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PHYSICAL REVIEW A VOLUME 56, NUMBER 1 JULY 1997
Elementary excitation spectrum of a trapped weakly interacting Bose-Einstein condensate

Mircea Marinescu and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, 116 Brace Laboratory, Lincoln, Nebraska 68588-0111
(Received 13 May 1996; revised manuscript received 6 February) 1997

An analytic expression is presented for the elementary excitation spectrum of the Bose-Einstein condensate
of a trapped boson system in the weakly interacting, low-density limit. Explicit analytic formulas for the
elementary excitation spectrum are obtained for harmonic-oscillator traps. These formulas provide information
about the behavior of the elementary excitation levels as a function of the number of atoms and their interac-
tion strength for a given trap geometry. They also provide a low-density benchmark for results of fully
numerical calculation§.51050-294®7)01207-9

PACS numbe(s): 03.75.Fi, 05.30.Jp, 67.96z

I. INTRODUCTION order to bring the following type of Hamiltonian to a diago-
. : o : nal form:
Recent experimental successes in achieving Bose-Einstein
condensation(BEC) in various systems of trapped and H=[a']"A[a]+[a]'B[a]+[a']"B*[a'], (2.1

cooled alkali-metal atomgl—3] have stimulated a growing

interest in theoretical study of BE@—9] in an external WhereA is a Hermitian matrixB is a complex symmetric
potential. Still more recently, there have been both experione, and[a] and[a'] are the column matrices of boson
mental[9] and theoretica]10—17 studies of the excitation annihilati.on and creation operators, respectively. VT\/e use the
spectrum of the condensate. In this paper we consider BIPErscriptt to denote the transpose operatpa]’ and
weakly interacting condensate in a trap and obtain a pertuf2 1 are row matrices. .

bative analytic expression for its elementary excitation spec- 1N€ generalized canonical transformatiBCT) of the
trum (EES. This analytic expression allows one to easily 21nihilation and creation operators is

obtain information about the dependence of the EES on the [a]=a[b]+A[b'] (2.2)
number of atoms in the trap and on the particular trap geom- '
etry. Furthermore, just as the analytic result of Strin§/a@| [aT]=a[bT]+B[b], (2.3

provides a benchmark for fully numerical calculations
[11,19 in the limit of high trap densities, our formula pro- whereb, andb/ are two new sets of boson annihilation and
vides a similar benchmark in the limit of low trap densities. creation operatorgalso called the quasiparticle operafors
As applications, we provide explicit formulas for the EES of anda and 8 are two real matrices that must obey the rela-
isotropic, axially symmetric, and anisotropic harmonic- tions
oscillator potential traps. For the case of axially symmetric
harmonic-oscillator traps we show that our analytic formula
provides results that agree very well with the nonperturba-
tive, numerical results of Edwardst al. [11] and of Esry

[12] in the limit of low densities. in order thatb, andb] satisfy the boson commutation rela-

In Sec. Il, we briefly summarize the well-known general- .. : ; T
: . ) ) . . tions. Equationg2.4) and (2.5 imply that (¢+ )" is the
ized canonical transformation for diagonalizing the Ham'l'inverse matrix of f— B),

tonian of the trapped boson condensate. In Sec. Il we
present our analytic expression for the EES for the case of a (a—B) t=(a+pB)7. (2.6)
low-density condensate. In Sec. IV we present explicit ana-

lytic expressions for the energy-level spectra of isotropic, The matricesr andg are determined by requiring that the
axially symmetric, and anisotropic harmonic-oscillator po-Hamiltonian in Eq.(2.1) is transformed to a diagonal form
tential traps. Finally, in Sec. V we discuss our results andupon making the substitutions in Eq2.2) and (2.3). One
contrast them with Stringari’$10] analytic result for the obtains, by straightforward matrix algedrs3—15,
high-density limit. We also make comparisons with nonper-
turbative, numerical results for the low-density lirffiil,12.
Throughout this paper we use atomic units
(A=me=e=1).

aa’—-ppT=1, (2.9

aB’—Ba’=0, (2.5

H:;Tr[D(E>—A]+[b*]TD(EMbL 27

where D(E) is a diagonal matrix having the diagonal ele-
mentskE,,, thenth quasienergy, which we shall later interpret
Il. GENERALIZED CANONICAL TRANSFORMATION to give the EES. The result from E(.7) is possible only if

o ~ the following equations are satisfied:
Our analysis is based on a well-knowi3—15 generali-

zation of the Bogolubo\16] canonical transformation in (a=B)T(ARx2BR®)(a= B)=D(E), (2.9
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where the superscript Re denotes the real part. The two ré&he approximation in Eq.3.3) is appropriate only ifj has a
lations in Eq.(2.8) are often called the equations for the finite value, which depends on the effective potential being
EES. We mention that although the matrig€¥+2BR®are  an integrable function. While it is not rigorously established
real and symmetric, neither of EqR.8) is an eigenvalue what expression for the effective interaction between two
equation since the:= 8 matrices are not unitary. However, atoms(bosongin a trap should be introduced in E®.4),* a
multiplying Eq. (2.8) for + by Eq.(2.8) for —, one obtains widely used approximation fog is [5—7,10—-12

(a+ B)T[(AR®+2BR9) (AR 2BR9)](a—B)=D(E?),

(2.9 9= 4mase

M 1 (3'5)

which is a generalized eigenvalue problem since

(AR®+2BR9(AR®— 2B is not a symmetric matrix. In Eq. \herea, is the scattering length. We adopt this approxima-
(2.9 D(E?) denotes the square of tB{ E) diagonal matrix.  tion here.

One may interpret Eq2.9) as follows: (@—g) [(a+B)]is The reduction of theN interacting boson Hamiltonian in

a matrix whose columns are the rigieft] eigenvectors of  Eq. (3.1) to a quadratic, effective Hamiltonian proceeds in a
(AR®+2BR9(AR°—2BR9). Thus the generalized eigenvalue way similar to that used to obtain the Bogolubov model

problem[Eg. (2.9)] completely defines the and 8 matrices  Hamiltonian[16], but for a system of interacting bosons in a

and consequently the GOEgs. (2.2 and (2.3)]. Equation  trap. The procedure may be described briefly as follows.

(2.9 is the starting point of our calculation of the EES.  sjnce the entire formalism is at=0, one may assume that
most of the atoms are in the ground state of the trap. Thus
IIl. ELEMENTARY EXCITATION SPECTRUM the operatorsi, andaj, may be replaced by the number

OF A TRAPPED BOSE-EINSTEIN CONDENSATE VNo, whereN, is the number of atoms in the ground state of

The effective Hamiltonian foN interacting bosons is, in  the trap. From the resulting expression, only terms propor-
second quantization, tional toNy andNg are retained. This approximation is com-
patible with the assumption that, is large, i.e.No> N,
and that almost all atoms are in the ground state of the trap,
N—Ng<<N [16,20, whereN is the total number of atoms.
For this latter reason, terms of orddi2?, which involve
single excitations out the ground state, are igndeesddone,
e.g., in Ref.[14]). Ny is then replaced by the expression
N—3/ala,, where the prime to the summation indicates
that the terrn=0 is omitted. The result is

H= 2 Gga:;an
n

1
Yo > (b n,|VIdn,én,)ah ah an,an,,

Ny ,N3.Ny

(3.1

wherea, anda/ are thenth annihilation and creation opera-

tors for trap states anef and ¢, are thenth eigenvalue and H=W,+[a']"A[a]+[a]"B[a]+[a']"B[a'], (3.6)
eigenfunction of the Schdinger equation for bosons con-
fined in the trap potentidlo(r), i.e., whereW,, given by

P2 0 N2

2m T/ dn=endn. 32 Wo=5oN-+ —-ghgo, (3.7

In Eq. (3.2 M is the mass of the boson and in E§.1) V is

the interaction potential between two bosons. InteractionS @C number sinceN andg are assumed to be parameters
terms involving three or more particles are neglected. AlsoandA andB are two real matrices whose elements are

we assume that the range of the effective interaction between

two bosons is much smaller than the size of the potential Anm=(en—e0—Nghgg) Symt2Nghy s (3.8
trap. Thus the matrix elements &f in Eq. (3.1) may be

evaluated in the long-wavelength approximati@e., ignor-

ing the variation of the wave functions over the effective A difficulty in defining g arises from the strongly repulsive be-

range of the interactioN) as havior of V(R) for small R owing to the Pauli exclusion principle
for the fermion particle constituents of the Bose atom composite

vV _ f dr r r r r), particles[17]. It has been suggestéd] that the widely used Fermi
<¢nl¢n2| |¢n3¢n4> g ¢n1( )¢n2( )¢n3( )¢n4( ) & potential[18] plus a short-range attractive potential may be both

3.9 realistic and suitable for use in E(.4). Actually, a possible solu-
tion to this question may be given by the classical approach of van
Kampen[19]. There the diatomic potential is split into(aegative
. attractive part and goositive repulsive wall, which in turn may be
ng V(R)dR. (34  treated as & potential (as in the case of a hard-sphere potential
[18]). In this way the structure of the bound states that characterize
The parameteg characterizes the effective interaction be-the diatomic alkali-metal potential is included in the formalism. On
tween two bosons; it has the dimension ¢@énergy  the other hand, it is not clear what the correction to the scattering
X (volume. length stemming from the trap potential is.

where
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N and
Bnm:Eghnm; (3.9
1
_ L R
the h,, in Egs.(3.7)—(3.9) are given by the integrals an=5[(Wrld)+(S[Vr)]. (3.20

hnm=f B3(r) dn(T) prm(r)dr . (3.10

For a weakly interacting system, the second term on the
right-hand side of Eq(3.12), which stems from the interac-

In obtaining the effective Hamiltoniaf8.6), we have kept tion between bosons, may be treated as a perturbation. Thus
only those terms that are quadratic in the creation and anni-

hilation operators, thus limiting its use to weakly interacting
boson systems.

The effective quadratic Hamiltonian in E€B.6) is more
complicated than that of Bogolubov's Hamiltoniah6,20
sinceA andB are full matrices, but it may be diagonalized
by using the generalized canonical transformation in Egs.
(2.2 and(2.3). The matrix elements oi* 2B, which appear
in Eq. (2.9 (which determines the excitation spectrum as
well as the transformation matrigesnay be written using Equation(3.22 is similar to Bogolubov's result for a dilute
Egs.(3.9—(3.10 as a matrix representation of two different hard-sphere boson gas in free sppbg,2(Q, i.e.,
operators in the basis of the real eigenvectors of the trap

S. S ~Hg+Ng[Hod+3¢5Ho—2hooHo]. (3.2

Then, solving the eigenvalue problem in Eq8.14 and
(3.15 gives, to first order,

En:[sﬁ—"2Ng€n(2hnn_h00)]1/2- (3.22

potential, ER:(SEJFansR)l/z, (3.23
(A+2B)m=(n|S| bm), (3.1
wheree;=k?/2M is the energy of a free particle ands the
where density of particles. The main difference between E§22
) and (3.23 is that the energies of the free particles in the
S.=Ho+Ng[(2£1) ¢5—hgo] (3.12  Jatter are replaced by the energy levels of the trap in the
former. Thus the trapped dilute boson gas will not follow a
and phonon law for the lowest part of the excitation spectrum.
p2 Also, Eq.(3.22 depends on the geometry of the trap through
Ho:m +Uq—&d. (3.13 its dependence on the integrals,. Of course, Eq(3.22 is

The EES is then given by the square root of the eigenvaluer%

of either of the following equationgf. Eq. (2.9)]:

(S;S_)VR=E>¥YR (3.19

(3.15

Since the product o6_ and S, is no longer a symmetric
operator, the eigenvalue problem 8rS_ is a generalized
eigenvalue problem an®' and ¥R are the left and right
eigenvectors. Consequently, we see from E}9), using
Egs.(3.11), (3.14), and(3.15), that

(= B)in=(S|TR), (3.19
(a+B)in=(V5l b)), (3.17)

whereW R and W} are the right and left eigenfunctions cor-
responding to the eigenvaluéﬁ and the ¢, are the trap
eigenfunctions. RelatiofR.6) is satisfied if the right and left
eigenfunctions are normalized according to the condition

(3.18

(S,.S,)PL=E>PtL.

<\PH\I}E>: Oin -

Thus

1 L R
Bln:§[<wn|¢l>_<¢l|wn>] (3.19

obtained using first-order perturbation theory and so it is
accurate only as long as the second term under the square
ot in EqQ.(3.22 is much smaller than the first term. Nev-
ertheless, Eq(3.22 serves to describe the behavior of the
EES as a function dfl, taking into account not only the sign

of the scattering lengthiwhich entersg according to Eq.
(3.95] but also the geometry of the trap.

IV. RESULTS FOR HARMONIC-OSCILLATOR
POTENTIAL TRAPS

For the case of harmonic-oscillator potential traps, the
low-density EES in Eq(3.22 may be calculated analytically
using Eq.(3.4) for g and Eq.(3.10 for h,,. For a spheri-
cally symmetric harmonic-oscillator trap, one obtains

£, = (2n+1)o| 1— 22 Mo) ¥
n=(2n+hw C2n+ll 27
- (2|+1)|| (|+3/2)2r|2—n—|+1 e
(2n+21+ 11l |

(4.1)

wheren is the radial quantum numbdéris the orbital angular
momentum quantum number, and n){ denotes
n(n+1)---(n+k—1). For a cylindrically symmetric
harmonic-oscillator trap, with incommensurate axiak X

and radial ) frequencies, one obtains
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E 1 4o, (Mo 12
nLnH|m|:8nLnH|m| - e N\ o
nJ_nH\m| 0.1.0)
12 2 ——— —
_cu n 5-2n,-2n-lm+1|{ | T oTEEmTTo -]
X(1 CZnLHm\CZn”z - H ) ! (0,0,2)
N
3
4.2 ~
£
wheree,, m, given by 5 ©.0,1)
LY er 1
sninH|m|=n||w”+(2nl+|m|)wi, 4.3

designates the energy levels of the trap, the
Ck=n!/k!(n—k)! are the binomial coefficients;, is the
radial quantum numben, is the axial quantum number, and 0 e e 0
m is the axial orbital angular momentum quantum number. N

Finally, for an anisotropic harmonic-oscillator trap potential,

with incommensurate frequencies, the EES is

FIG. 1. Elementary excitation level energié§inu‘m| (in units of

-
4Nasc/ M o w,p0s 1/2 a)J_.) vs N, the number of .trappe'a Rb atoms, for the case of an
E =g — axially symmetric, harmonic-oscillator trap haviag= /8w, . The
n1n2n3 n1n2n3 \ 2 . .
€nynyng ™ labels on the curves indicate the set of quantum numbers

1o (n.,ny ,[m|). All results shown are fanC: 110 au. andwl:.74
><(]__Cnl cM2 s 2n1n2n3+1)} Hz. Solid curves, present perturb_atlve anal_ytlc results using Eq.
2ny 72n, 7 2ng ! (4.2); dashed curves, nonperturbative numerical results of Edwards
et al.[11,21]. Note that for the state (0,0,1), our results and those of
(4.4 Edwardset al. cannot be distinguished.

where thes, . n,, given by _ _ . _ _
for the anisotropic-oscillator trap configuration shows that all
€nynn, = N1@1+ Nwp+ N33, (4.5  excited-state levels decrease wihfor a;.>0.

In addition to their usefulness in predicting significant
are the trap energy levels amgd, n,, andn; are the Carte- qualitative information on the influence of the particle den-
sian quantum numbers. Note that in the derivation of Eqsity, scattering length, and trap geometry on the excitation
(4.1 [Egs.(4.2) and(4.4)] we have used the generating func- energy-level spectrum for the limit of low trap densities, our
tion for the Laguerr¢Hermite] polynomials in order to com- Egs. (4.1, (4.2), and (4.4 may also used as useful bench-

pute the integralé,, [cf. Eq. (3.10]. marks for results of fully numerical calculations. In Figs. 1
and 2 we compare predictions of our E4.2) for the case of
V. DISCUSSION an axially symmetric harmonic-oscillator trap with results

. ) . of the nonperturbative numerical calculations f8fRb
In this paper we have presented in £8.22 an analytic  of Edwards etal. [11] and of Esry[12], respectively,
expression for the EES for a trapped Bose-Einstein conden-

sate that is valid in the low-density limit. Explicit formulas
for the three possible kinds of harmonic-oscillator trap po- 12
tentials are given in Eq$4.1), (4.2), and(4.4). Our analytic
results for the low-density limit complement that of Stringari
[10] for the high-density limit, whose result in this limit for
the case of a spherically symmetric harmonic-oscillator trag
is [10]

(1.2,2)

4
3
~
< 2n+1 n(2n—1)]*? ]
En=(2n+)w il (2ni1)? (5.9 m«:: 1oz ©22
4
Stringari's result in Eqg. (5.1) is valid for ©.1,2)
n=Nas(Mw)¥>>1. Our result for the opposite limit ©0.2)

N

7n<l is given in EQ.(4.1. In contrast to Eq(5.1), which [ T T e e ]
shows no dependence on either the scattering length or ¢
the number of particles, Eq4.1) shows that theéE, level
increases withN, while that for E,; decreases witiN for
a;>0. Also, our Egs(4.1), (4.2), and (4.4) show that the
geometry of the trap has an important influence at low den- FIG. 2. Same as for Fig. 1, except that all results shown are for
sities. As one example, note that in contrast to the case of &,=100 a.u. ando, =133 Hz and here the dashed curves repre-
symmetric harmonic-oscillator trdef. Eq. (4.1)], Eq. (4.4) sent the nonperturbative numerical results of H41%,27.

0 . . . ; . . L .
10 20 30 40 50 60 70 80 920 100
N



574 MIRCEA MARINESCU AND ANTHONY F. STARACE 56

which have been provided to us for the low-density regionnonperturbative numerical calculations, at least for the levels
[21,22. The results shown in Fig. 1 were obtained for shown in these figures.

a,.=110 a.u. andv, =74 Hz, while those in Fig. 2 are for
asc=100 a.u. andw, =133 Hz. In both cases;=\8w, .

One sees from these figures that our perturbative analytic We thank Mark Edwards and Brett Esry for providing us

predictions and the predictions of the nonperturbative r]uyvith the results of their calculations shown in Figs. 1 and 2

. . . respectively. This work was supported in part by the U.S.
merical calculations agree essentially exactlyNee 30. For Department of Energy, Division of Chemical Sciences, Of-

higher numbers of trapped particles, our perturbative predictice of Basic Energy Sciences, under Grant No. DE-FGO3-
tions are typically, but not always, lower than those of the 96ER14646.
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