Search for New Physics in Photon-Lepton Events in $pp\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

Darin Acosta
University of Florida, acosta@phys.ufl.edu

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

Collider Detector at Fermilab Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Search for New Physics in Photon-Lepton Events in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

We present the results of a search in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV for anomalous production of events containing a photon and a lepton (e or μ), both with large transverse energy, using 86 pb$^{-1}$ of data collected with the Collider Detector at Fermilab during the 1994–1995 collider run at the Fermilab Tevatron. The presence of large missing transverse energy (E_T), additional photons, or additional leptons in these events is also analyzed. The results are consistent with standard model expectations, with the possible exception of photon-lepton events with large E_T, for which the observed total is 16 events and the expected mean total is 7.6 ± 0.7 events.

DOI: 10.1103/PhysRevLett.89.041802

PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

An important test of the standard model (SM) of particle physics [1] is to measure and understand the properties of the highest-energy particle collisions. The observation of an anomalous production rate of any combination of the fundamental particles of the SM would be a clear indication of a new physical process. This Letter summarizes an analysis of the inclusive production of a photon and a lepton (e or μ), including searches for additional photons, leptons, and large missing transverse energy, using 86 pb$^{-1}$ of data from proton-antiproton collisions collected with the Collider Detector at Fermilab (CDF) during the 1994–1995 run of the Fermilab Tevatron [2].

Production of these particular combinations of particles is of interest for several reasons. Events with photons and leptons are potentially related to the puzzling "ee$\gamma\gamma E_T$" event recorded by CDF [3]. A supersymmetric model [4] designed to explain the ee$\gamma\gamma E_T$ event predicts the production of photons from the radiative decay of the $\tilde{\chi}_1^0$ neutralino, and leptons through the decay of charginos, indicating γE_T events as a signal for the production of a chargino-neutralino pair. Other hypothetical, massive particles could subsequently decay to SM electroweak gauge bosons, one of which could be a photon and the other a W or Z^0 boson that decays leptonically. In addition, photon-lepton studies complement similarly motivated inclusive searches for new physics in diphoton [3,5], photon-jet [6], and photon-b-quark events [7].

The CDF detector [8] is a cylindrically symmetric spectrometer designed to study $p\bar{p}$ collisions at the Fermilab Tevatron. A superconducting solenoid of length 4.8 m and radius 1.5 m generates a magnetic field of 1.4 T and contains tracking chambers used to measure the momenta of charged particles. A set of vertex time projection chambers is used to find the z position [9] of the $p\bar{p}$ interaction. The 3.5-m-long central tracking chamber (CTC) is a wire drift chamber which provides up to 84 measurements between the radii of 31.0 and 132.5 cm in the region $|\eta| < 1.0$. Sampling calorimeters, used to measure the electromagnetic and hadronic energy deposited by electrons, photons, and jets of hadrons, surround the solenoid. Each tower of the central ($|\eta| < 1.1$) electromagnetic calorimeter (CEM) has an embedded strip chamber for the measurement of the 2D transverse profile of electromagnetic showers. Muons are detected with three systems of muon chambers, each consisting of four layers of drift chambers. The central muon (CMU) system is located directly outside the central hadronic calorimeter, and covers $|\eta| < 0.6$. Outside of the CMU is 0.6 m of steel shielding, followed by the central muon upgrade system. The central muon extension system provides muon detection for $0.6 < |\eta| < 1.0$.

Events with a high-transverse momentum (p_T) [10] photon or lepton are selected by a three-level trigger [2], which requires an event to have either a high-E_T photon or a high-p_T lepton (e or μ) within the central region, $|\eta| < 1.0$. Photon and electron candidates are chosen from clusters of energy in adjacent CEM towers; electrons are then further separated from photons by requiring the presence of a CTC track pointing at the cluster. Muons are identified by requiring CTC tracks to extrapolate to a reconstructed track segment in the muon drift chambers.

To reduce background from the decays of hadrons produced in jets, both the photon and the lepton in each event are required to be "isolated." The E_T deposited in the calorimeters in a cone in $\eta - \phi$ space of radius $R = 0.4$ around the photon or lepton position is summed, and the E_T due to the photon or lepton is subtracted. The remaining E_T in the cone, E_{iso}^{cone}, is required to be less than 2 GeV for a photon, or less than 10% of the lepton transverse momentum. In addition, for photons the sum of the p_T of all tracks in the cone must be less than 5 GeV.

Inclusive photon-lepton events are selected by requiring an isolated central photon with $E_T^\gamma > 25$ GeV and an isolated central lepton (e or μ) with $E_T^\ell > 25$ GeV. The technical criteria used to identify leptons and photons are very similar to those of Refs. [3,7,11], and are described in detail in Ref. [2,12]. A total of 77 events pass this selection: 29 photon-muon and 48 photon-electron candidates.
The production of pairs of new heavy states that decay via cascade decays can lead to final states with multiple photons or leptons; in contrast, the dominant SM background processes lead to signatures with only one photon and one lepton observed in the detector, as discussed in detail below. The inclusive sample is consequently analyzed as two subsamples: a “two-body inclusive photon-lepton sample” typical of a two-particle final state, and a “multibody inclusive photon-lepton sample” typical of three or more particles in the final state. The two-body sample selection requires exactly one photon and exactly one lepton, with an azimuthal separation $\Delta \varphi_{\ell \gamma} > 150^\circ$, but excludes those events for which the invariant mass of the photon and electron, $M_{\gamma\ell}$, is within 5 GeV of the mass of the Z boson, M_Z (these events are used as a control sample, as described below). The multibody sample is composed of the remaining inclusive photon-lepton events. The multibody sample is then further analyzed for the presence of large E_T, and additional isolated leptons and photons. The E_T threshold of 25 GeV was determined a priori in previous analyses [13] as a significant indicator of a neutrino arising from leptonic decays of the W boson. Figure 1 shows the breakdown of the inclusive sample into the final categories.

The dominant source of photon-lepton events at the Tevatron is electroweak diboson production, in which a W or Z^0 boson decays leptonically ($\nu \ell$ or $\ell \ell$) and a photon is radiated from either an initial-state quark, a W, or a charged final-state lepton. The number of such events is estimated using leading-order matrix element calculations [14] for which the computational code [15] was then embedded into the general-purpose event generator program PYTHIA [16], followed by a full simulation of the detector. The uncertainty in this number has roughly equal contributions from higher-order processes, simulation systematics, luminosity, proton structure, and generator statistics.

A jet can contain mesons such as the π^0 or η that decay to photons, which then may satisfy the photon selection criteria. The number of lepton-plus-misidentified-jet events is determined by counting the number of jets in a sample of events with a lepton and then multiplying by the probability of a jet being misidentified as a photon, P_{γ}^{jet}. The factor P_{γ}^{jet} is determined from samples of jets and photons in events with a lepton trigger, using the distribution in E_{cone}^γ. By fitting to a sum of the expected distribution for prompt photons and that measured for jets, the misidentification rate is found to be $P_{\gamma}^{\text{jet}} = (3.8 \pm 0.7) \times 10^{-4}$ [2].

The dominant source of misidentified photon-electron events is $Z^0 \rightarrow e^+ e^-$ production, where one of the electrons undergoes hard photon bremsstrahlung or a track fails to be reconstructed. We assume that photon-electron events consistent with Z^0 production are not a significant source of new physics, and use them to estimate the probability P_{γ}^e that an electron is reconstructed as a photon. The number of misidentified photon-electron events in the control sample divided by the number of electron-electron events with the same kinematics gives $P_{\gamma}^\text{e} = (1.28 \pm 0.35)\%$. For any other subset of central electron pairs, the contribution to the corresponding photon-electron sample is the product of P_{γ}^e and the number of central electron pairs.

Other, smaller, backgrounds are due to hadrons faking muons and to leptons from the decay of bottom and charm quarks. Charged hadrons may penetrate the calorimeters into the muon chambers, or may decay to a muon before reaching the calorimeters. These contributions are determined by identifying isolated, high-momentum tracks in the inclusive photon sample, applying the probability of each track being misidentified as a muon, and summing this probability over all tracks in the sample [2]. The contribution to photon-lepton candidates from heavy-flavor produced in association with a prompt photon is estimated using Monte Carlo event generation [16] and detector simulation, and found to be negligible.

New physics in small samples of events would most likely manifest itself as an excess of observed events over expected events. The significance of an observed excess is computed from the likelihood of obtaining at least the observed number of events, N_0, assuming that the null hypothesis (the SM) is correct. The “observation likelihood,” $P(N \geq N_0 \mid \mu_{\text{SM}})$, is defined as the fraction of the Poisson distribution for the number of expected events from SM sources, with a mean μ_{SM}, that yields outcomes $N \geq N_0$ [17]. The likelihood $P(N \geq N_0 \mid \mu_{\text{SM}})$ is computed from a large ensemble of calculations in which each quantity used to compute photon-lepton event sources varies randomly as a Gaussian distribution, and the resulting mean event
The predicted and observed totals for two-body photon-lepton events are compared in Table I. Half of the predicted total originates from $Z^0\gamma$ production, where one of the charged leptons has escaped identification; the other half originates from roughly equal contributions of $W\gamma$ production, misidentified jets, misidentified electrons, and misidentified charged hadrons. The likelihood of the observed total is 9.3%.

The predicted and observed totals for inclusive multibody photon-lepton events are also compared in Table I. About half of the predicted total originates from $Z^0\gamma$ production, a quarter from $W\gamma$ production, and the remaining quarter from particles misidentified as photons or leptons. The likelihood of the observed inclusive multibody total is 10%. The predicted and observed kinematic distributions for these events are compared in Fig. 2. The difference between the observed and predicted totals can be entirely attributed to events with $E_T > 25$ GeV. Figure 2 also shows the distribution in H_T, the scalar sum of the E_T of all objects in the event plus the magnitude of E_T, a variable correlated with the production of massive particles [2].

The predicted and observed totals for multibody $\ell\gamma E_T$ events are also compared in Table I. For photon-electron events, requiring $E_T > 25$ GeV suppresses the contributions from $Z^0\gamma$ production and from electrons misidentified as photons, which have no intrinsic E_T, while preserving the contribution from $W\gamma$ production. As a result, 57% of the predicted $e\gamma E_T$ total arises from $W\gamma$ production, 31% from jets misidentified as photons, only 3% from $Z^0\gamma$ production, and the remaining 9% from other particles misidentified as photons. The observed $e\gamma E_T$ total agrees with the predicted total, with a 25% probability that the predicted 3.6 events yields 5 observed events. One of these 5 is the $ee\gamma E_T$ event [3].

For photon-muon events, requiring $E_T > 25$ GeV does not completely eliminate the contribution from $Z^0\gamma$, for a second muon with $|\eta| > 1.2$ and $p_T > 25$ GeV can escape detection and induce the necessary amount of E_T. The rate at which this occurs is modeled well by the $Z^0\gamma$ event simulation, however, since it is largely a function of the CDF detector geometric acceptance. Of the 4.6 multibody events predicted to originate from $Z^0\gamma$ production, 2.2 events are predicted to contain a second visible muon, 1.0 events are predicted to have less than 25 GeV of E_T, and only 1.0 events are predicted to pass the 25 GeV E_T selection. One event is observed with a second muon, in agreement with the $Z^0\gamma$ prediction. The predicted total for multibody $\mu\gamma E_T$ events consists of 47% $W\gamma$ production, 24% events with jets misidentified as photons, 23% $Z^0\gamma$ production, and the remaining 7% from particles misidentified as muons.

The $\mu\gamma E_T$ event total is higher than predicted (11 observed vs 4 expected), with an observation likelihood of 0.54%; the observation likelihood of the $\ell\gamma E_T$ total is only slightly higher at 0.72% [18]. The predicted and observed distributions of the kinematic properties of multibody $\ell\gamma E_T$ events are compared in Fig. 2. The observed photon E_T, lepton E_T, E_T, and H_T distributions are within the range expected from the SM [19].

The predicted and observed totals of multilepton events are compared in Table I. Nearly all of the predicted total is expected from $Z^0\gamma$ production. Approximately 6 events are expected; 5 events are observed, including the $ee\gamma E_T$ event. None of the $e\mu\gamma E_T$ events were expected, and none were observed.

The predicted number of multiphoton events is dominated by $Z\gamma$ production, for which only 0.01 events are expected. The single event observed is the $ee\gamma E_T$ event, whose (un)likelihood is described in Ref. [3].

In conclusion, we have made an a priori search for inclusive photon + lepton production. We find that sub-samples of this data set agree well with their SM prediction, with the possible exception of $\gamma\ell E_T$. However,
an excess of events with 0.7% likelihood (equivalent to 2.7 standard deviations for a Gaussian distribution) in one subsample among the five studied is an interesting result, but is not a compelling observation of new physics. We look forward to more data in the upcoming run of the Fermilab Tevatron.

We thank the Fermilab staff and the technical staffs of the participating institutions for their contributions. We thank U. Baur and S. Mrenna for their critical calculations of the SM $W\gamma$ and $Z\gamma$ backgrounds used in this analysis. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Foundation of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; the Korea Science and Engineering Foundation (KoSEF); the Korea Research Foundation; and the Comision Interministerial de Ciencia y Tecnologia, Spain.

[2] A longer description of this analysis is available in D. Acosta et al. (to be published), hep-ex/0110015.

[9] The CDF coordinate system of r, ϕ, and z is cylindrical, with the z axis along the proton beam. The pseudorapidity is $\eta = -\ln[\tan(\theta/2)]$.

[10] The transverse momentum is defined as $p_T = p \sin \theta$; the transverse energy is defined as $E_T = E \sin \theta$. Missing transverse energy is defined as the vector opposite to the vector sum of the transverse energies of all objects in an event, $E_T = -\sum x E_T$. We use the convention that “momentum” refers to pc and “mass” to mc^2, so that energy, momentum, and mass are all measured in GeV.

[17] The uncertainty in μ_{SM} is the standard deviation of a large ensemble of calculations, and takes into account correlated uncertainties.
[18] The observed muon-electron difference is statistically insignificant; the probability that 16 events divide up into two categories as asymmetrically as 11 to 5 or higher is greater than 8%.
[19] Although the single distributions are not statistically in conflict with the SM, several events have unusual topologies. One of the 16 events is the $ee\gamma\gamma E_T$ event [3]; the inclusive sample also includes a candidate $Z^0 + \gamma$ event with an invariant mass of 400 GeV [12] and a candidate $\mu\mu\gamma\gamma + \text{jets}$ event [3]. We await higher statistics in Run II.