polymer. This resulted in voids that
started appearing at nanoparticle
concentrations of 55% by volume,
with voids reaching almost 40% by
volume at the highest particle load-
ing of 80% of the particle-matrix
volume. When the voids are fac-
tored into the effective medium
theory, the model explains the ob-
served drop in dielectric constant in
this range. The voids, however, dra-
matically lowered the dielectric

An appealing approach

is to find a way to

combine the high

dielectric strength of

the polymers with the

large dielectric constant

of the oxides by

embedding oxide

nanoparticles in a

polymer matrix.

Figure 2. Nanostructures that can increase stored energy density in capacitors: (A) a multilayer dielectric of alternating
nanoscale layers of polyethylene oxide (PEO) and ethylene�acrylic acid copolymer (EAA);12 (B) a scheme for a coated
particle�polymer nanocomposite capacitor; (C) an SEM image from a coated BTO�polymer composite.1 Panel A repro-
duced with permission from ref 12. Copyright 2009 AAAS. Panel C copyright 2009 American Chemical Society.
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strength, underlining another limi-
tation to this approach.

The demonstration by Kim et al.
using coated nanoparticles gives
some confidence that the nano-
composite approach still has prom-
ise, mainly with respect to the effec-
tive dielectric constant. Although
the weaknesses caused by both ag-
glomeration and percolation and
leading to dielectric breakdown
have been considerably improved,
the more fundamental weakness of
field intensification in the matrix re-
mains. For this, we will have to solve
the difficult problem of preventing
dielectric breakdown in the matrix
and attempt to halt the electrical
avalanche from the inside-out.
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