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Abstract

File correlations have become an increasingly important
consideration for performance enhancement in peta-scale
storage systems. Previous studies on file correlations mainly
concern with two aspects of files: file access sequence and
semantic attribute. Based on mining with regard to these
two aspects of file systems, various strategies have been
proposed to optimize the overall system performance. Un-
fortunately, all of these studies consider either file access
sequences or semantic attribute information separately and
in isolation, thus unable to accurately and effectively mine
file correlations, especially in large-scale distributed storage
systems.

This paper introduces a novel File Access coRrelation
Mining and Evaluation Reference model (FARMER) for op-
timizing peta-scale file system performance that judiciously
considers both file access sequences and semantic attributes
simultaneously to evaluate the degree of file correlations
by leveraging theVector Space Model (VSM)technique
adopted from theInformation Retrievalfield. We extract
the file correlation knowledge from some typical file system
traces using FARMER, and incorporate FARMER into a real
large-scale object-based storage system as a case study to
dynamically infer file correlations and evaluate the benefits
and costs of a FARMER-enabled prefetching algorithm for
the metadata servers under real file system workloads. Ex-
perimental results show that FARMER can mine and eval-
uate file correlations more accurately and effectively. More
significantly, the FARMER-enabled prefetching algorithm
is shown to reduce the metadata server latency by approx-
imately 24-35% when compared to a state-of-the-art meta-
data prefetching algorithm and a commonly used replace-
ment policy.

1 Introduction

Exploiting file and block correlations to benefit perfor-
mance has become an increasingly common practice in

the design and optimization of intelligent storage systems
today. Most related studies focus on extracting seman-
tic knowledge (including file and block correlations) to
guide and facilitate various performance enhancing strate-
gies (such as prefetching, caching, data layout and security-
awareness, etc.). Representative studies that exploit seman-
tic knowledge to enhance storage system performance in-
clude Active-disk [2] , Self-* storage [3], Semantically-
Smart Disk System (SDS) [4], Object-Based architec-
ture [5], etc,. Moreover, the file system level can pro-
vide more useful and insightful information about access
sequences and semantic attributes (e.g., process id, user id,
application, metadata, and certain file properties) than can
the block level because of the elaborate and rich I/O inter-
face between storage applications and file systems. There-
fore, mining file correlations can be very beneficial for ex-
ploiting application semantics and has been widely used for
performance optimization in file systems. Unfortunately, it
is nontrivial to explore semantic knowledge in file systems
effectively and accurately because various factors affecting
this knowledge exploration may be intricately related with
one another as demonstrated later in this paper (Please see
the Section 2 for details)

The main approaches to mining file correlations can be
classified into two categories: access sequence mining and
file semantic attribute mining. By tracing file system ac-
tivities, several studies [6, 7, 8, 9, 10, 11] show that file
accesses are strongly correlated to their preceding ones.

On the other hand, by extracting semantic attributes from
file systems, semantic attribute mining approaches [12, 13,
14, 15] provide flexible associative accesses to documents,
programs, object codes, images and other files contained by
the system automatically. Recently, Daniel Ellard et al. [13]
presented a very interesting method to infer the correlation
between semantic attributes and file properties by using a
decision tree technique. Nevertheless, this approach is lim-
ited to predicting certain file properties (e.g., read-only, size,
etc.) from semantic attributes.

File correlations are typically more difficult to mine, and
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thus richer, than block correlations because the former are
impacted or co-impacted by far more factors than the lat-
ter, as a result of the interface and interactions between ap-
plications and the file system that are far richer than those
between data blocks and storage devices. In such com-
plex interface and interactions, storage applications perform
file operations with various indications of access sequences
and semantic attributes. Further, while file correlations are
richer than block correlations, the former can also have more
negative impact if incorrectly inferred than the latter be-
cause block correlations are typically inferred through I/O
scheduling and block access patterns that are relatively de-
terministic. Moreover, our preliminary experimental studies
also indicate that these two aspects are mutually influencing
factors on file correlations. Therefore, we are led to firmly
believe that access sequence mining alone, without combin-
ing the benefit of semantic attributes, can not fully reveal
file correlations, especially in large scale distributed storage
system, while semantic attribute mining without consider-
ing access patterns is equally inadequate to infer file corre-
lations.

Unfortunately, all of the existing methods for mining
file correlations either solely rely on file access sequence
or only take into account semantic attributes in isolation,
thus possibly failing to fully exploit the potentially impor-
tant correlation between access sequences and semantic at-
tributes that in turn may reveal more accurate file correla-
tions. This motivates us to propose a more powerful min-
ing approach in this paper, called a File Access coRrela-
tion Mining and Evaluation Reference model (FARMER),
that can discover more complex file correlations by judi-
ciously and effectively combining access sequence mining
with file semantic attribute mining. FARMER takes into
account both file access sequences and semantic attributes
simultaneously to evaluate file correlations and uses a di-
rected, weighted correlation-graph to capture file access cor-
relations. FARMER’s correlation graph is weighted with the
file correlation degree that is evaluated by theVector Space
Model (VSM)technique adopted from theInformation Re-
trieval (IR)field [17, 18].

In this paper, we begin by presenting statistical evidences
from several typical distributed file system traces to indi-
cate that access sequence and semantic attribute have strong
collective and joint impact on file correlations. We also in-
corporate FARMER into a practical platform - HUSt [16]
to validate our designed goal that FARMER is a useful and
efficient tool to infer file correlations with reasonable over-
head. We utilize FARMER to improve the intelligence in
a metadata prefetching algorithm and optimize the file lay-
out in HUSt. Other potential applications of FARMER such
as security, reliability and consistency are also discussed
and pointed out as our future work. Furthermore, we con-
duct extensive experiments to determine which semantic at-
tributes or combinations of semantic attributes provide pos-
itive contributions and which others provide negative ones.

Based on these experimental results, our FARMER is shown
to more effectively and accurately mine and evaluate file
correlations than existing evaluation algorithms more effec-
tively and accurately. More significantly, the FARMER-
enabled prefetching algorithm is shown to reduce the meta-
data server latency by approximately 24-35% when com-
pared to a state-of-the-art metadata prefetching algorithm
and a commonly used replacement policy.

The remainder of this paper is organized as follows. In
the next section we briefly discuss further motivation for our
research and provides some background information.. In
section 3, we present our file correlation mining and evaluat-
ing model to infer file correlations. Section 4 discusses how
to take advantage of file correlations revealed by FARMER
for several potential applications. In Section 5, we introduce
a case study that utilizes FARMER to a real storage system
to improve the intelligence in prefetching and discuss our
experimental results. Section 6 reviews representative re-
search works in the literature that are more relavant to our
proposed work and Section 7 concludes the paper.

2 Motivation and Background

Access sequence and semantic attributes are the two best
known factors influencing file correlations. We have reasons
to believe that these two factors are strongly correlated and
by judiciously combining them we can more effectively and
accurately mine file correlations. For example, when a user
executesgccto compile a set of source files, it will generate
the object and executable files for the corresponding source
files. The interesting fact is that files are often generated in
the same access sequence and eventually deposited to the
same directory. It is intuitive from this example that there
are strong correlations among these source files with hints
provided by user id, program id, access sequence and direc-
tory information. Therefore, it is possible and necessary to
utilize the hints provided by a combination of file attributes
and access sequences, such as those in the above example,
to improve the accuracy of inferring correlations between
the source files.

In this section, we present a discussion on some intuitive
and statistical evidences to illustrate the effectivenessof in-
tegrating these two factors of file to infer file correlations
and thus further motivating our research.

2.1 Intuitive Scenarios

Initially, we can consider the following intuitive scenar-
ios that provide hints to file correlations:

• Files accessed by the same user tend to have strong cor-
relations, because each user has an access domain in
which files possess strong correlations.
• Individual program typically access the same files in

the same order, and thus files invoked by individual



programs tend to have strong correlations.
• It is common for a user to deposit related files in one

specific directory, thus leading to strong correlation
among files stored in the same directory.
• A frequent access sequence typically indicates that the

involved files are frequently accessed together. Thus,
files belonging to one frequent access subsequence
tend to have a strong correlation.

The above scenarios include such hints as frequent access
sequence that belongs to the access sequence factor, and the
user, program and directory information that belong to the
semantic attribute factor. All of these hints can be used to in-
fer file correlations. Furthermore, since semantic attributes
can be used to filter out unrelated access sequences to nar-
row the mining scope and improve the precision of inferring
correlations among files, files with equal or similar statis-
tics obtained from their corresponding hints/factors are most
likely to be strongly correlated.

2.2 Statistical Evidences

Although above four scenarios are intuitive, they indicate
that both access sequence and semantic attributes can ap-
parently be associated with file correlations, which inspires
us to conduct further experiments to verify this association
with real file system traces.

We analyze four typical traces – LLNL, INS and RES,
and HP, taken from different distributed file system applica-
tion environments:

• LLNL trace [19] traces several typical parallel scien-
tific applications, which have heavy I/O demands with
data accesses of varying size. The LLNL trace was
collected from a large Linux cluster with more than
800 dual-processor nodes at the Lawrence Livermore
National Laboratory (LLNL). It consists of 6403 trace
files with a total of 46,537,033 I/O events.
• INS Trace andRES Trace: Drew Roselli and Thomas

Anderson [20] traced two groups of Hewlett-Packard
series 700 workstations running HP-UX 9.05. INS was
collected from twenty machines located in laboratories
for undergraduate classes. RES was collected from 13
machines on the desktop of graduate students, faculty,
and administrative staff of their research projects.
• HP Trace: The HP trace is a 10-day file system

trace collected on a time-sharing server with a total
of 500GB storage capacity and 236 users at the HP
Lab [21].

Based on these collected traces, we quantify the asso-
ciation between file correlations and their possible influen-
tial factors (i.e., access sequence and semantic attributes).
We keep track of access sequences for different semantic
attributes separately, and then compute the probability of
inter-file accesses within these different sequences.

The probability of inter-file access of a fileA to another

file B refer to the likelihood of fileB being accessed given
that fileA has been accessed. This is also called file succes-
sor probability. Our observation shows that if the average
access probability is large, the corresponding file correlation
is strong. By contrast, if there is no association between file
correlations and semantic attributes, the access probability
tends to be independent of the semantic attributes. For ex-
ample, if there is no association between file correlations
and semantic attributes, the access probability when con-
sidering a semantic attribute say processP that is meant to
’filter out’ unrelated file access sequence will not differ from
the access probability when none of the semantic attributes
is considered. Therefore, by comparing the probabilities of
inter-file accesses for different sequences, we can quantify
the influence on the association between file correlations and
semantic attributes by different semantic attributes.

Figure 1 compares the probabilities of inter-file accesses
for different sequence. There are three important observa-
tions drawn from this figure. The first observations is that
the inter-file access probabilities due the same attribute in
different traces are different. For example, in RES trace, the
pid attribute corresponds to a 37.6% access probability, but
a probability of 52.7% results in the HP trace for the same
attribute. The second observation is that even in the same
trace, different attributes lead to different inter-file access
probabilities. For example, in the HP trace, the probabil-
ity corresponding to thefile pathattribute (55.2%) is larger
than that for theuid attribute (45.8%). The last observation
is that when none of the attributes is considered, the access
probability is the lowest in all the traces among all the cases
considered.

From the statistical evidences we learn that we clearly
stand to gain benefits from finding an appropriate method
to judiciously combine the access sequence factor and the
semantic attribute factors into an integrated scheme to mine
and evaluate file correlations. We also learn that different
attributes or attribute combinations have different influence
on inferring file correlations.

Motivated by the above preliminary investigations and
observations from experimental studies, we propose an in-
tegrated model for file correlation mining and evaluation,
which is detailed in the next section.

3 FARMER

In this section, we provide the details of the proposed
File Access coRrelation Mining and Evaluation Reference
(FARMER) model to quantify and evaluate file correlations.
We start with an architectural overview of the FARMER
model and its mining and evaluating approaches, followed
by a discussion on how to address the issues of building
FARMER to mine file correlations. Finally, we analyze the
validity and efficiency of FARMER.



3.1 The FARMER Architecture

As shown in the previous section, access sequence and
semantic attributes collectively and jointly impact file cor-
relations more profoundly than can either alone. Neverthe-
less, to the best of our knowledge, very few studies have
been conducted to integrate access sequence and semantic
attributes to infer file correlations since it is difficult toquan-
tify semantic attributes and estimate the extent to which they
impact file correlations.

The proposed FARMER model is composed of a four-
stage process ofExtracting, Constructing, Mining & Evalu-
atingandSorting, as shown in Figure 2. FARMER provides
a ”black-box” approach to inferring file correlations without
any assumption and modification to the interface between
applications and the file systems (storage front-end). There-
fore, FARMER is general and independent of the front-
end. More specifically, theExtractingmodule collects file
request information; theConstructingmodule is deployed
to construct a weighted and directed graph representing
file access sequences; theMining & Evaluatingmodule,
which houses the core mining algorithm of FARMER called
CoMiner, is responsible for mining and evaluating file cor-
relations; and theSortingmodule organizes the quantified
inter-file correlations appropriately to facilitate performance
enhancing strategies that exploit file correlations obtained
by FARMER. Our core algorithmCoMiner, embedded in
the Mining & Evaluatingmodule, mines and evaluates se-
mantic attributes and access sequence cooperatively. By
leveraging theVector Space Model (VSM)[17] and simi-
larity estimation techniques,CoMiner quantifies semantic
attributes and evaluates file correlations. Based on the eval-
uation, FARMER can infer inter-file correlations with a rel-
atively high degree of accuracy in distributed storage sys-
tems.

The functions of and workflow among the four FARMER
modules are elaborated below:

• Stage 1: Extracting. In this stage, we collect file at-
tributes such as timestamp, file name, user, group, pro-
gram information, etc. by extracting from each file re-
quest. A set of such attributes that identify a certain file
request pattern help mine and evaluate file correlations
effectively and accurately.
• Stage 2: Constructing. Once the appropriate file at-

tributes are obtained, a weighted, directed correlation-
graph is constructed to represent file access sequences.
This graph consists of a set of directed edges and a set
of nodes, where a node represents an accessed file and
a directed edge that starts from a predecessor node and
ends at a successor node represents an access order.
The weight on each edge equals the value of correla-
tion degree between the predecessor and the successor.

If a newly requested file is already in the graph, only
the inter-file access count is increased and the file cor-
relation degree is updated accordingly. Obviously, if

the weight on an edge is large, the corresponding nodes
(files) are likely correlated. Therefore, this graph repre-
sentation is able to capture access sequences and mine
file correlations.
• Stage 3: Mining and Evaluating. This stage con-

tains the core of FARMER. After Stage 1 and Stage
2, the file attributes and frequent sequence information
between the current file and its successors have been
extracted from the file requests. FARMER then mines
and integrates this information to evaluate file correla-
tions.

The file correlation degree obtained through mining
and evaluation for each file-successor pair is recorded
in the correspondingCorrelator List that is associated
with each file having one or more successors. In ad-
dition, this list contains relevant information extracted
in Stage 1 and 2 of certain successors of the current
file and is indexed by these succesors’ file IDs. Sub-
section 3.2 presents in details the FARMER core min-
ing and evaluating algorithm, CoMiner, which also in-
cludes a description of the Correlator List and it’s up-
date operations.
• Stage 4:Sorting. In this stage, theCorrelator List for

each file is sorted and organized by file correlation de-
gree. Consequently, each file with one or more succes-
sors is associated with a sortedCorrelator List in de-
ceasing order of the inter-file correlation degree from
head to tail. Thus, if a file is closer to the head in the
Correlator List, there will likely be a stronger correla-
tion between the file and its owner.

This is an iterative process that repeats itself for each incom-
ing request. Therefore, it is possible to infer file correla-
tions by automatically and dynamically mining and evaluat-
ing the semantic attributes and access sequence information
contained in the requests.

3.2 The Core Mining and Evaluating Algorithm -
CoMiner)

Existing file correlations mining algorithms include se-
mantic attribute mining and access sequence mining. These
two approaches focus on the statistical analysis for access
history information in their respective fields and mine these
hints by using various data mining techniques to infer file
correlations. However, their effectiveness is limited by ei-
ther the lack or difficulty of integrating the hints of semantic
attribute and access sequence to evaluate and quantify file
correlations.

To combine semantic attributes with access sequence to
maximize the efficiency and accuracy of inferring file cor-
relations, we proposeCoMiner, a method that leverages the
state of the art approaches including theVector Space Model
(VSM)techniques in theInformation Retrievelarea to mine
and evaluate file correlations quantitatively in storage sys-
tems. In particular, in order to estimate the similarity of



semantic attributes, we utilizeSemantic Distanceto denote
how far apart two files are semantically in the correlation-
graph. We also identify the validity of file correlations by
specifying an appropriate threshold.

CoMinermainly consists of three steps: (1) Mining and
quantifying similarity of semantic attributes and access fre-
quency; (2) Evaluating file correlations by using similarity
of semantic attributes and access frequency; and (3) Filter-
ing out weak or false file correlations. A pseudo code de-
scribing the process ofCoMiner is presented as Algorithm
CoMiner.

Algorithm 1 CoMiner
Parameters:
Semantic Distancebetween filessd
access frequencyf
file correlation degreee
Input:
A request filef ,
successor files of request filesuccessor,
valid thresholdmax strength
Output:
Correlator List l
for i = 0 to i < successor.length do

computesd
computef
computee
if e > max strength then

l ← pair(successor[i].id, e)
end if
l.sort

end for

3.2.1 Semantic Attribute Mining
File semantics can be exposed at various levels, such as def-
initional, associative, structural, behavioral, environmental
level or through other information related to the files [23],
where various hints can be obtained. Many of these hints
can help improve the precision of inferring file correlations.
SD graph[9] presentsSemantic Distanceand attempts to
use this concept to estimate the degree of similarity between
two files. However, effectiveness ofSemantic Distancein
SD graphis limited to only exploiting access sequence, thus
failing to quantify the rich semantic attributes that can po-
tentially improve the similarity measurement between files.

An approach, calledVector Space Model (VSM), is
widely and successfully deployed in the area of information
retrieval [17] for text representation and searching. Inspired
by Vector Space Model (VSM)’s successes, we believe that it
can be deployed in our CoMiner to estimate file correlations
accurately. InVector Space Model (VSM), a vector repre-
sents a text document and basic vector operations are used
to compute similarity between two documents. In adopt-
ing VSMto ourCoMiner, vectors are used to represent files

and similarity estimation algorithms are used to quantify the
similarity between semantic attributes that can be extracted
from a set of metadata attributes representing a file [16].

More specifically, a vector represents a file and each item
of the vector represents one particular attribute of the given
file. Vectors are stored as columns of a single matrix. Then
basic vector operations can be used to evaluateSemantic
Distancebetween files. The computation ofSemantic Dis-
tanceis based on a common similarity computation func-
tion:

sim(A, B) =
|A ∩B|

|max(A, B)|
(1)

In this function, setA and setB representsemantic vec-
tors (SVs)spaces of files,sim(A, B) represents the seman-
tic distance of twoSVs. Let A = {A1, A2, . . . , An} and
B = {B1, B2, . . . , Bn}. Table 1 demonstrates how to trans-
form file semantic entries to semantic vectors. Here, a se-
mantic vector itemAx corresponds to one attribute, such as
the user id. Therefore, semantic distance of files can be de-
fined bysim(A, B).

User Process Host File Path
user1 p1 host1 /home/user1/paper/a
user1 p2 host1 /home/user1/paper/b
user2 p3 host2 /home/user2/c

⇓
A = {user1, p1, host1, home, user1, paper, a}
B = {user1, p2, host1, home, user1, paper, b}
C = {user2, p3, host2, home, user2, c}

Table 1: transform file semantic entries to semantic vectors.

Divided Path Algorithm (DPA) vs. Integrated Path
Algorithm (IPA) . According to Function 1, we can compute
the semantic distance between files. All semantic attributes
except for the file path attribute, present their correspond-
ing values directly; To handle the more complex file path
attribute, two methods can be used compute theSemantic
Distance. The first one is to parse a full file path to several
subdirectories. Each subdirectory is represented as one item
in SV. We call this methodDivided Path Algorithm (DPA).
The other approach is to regard the entire file path as one
item, which is called theIntegrated Path Algorithm (IPA).
Table 2 depicts the application of Function 1 to calculate the
Semantic Distancein DPA andIPA respectively. The value
contained at the intersection between the vectorsA andB
acts as the numerator of the function. The denominator is
the max count of items ofA or B.

Divided Path Algorithm Integrated Path Algorithm
sim(B, C) = 1/7 sim(A, C) = 0.25/4
sim(A, C) = 1/7 sim(B, C) = 0.25/4
sim(A, B) = 5/7 sim(A, B) = 2.75/4

Table 2:DPAvs IPA



Table 2 demonstrates howDPA and IPA can be used to
computeSemantic Distanceamong files. ForDPA on the
left, each subdirectory or attributes is represented as one
item in a vector. Therefore,max (A, B) is 7. Moreover, 5
attribute items betweenA andB are the same, which means
that A ∩B equals 5. ForIPA on the right, the similarity
of directories is computed first. ForA andB, the maximal
count of subdirectories is 4, and the intersection of direc-
tories is 3. Thus, the directory similarity is3/4 = 0.75.
Then, since the entire file path is regarded as a single item,
max (A, B) is 4 andA ∩B is 2.75.

However, the drawback of theDPA algorithm is that if
files are in a deep directory, the directory attribute becomes
the main influential factor in determining the result while
other attributes such as process and user IDs are signifi-
cantly weakened. As a result, file correlations that are ac-
tually strong by virtue of the weakened attributes will be
considered weak and thus filtered out. For example, con-
siderA that is an executable file andB that is a library file
linked byA. Although the intersection of file path between
them is null, their correlation is nevertheless very strong.
The file correlation degree of fileA and B computed by
DPA will surely be smaller than the specifiedmax strength
(threshold), thus resulting in fileB being removed from file
A’s Correlator List. Based on this analysis, we decide to
use theIPA algorithm to compute theSemantic Distance.

3.2.2 Access Sequence Mining

There is pronounced regularity in file access sequence, a
well-known observation in file systems. This observation
can help discover file correlations between two or more files.
Probability Graphand Semantic Distance (SD)keep fre-
quent counts of file accesses that follow within a window
of a specific length. In these two techniques, all the suc-
cessors of a file are assigned the same importance. The
limitation of this approach is that it fails to distinguish the
importance of the successors which have different access
distance. To overcome this limitation, we apply theLiner
Decremented Assignment algorithm[11] to count the inter-
file access number, where the farther the access distance be-
tween file and its successor is, the weaker their file correla-
tion will be.

CoMiner keeps track of the predecessor’s, successor’s
information of a file, and computes the access frequency
F (A, B) for a pair of files. Here,F (A, B) = NAB/N ,
whereNAB is the number of times that fileB is the succes-
sor ofA. N is the total access count of fileA. Thus,F (A, B)
represents the frequency of accesses in which fileB is a suc-
cessor ofA. A high value ofF (A, B) means that if access
to fileA occurs, fileB is very likely to be accessed soon. So,
we useF (A, B) to describe file correlations. For example,
given an access sequence ofABCD, B is a closed successor
of A, 1 will be added toNAB. For C andD, their access
distance fromA are 2 and 3 respectively and, according to
the linear decremented assignment the additional value is

0.9 forC, and 0.8 forD.

3.2.3 Computing File Correlation Degree
The file correlation degree for filesx andy is defined as:

R(x, y) = sim(x, y) · p + F (x, y)· (1− p) (2)

In Function 2,sim(x, y) and F (x, y) represent semantic
distance and access frequency betweenx andy respectively.
p is a tunable weight that can be adjusted to an appropriate
value to judiciously combine semantic distance and access
frequency to more effectively exploit inter-file correlations.

Semantic distance is a function of several semantic at-
tributes such as user id, process id, host id and file path.
Once these attributes are determined, they are rarely modi-
fied. However, access frequency varies with access count of
a file and its successors. So, the access count information
for each file and its successors must be updated in time to
compute the latest access frequency.

3.2.4 Threshold for Valid File Correlation
Degree

An important issue to consider is the threshold for valid file
correlation degree. If the correlation degree between two
files is very small, such a correlation may not be valid in
that the two files may only occasionally inter-access and
their correlation, if present at all, may merely be random
and offers very little to be exploited for performance im-
provement. For example, two otherwise unrelated files may
belong to a random access sequence, with a file correlation
degree of 0.0001 as evaluated by FARMER. This correla-
tion degree is so weak that it is generally meaningless to be
considered for an exploitable file correlation. Therefore,in
order to describe the validity of file correlations, we define
strengthto measure the file correlation degree. Moreover,
we specify a valid threshold for correlation degree, denoted
asmaxstrength. After evaluating the correlation degree, we
compare the file correlation degree of a candidate file with
maxstrength. If the file correlation degree is smaller than
maxstrength, this correlation will be considered invalid and
thus filtered out, and vice versa.

3.3 Efficiency of FARMER

Compared with existing file access sequence mining al-
gorithm such asSD Graph, Probability Graphand Nexus,
FARMER can more effectively and accurately infer file cor-
relations in distributed storage systems while requiring less
overhead. These algorithms need to keep the correlative in-
formation for every file during the process of graph building,
whereas FARMER does not need to maintain any correlative
information for weak correlations due to its filtering ability.
In practice, only active file correlations are updated and thus
FARMER needs much smaller memory footprint to store
file correlations information. Moreover, in terms of time
complexity, FARMER is more efficient than the approaches



mentioned above because less correlative information needs
to be processed. Therefore, we argue that FARMER is much
more efficient than these existing algorithms.

4 FARMER Applications

FARMER as a mining and evaluating tool can infer and
reveal hidden file correlations that can be potentially used
and exploited by a number of performance enhancing strate-
gies directly or indirectly, as explained in more details inthis
section.

4.1 FARMER-enabled Prefetching

The file correlation information mined and evaluated by
FARMER can be used to help prefetch files data, especially
file metadata accurately in large distributed storage systems.
It is a well recognized fact that metadata accesses and oper-
ations account for a majority of all I/O operations in a typ-
ical storage system [20], because hundreds of thousands of
pieces of file metadata need to be updated simultaneously,
which often means that metadata servers are severe per-
formance bottlenecks of distributed storage systems. This
metadata bottleneck has been addressed generally in two di-
rections. The first is to use multiple metadata servers to co-
ordinate the metadata requests to metadata servers for load
balancing. The second is to reduce the overhead incurred by
metadata operations by improving storage cache hit ratio.
FARMER helps exploit inter-file correlations and offers an
enhanced prefetching algorithm to reduce the overhead in-
curred on metadata servers and effectively alleviate the bot-
tleneck effect of metadata servers.

In general, a conservative prefetching algorithm attempts
to avoid prefetching inaccuracy and cache pollution by re-
ducing the frequency and amount of prefetching. By con-
trast, an aggressive prefetching algorithm prefers to hoard
more entries to scale up overall system performance. In
modern storage systems, more than 50% of all I/O oper-
ations are related to metadata access [20] while the typ-
ical size of file metadata is no more than 5% of the size
of file data [24]. This observation implies that storage sys-
tems stand to gain greatly by aggressive metadata prefetch-
ing while incurring relatively small mis-prefetching penal-
ties. However, the benefit of aggressive prefetching can
be quickly offset by mis-prefetching penalties if it is not
accurate and brings in too many unrelated metadata files.
To alleviate this problem, FARMER filter out unrelated or
weakly correlated files fromCorrelator List by compar-
ing the correlation degree with a valid correlation degree
thresholdmaxstrength. By appropriately configuring the
maxstrengththreshold, FARMER can potentially optimize
the prefetching size at a minimal mis-prefetching penalty.

The capability of metadata operations for metadata server
plays a critical role in scaling up performance in a peta-scale

distributed storage system. We identify demanding requests
and prefetching requests by setting a request attribute and
provide a priority-based request-scheduling model, as elab-
orated in Section 5. In particular, a metadata server uses
two request queues to guarantee the availability of service
for the demand requests queue that is of higher priority than
the prefetching request queue.

4.2 FARMER-enabled File Data Layout

File correlations can also be exploited to improve the ef-
ficiency of file data layout. We can merge several small files
into one group to scale up the overall system performance by
enhancing the correlative file data locality. The average file
size of modern workstation cluster is 108 KB - 189 KB [24],
so file data layout has a great impact on the batched I/O op-
erations that, as a result of exploiting file correlations and
thus data locality, are transformed from random I/Os to se-
quential I/Os, thus significantly improving data access per-
formance.

Several design issues should be considered while exploit-
ing file correlations to optimize file data layout. One of the
most important issues is to determine which files should be
integrated into one group. We can use the sortedCorrelator
List of each file to address this issue. However, if file data
are frequently modified, the data layout management of such
a grouping scheme will become very complex. Therefore, as
an initial attempt, only readonly files are considered to be
stored in the same group.

Metadata servers can organize files based on inter-file
correlations and file attributes. After evaluating and sorting
based on file correlation degree to obtain a group of strongly
correlated files in theCorrelator List, a metadata server may
try to allocate these files in one group contiguously. Thus,
whenever the predecessor is accessed, its correlated files are
batch read into the cache by a single I/O request.

4.3 FARMER-enabled Security and FARMER-
enabled Reliability

File correlations can also be exploited to improve storage
system security and reliability, for example, in cases such
as secured delete and denial of malicious access [25]. In
intelligent secure storage systems, once a user configures
rule-based accesses for a file or directory, this rule may be
applied to other files that have strong file correlations with
this file or directory automatically. In addition, file repli-
cation and the corresponding consistency management can
also take advantage of file correlations by grouping files
with strong inter-file correlations in the same logical replica
group. Each backup and recovery task on a replica group
can be an atomic operation so that we can guarantee the
strong consistency of files in the same replica group.



5 Case study: FARMER-enabled Prefetching
for Improved Accuracy on HUSt

We have discussed several useful potential applications
of exploiting file correlations mined and evaluated by
FARMER in the previous section. Here, we apply FARMER
to improve the intelligence of the prefetching algorithm in
our object-based storage system – HUSt to verify the feasi-
bility and effectiveness of our algorithm. In this section,we
will present the FARMER framework and how it works with
our system. To evaluate the benefits and overheads of the
FARMER-enabled prefetching algorithm (FPA) and demon-
strate FARMER’s applicability to a wide range of work-
loads, we use four typical traces taken from distributed file
system (including LLNL, INS, RES, and HP traces). Based
on the four distributed file system traces (see Section 2 for
more detailed descriptions of these traces), we conduct ex-
periments to show the impact of FARMER on performance.
We compare FPA with Nexus (because Nexus performs bet-
ter than any of the existing algorithms for metadata prefetch-
ing [11]), and LRU (because LRU is the most commonly-
used algorithm for cache replacement) in terms of the cache
hit ratio, prefetching accuracy and average response time.

5.1 The HUSt System Architecture

Figure 4 shows the architecture of HUSt with FARMER
integrated. The system comprises three major components:
(1) MDSs are mainly responsible for managing files’ meta-
data information and security authorization. The metadata
information of files and objects are stored in the Berkeley
DB. (2)OSDsare actual storage depositories for object data,
and provide the object-based interface for clients’ accesses.
(3) Clients runs applications and provide general access in-
terfaces for applications.

In order to support FARMER, we have added two major
components into HUSt:extractorandmining and evaluat-
ing utility. extractoris a file-type specific filter that takes as
input the request for a file from a client and outputs the cor-
responding semantic vector of this file. The functionality of
mining and evaluating utilitythat implements theCoMiner
is to mine and evaluate file correlation according to seman-
tic vector. Themining and evaluating utilityalso interacts
with the Berkeley DB to store the file correlation informa-
tion such asCorrelator List for the files.

5.2 Impact of FARMER Parameters on Design
Decisions

Through analyzing experimental results obtained from
the HUSt prototype implementation of FARMER, we eval-
uate how various FARMER parameters impact some design
decisions.

5.2.1 Weight Factorp
To find out what value of weightp can achieve the best per-
formance, we conduct some experiments to evaluate the per-
formance of the overall system as a function ofp (varying
from 0.0 to 1.0 with step of 0.1). Figure 3 shows the cache
hit ratios of the FARMER-enabled prefetching algorithm as
a function of themax strengthwith differentp values of 0,
0.3, 0.7 and 1, respectively. We notice that when the weight
factorp is 0.7, the cache hit rate reaches the highest value.
So, the default value ofp is configured 0.7 in our subsequent
experiments.

5.2.2 Attribute Combination
In section 2, analysis of different attribute combinations
demonstrates that not all of file attributes have the same ef-
fect on file correlation. By analyzing the experimental re-
sult, we can determine attribute combinations that are more
effective than others and potentially identify the most influ-
ential combinations.

In Table 5, the first column enumerates all combinations
of the four attributes (User ID, Process ID, Host ID and
File path) in the HP Trace, the third column enumerates
all combinations of the four attributes (User, Process, Host
and File ID) in the INS and RES trace. The second, fourth
and fifth columns show the cache hit ratios associated with
different attribute combinations. The last row presents the
result when considering all the semantic attributes. From
Table 5, we observe that the difference of cache hit ratio
among different attribute combinations range from 0.1% to
about 13%.

This result proves our conjecture that different attribute
has different contribution to file correlation evaluation.
Therefore, we can adopt a optimum semantic combination
to improve prefetching accuracy and cache hit ratios.

5.2.3 Valid threshold
Valid threshold –max strengthmay affect the prefetching
policy. We run the prefetching algorithm experiment under
the HP traces. In this experiment, two files, with their file
correlation degree larger than the validity threshold, will be
prefetched to the system cache. The range ofmax strength
varies from 0.0 to 1.0. A largermax strengthcorresponds
to more a conservative prefetching policy. From Figure 6,
we can see that if themax strengthis smaller than 0.4 the
response time tends to be stable.It indicates that prefetching
files with file correlation degree lower than 0.4 is unlikely to
benefit overall system performance.

5.3 Performance Evaluation of The FARMER-
enabled Prefetching Algorithm

Aggressive prefetching algorithms can improve cache hit
ratio and reduce response time by increasing the prefetch-
ing size, provided that prefetching accuracy is reasonably
high. With poor prefetching accuracy, however, this ap-



proach can suffer from severe cache pollution and mis-
prefetching penalty, making it ineffective and even counter-
productive. The FARMER-enabled prefetching algorithm
(FPA) improves prefetching accuracy significantly by elim-
inating prefetching candidates with low inter-files similari-
ties.

Figure 7 shows that FPA has the highest prefetching ac-
curacy under all traces when compared with Nexus and
LRU. In particular, the cache hit ratio of FPA is 13% higher
than that by Nexus in the HP trace. This improvement is
the best among all traces (7.8% in INS and 3.1% in RES).
The reason is that, in the HP trace, besides the basic infor-
mation about requests (user id, process id, device id and so
on), full file path information is also included, which enables
FPA to more accurately mine and evaluate file correlations.
However, in INS and RES, the fields of fid and dev id are
used to identify the different location between the files. The
INS and RES trace lack the file directory information that
is critical in identifying locality and inter-file correlations
effectively.

Trace Prefetching Accuracy
FARMER 64.04%

Nexus 43.04%

Table 3:Prefetching Accuracy for HP Trace

We conduct our experiments on the HP trace to compare
the prefetching accuracy. From Figure 4, experimental re-
sults show that about 65% of all predictions provided by
FPA are correct. In contrast, Nexus’ predictions are only
about 43% correct. The higher prefetching accuracy of FPA
translates into significantly reduced metadata access latency
(i.e., average response time), as shown in Figure 8, where
FPA can improve the average response time in metadata
server over Nexus by up to 24% and over LRU by up to
35%.

5.4 Memory Overhead

Table 4 shows the overhead for FARMER processing
the file request with different traces. The results show that
additional memory footprint sizes for corresponding traces
are no more than 100 MB. The reason is that, first, valid
thresholdmax strengthlimit the size of Correlator List,
thus FARMER only need to maintain a few members for
eachCorrelator List. Second, only several additional en-
tries such as file’IDs,Semantic Distance, file correlation de-
gree, etc., are required to recorded for active files. There-
fore, FARMER can effectively discover file correlations for
different typical workloads.

Trace LLNL INS RES HP
Space (MB) 98.4 1.4 2.5 9.8

Table 4:Space Overhead (maxstrength is 0.4)

6 Related Work

Data and file correlations can be exploited to improve the
performance of distributed storage systems. We investigate
previous works about block correlations and file correlations
to provide the necessary background for our study reported
in this paper. This section briefly discusses the most closely
related and representative works in the literature on explor-
ing correlations at the block or file level respectively.

Block correlations: Researches on block correlations
has typically been conducted at the disk block abstraction
level, obtaining more complex semantic patterns at the block
level in storage systems.

C-Miner [26] uses data mining techniques to mine the
frequent sequences from a set of short sequences, which in
turn infers the correlations between blocks and presents ap-
proaches of block correlation-directed prefetching and data
layout. C-Miner uses ablack-boxapproach that is similar
to FARMER’s, although HUSt on which FARMER is proto-
typed provides an object-based interface to render it awhite-
boxapproach.

Sivathanu et al. proposed semantically-smart disk sys-
tems (SDS) [4] by using agray-boxapproach. SDS exploits
the on disk data structure information and categorizes data
to transparently improve performance or enhance function-
ality beneath a standard block read/write interface. Simi-
larly, Type-Safe Disks (TSD) [27] expose the block relation-
ship by a specific interface (special system call functions)
between the file system and the underlying block device.
TSD uses block correlation information to enforce active
constraints on data access.

File correlations: Previous studies on file correlations
entail analyzing file access pattern or extracting semantic
information.

File access patterns, which reflect user behaviors, can
infer correlations among files. It is widely observed that
access patterns follow previous patterns with a high proba-
bility. Based on this observation, several prefetching algo-
rithms, such as Last Successor (LS), First Successor (FS)
and Recent Popularity [30], predict files that are likely to
follow recently accessed files. However, in distributed stor-
age systems with multiple users, multiple programs and
multiple hosts, the interactions among the different users,
programs and hosts can render such predictions inaccurate.
File access patterns, we believe, are not impertinent to file
attributes (such as program id, user id, host id, etc.).

FARMER considers such file attributes as user, pro-
gram and host to estimate the inter-file access relationship.
Program-based Successors (PBS) and Program- and User-
based Last Successor (PULS) [22] also identify the relation-



ships between file access patterns and the programs/users
accessing them. PBS and PULS apply the LS/LnS al-
gorithms under the Program- and User-based conditions.
However, in addition to program and user information, we
consider other file attributes that influence file correlations
in FARMER, since different users or programs may also fol-
low a similar file access pattern in distributed storage sys-
tem.

Semantic Distance (SD) [9], Probability Graph[10] and
Nexus [11] attempt to evaluate file access relationships by
means of a weight-based graph. In the graph, each node
represents a file and a back-link represents a file access se-
quence. The initial weight value of the weight-based graph
is determined intuitively, and it is increased according tothe
request sequence. There are two potential problems for this
approach. The first problem is that when multiple processes
execute concurrently, the file access sequence will be inter-
leaved by the scheduler of OS, which will reduce the accu-
racy of the collected statistics. The second problem, partic-
ularly related to Nexus, is that it attempts to decrease the re-
sponse time by increasing the amount of prefetching, which
reduces the prefetching accuracy and generates significant
cache pollution.

While FARMER also evaluates file correlations to facil-
itate a prefetching algorithm, it differs from Nexus in that
our approach considers both access sequence and semantic
distance derived from file attributes such as user id, process
id and other semantic information. Moreover, our predic-
tion algorithm guarantees that successors that are not up to
the mustard will not be prefetched.

An MIT team [12] develop a semantic file system to au-
tomatically extract the attribute information from files and
index the key properties of file system objects. Gifford
and Jouvelot provide associative attribute-based access to
the content of information storage system with the help of
file type specific transducers. A transducer’s function is
to extract the attributes of files from the upper level user-
interface. Other semantic file systems such as SFS [28] and
HAC [29] have been proposed to support both name-based
and content-based access to file objects, allowing users to
organize their files by content and present them with alter-
native views of data through the concept of semantic direc-
tories.

[13] shows that the statistical evidence of attribute as-
sociation and provides useful hints to the file system in the
form of file names and other attributes so that the file sys-
tem can successfully predict many file properties from these
hints.

7 Conclusion and Future Work

Integrating a semantic-based methodology into file ac-
cess sequence is a novel and effective way to discover file
correlations. In this paper, we introduce a File Access

coRrelation Mining and Evaluation Reference (FARMER)
Model for inferring the file correlations.

Simply using file access sequence (weight-based or not)
can not avoid many incorrect predictions, especially in a
multiple-user and multiple-process environment. Compared
to the existing studies, FARMER judiciously combining file
access sequence mining and semantic attribute mining to ef-
fectively mine and evaluate file correlations by leveraging
Vector Space Model (VSM)technique.

We apply FARMER into an practical platform -
HUSt [16] as a case study. Based on several typical
distributed storage system traces, our experimental results
show that FARMER is a useful and efficient tool to infer file
correlations with reasonable overhead. More specifically,
by comparing the effectiveness of considering different se-
mantic attribute combinations, the result shows shows that
which attribute combinations are more useful to exploit the
maximum benefit of system.

In our proposed evaluation scheme, we consider two
factors: semantic distance and file access frequency. The
trade-off between them is controlled by a weight parameter.
Experimental results indicate that the best performance is
achieved when the weight of semantic distance is set to 0.7,
implying that the semantic factor plays a more significant
role in mining file correlations.

Nexus and PBS are the special cases of FARMER-
enabled prefetching algorithm (FPA). If the weight value is
0, FARMER is reduced to Nexus; If only the process or user
attribute factor is considered in our similarity computation,
FARMER reduces to PBS or PULS. As shown in Figure 7
and Figure, FARMER is shown to improve the cache hit ra-
tio of Nexus by up to about 30% while reducing average
response time by up to 24%.

Our study has several limitations. First, even though
FARMER is a useful tool that can be incorporated into gen-
eral storage system, our evaluation of FARMER-enabled
prefetching algorithm is based on our object-based system.
We are in the process of implementing FARMER as a library
to provide for other storage systems. Second, in this paper,
we have shown some intuitive and statistical evidences to
illustrate that various attributes have the impact on file cor-
relations and compared the influence of different semantic
attributes or attributes combinations. Furthermore, multiple
regression can be used to learn more about association be-
tween file correlations and attributes.
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Figure 3: Impact of varying weight p for different traces

HP Trace INS Trace RES Trace
Combination Hit Ratio Combination Hit Ratio Hit Ratio
{User} 47.8334% {User} 93.3673% 38.3952%
{Process} 54.1105% {Process} 93.3012% 37.5957%
{Host} 42.8946% {Host} 89.0715% 35.7466%
{File Path} 53.5901% {File ID} 86.3962% 36.7331%
{User, File path} 52.6727% {User, File ID} 87.6923% 36.6741%
{Process, File path} 55.2138% {Process, File ID} 87.2049% 35.3386%
{User, Process} 51.6512% {User, Process} 93.0161% 40.6367%
{Host, process} 49.5810% {Host, process} 90.8954% 40.6107%
{Host, User} 43.8305% {Host, User} 91.0715% 41.6739%
{Host, File path} 48.3542% {Host, File ID} 88.6923% 41.0377%
{Host, Process, File path} 48.9502% {Host, Process, File ID} 90.3432% 36.7431%
{Host, User, File path} 47.6805% {Host, User, File ID} 90.2269% 37.8957%
{User, Process, File path} 55.9857% {User, Process, File ID} 93.2177% 41.9518%
{Host, Process, User} 47.5977% {Host, Process, User} 92.7908% 41.3527%
{Host, User, Process, File path} 49.3087% {Host, User, Process, File ID} 93.8839% 43.8533%

Figure 5: Cache Hit Ratios with different attribute conbinations



Figure 7: Cache hit ratio comparison

Figure 8: Response Time for LLNL, RES and HP Trace.
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