A Variation on the Baade-Wesselink Technique

Norman R. Simon

University of Nebraska - Lincoln, nsimon@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicssimon

http://digitalcommons.unl.edu/physicssimon/57
A Variation on the Baade-Wesselink Technique
N.R. Simon (U. Nebr.-Lincoln)

Consider a radially pulsating star. Expand the radius variation in a Fourier series:

\[R = R_0 + \Delta r \cos(\omega t + \phi_1) \]

(summation convention). The velocity is

\[v = -\omega A \sin(\omega t + \phi_1) \]

The ratio of the radii at two phases of the cycle may be written

\[\left(\frac{R_1}{R_2} \right)^2 = \frac{L_1 T_2^4}{L_2 T_1^4} \equiv a. \]

Setting \(R = R_0 + \Delta r \) (\(\Delta r / R_0 \ll 1 \)), we obtain

\[R_0 = 2\omega (\Delta r_2 - \Delta r_1) / (1-a). \]

The radial excursion \(\Delta r \) at any phase of the pulsation may be determined from a Fourier fit to the observed velocity curve. Assuming highly accurate velocity data (e.g. CORAVEL data), this can be done very precisely. If we choose phase 2 to be that for which \(\Delta r_2 = 0 \), we have

\[a = \frac{2}{R_0} (\Delta r_1) + 1. \]

Obtaining energy scans at various values of \(\Delta r_1 \), we may use model atmospheres to determine the function \(a(\Delta r_1) \) from Eq. (1). Then, the slope yields \(R_0 \) via Eq. (2). Since the zero point is constrained \(a(0) = 1 \), we have a check on our determination of \(a \) from the energy scans. Another check comes from choosing \(\Delta r_2 \) in a different way - namely, to correspond to the maximum positive displacement. In that case, \(a \) must attain its minimum value at the minimum of \(\Delta r_1 \). We discuss the use of these variations to determine the radius \(R_0 \) and to test the application of model atmospheres to pulsating stars.