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The optical constants for thin layers of strained InAs, AlAs, and AlSb have been investigated by
spectroscopic ellipsometry and multi-sample analyses. These materials are important for high-speed
resonant tunneling diodes in the AlAs/InAs/In0.53Ga0.47As and AlSb/InAs material systems.
Understanding the optical properties for these thin layers is important for developingin situgrowth
control using spectroscopic ellipsometry.Ex situ room-temperature measurements were made on
multiple samples. The resulting fitted optical constants are interpreted as apparent values because
they are dependent on the fit model and sample structure. These apparent optical constants for very
thin layers can be dependent on thickness and surrounding material, and are generally applicable
only for layers found in a similar structural context. The critical point features of optical constants
for the strained layers and for the thin unstrained cap layers were found to differ from bulk values,
and three principle effects~strain, quantum confinement, and thin-barrier critical-point broadening!
have been identified as responsible. Of these three, the broadening of theE1 andE11D1 critical
points for thin barrier material is the newest and most pronounced. This thin barrier effect is shown
to be a separate effect from strain, and is also observable for the AlAs/GaAs system. ©1996
American Institute of Physics.@S0021-8979~96!04704-7#

I. INTRODUCTION

There is growing interest in double-barrier resonant-
tunneling diodes~RTDs! with strained barriers because of the
high-speed and large negative-differential-resistance effects
which they exhibit. The AlAs/InAs/In0.53Ga0.47As and AlSb/
InAs material systems are of primary interest.1–3 The first
system uses strained AlAs barriers and a strained InAs well
embedded in In0.53Ga0.47As layers which are lattice matched
to InP. In this system, the very large strain in the AlAs bar-
riers can be compensated by the opposing strain in the InAs
well. The second material system typically uses thick InAs
buffer layers grown on GaAs substrates, and the strain in the
AlSb barriers is lower but uncompensated when compared to
the first system. However, regardless of the material system
very accurate thickness control is required to produce de-
vices with uniform and reproducible electrical properties.

Spectroscopic ellipsometry~SE! is a powerful, nonde-
structive tool for accurate thickness determination of thin
layers4 which can be used for bothex situcalibration of the
growth process and for directin situ growth control.5,6 Ellip-
sometry is an indirect technique for thickness determinations
because the measured data must be fit to a layered model
which utilizes appropriate optical constants. Forin situ
growth control, these optical constants must of course be for

the correct growth temperature; however, room-temperature
ex situ measurements can provide insight into how the
strained layer optical constants compare with the more easily
determined bulk values.Ex situvariable angle spectroscopic
ellipsometry ~VASE! measurements can provide greater
spectral detail and a higher signal-to-noise ratio thanin situ
measurements, thereby allowing the dominant effects which
alter the bulk optical constants to be more easily identified.
For these layers, both strain-induced and quantum-
mechanical thickness effects are present. For each of the
three materials, samples with single strained layers were ex-
amined with the primary focus on how the strained and bulk
optical constants differ. Because of the mathematical corre-
lation between optical constants and layer thickness in the
fitting procedure, this requires a multi-sample approach
where data from more than one sample are simultaneously
analyzed to find thicknesses along with a common set of
optical constants for the different samples.

Section II presents a discussion of the various possible
interpretations of thickness for the very thin layers used in
this work. Section III covers the basic terminology for dis-
cussing SE data fits. Section IV describes the data acquisition
and modeling procedures used to determine optical constants
from the strained InAs, AlAs, and AlSb layers measured for
this work. The differences between these optical constants
and bulk values are then discussed in terms of strain and
thickness effects in Sec. V. Section VI comments on the con-a!Currently with J. A. Woollam Co., Inc.
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sequences of thisex situanalysis for potential spectroscopic
ellipsometry growth control schemes. Final conclusions are
presented in Sec. VII.

II. IS THICKNESS A UNIQUELY DEFINED QUANTITY?

The very thin~,30 Å! strained layers considered here
are composed of only several monolayers, and differences on
the submonolayer level are important. In this case, the mean-
ing of ‘‘thickness’’ is not exact and the appropriate definition
depends on what property is being described and how it is
measured. At least four possible thickness meanings need to
be considered: ‘‘true,’’ ‘‘electrical,’’ ‘‘optical,’’ and ‘‘nomi-
nal.’’ Since the material is crystalline, a true thickness which
is not an integral number of monolayers, say 4.3 monolayers,
is best described as a 30:70 coverage mix of 4 and 5 mono-
layers. Except for specially prepared and destructively tested
samples, this true thicknesses is unknown and can only be
inferred from other measured values. For the case of a RTD,
the electrical thicknesses are those values that best describe
the device operation~fit the measuredI –V curves! using a
good device physics model. For barriers, this thickness de-
termines transmission probabilities for electron tunneling. In
a similar way, the optical thickness is that value which best
describes the ellipsometric model used to fit the measured
data, but it incorporates information about different elec-
tronic states than the electrical value. Ellipsometry is typi-
cally more sensitive to the states related to theE1 and
E11D1 critical points~CPs! near theL point in the Brillouin
zone. Without any direct feedback during growth, these mea-
sured thicknesses need to be related back to the nominal
thickness which is determined by shutter~valve! timing and
longer growth rate calibration runs. Maintaining precision
and accuracy with an open loop timing system is difficult
due to run-to-run variations in other growth parameters, es-
pecially substrate temperature and source fluxes.

Offsets between various meanings of thickness are not
surprising and may be due to physical effects such as flux
transients and interfacial effects, or they may simply repre-
sent built-in differences of definition. For electrical devices
such as RTDs, ultimately uniformity and run-to-run repro-
ducibility of the electrical thicknesses are most important;
however, the electrical thicknesses can not be determined
during growth, while optical thickness determinations are
possible. Growth control does not require equivalence of the
electrical with the optical thickness, only a one-to-one corre-
spondence. With proper calibration, an ellipsometer used to
form a closed feedback loop may be able to produce both
precise and accurate electrical thicknesses on a run-to-run
basis. In all cases, there should be a consistent one-to-one
relation among the true, electrical, and optical thicknesses.
The relationship with the nominal thickness, however, is
likely to be more variable run to run. A closed-loop thickness
control system using the optical thickness may be able to
overcome the less stable relationship between true and nomi-
nal thicknesses.

III. EXPERIMENT AND VASE BASICS

Ellipsometry determines thicknesses and optical con-
stants for layered samples by fitting the measured data to a
parameterized model. The standard model for analyzing
VASE data is a sequence of parallel layers with smooth in-
terfaces and homogeneous optical constants, on a semi-
infinite substrate.7 Our fitting procedure is described more
fully elsewhere,8 but the basic terminology is given below.
The standard ellipsometric parametersc andD are related to
the complex ratio of reflection coefficients for light polarized
parallel p and perpendiculars to the plane of incidence.7

This ratio is defined as

r5
Rp

Rs
5tan~c!eiD. ~1!

The electric-field reflection coefficient forp (s) polarized
light is given by Rp (Rs). In addition to c and D, their
standard deviations,sc

expt andsD
expt, are measured using mul-

tiple revolutions of the analyzer.~Multiple revolutions are
used in any case to improve the signal-to-noise ratio forc
andD.! A useful related quantity is the pseudodielectric func-
tion given by

^e&5^e1&1 i ^e2&5sin2~f!F11S 12r

11r D 2 tan2~f!G , ~2!

which is less dependent on the angle of the incidencef than
arec andD. For layered samples, the pseudodielectric func-
tion can provide more insight thanc andD can into what
structure is present in the constituent layer optical constants.
For a bare substrate, the pseudodielectric and intrinsic sub-
strate dielectric functions are equivalent. The Levenberg–
Marquardt algorithm9 is used to fit the model parameters by
minimizing the following weighted~biased! test function:10

j25
1

2N2M (
j51

N F S c j
mod2c j

expt

sc, j
expt D 21S D j

mod2D j
expt

sD, j
expt D 2G

5
1

2N2M
x2. ~3!

The number of measuredc andD pairs isN and the total
number of real valued fit parameters isM . The figure of
merit ~FOM! we use to describe confidence in thei th fit
parameter is given by

FOMi51.65ACii j. ~4!

This is the usual one-parameter, 90%, uncorrelated confi-
dence limit9 multiplied by our test functionj, whereCii is
the i th diagonal element of the fit parameter covariance
matrix.8 In the case of a good fit with no systematic errors,j2

tends toward a value of one and FOMi reduces to the stan-
dard 90% confidence limit. This FOM combines information
about the sharpness of the fit minimum (Cii ) with informa-
tion about the overall quality of the fit. The FOM is primarily
related to the combined measurement and fitting process. Us-
ing the FOM as direct quantitative information about the
sample is only valid whensc

expt andsD
expt are known to be

accurate in magnitude, and when random~not systematic!
measurement errors dominate the fit.8
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IV. DATA ACQUISITION AND MODELING

For this investigation 12 samples, each containing a
single, thin strained layer were used~Table I!. Samples 1 and
2 were used to study InAs on In0.53Ga0.47As. The basic model
structure used for fitting the ellipsometric data from these
samples is shown in Fig. 1~a!. The In0.53Ga0.47As oxide op-
tical constants were constructed using a published model for
semiconductor oxide optical constants,11 and interpolated pa-
rameters between binary endpoints. The nominal thicknesses
for the InAs samples, and for the other 10 samples, are given
in Table I. The basic structure for the AlAs on In0.53Ga0.47As
samples 3–8 is shown in Fig. 1~b!. For analysis, the AlAs
samples were broken into two groups witht-AlAs ,30 Å
~samples 3–6! and with t-AlAs ;50 Å ~samples 7 and 8!.
The final group of four AlSb samples had the nominal struc-
ture shown in Fig. 1~c!.

Before presenting the detailed analysis of these four
sample groupings, several general concepts involved need to
be covered.

~1! The primary goal is to find optical constants for the
strained layers; however, this is very difficult to do because

there are overlayers~oxides and semiconductor caps!
present, the strained layers are very thin, and only nominal
thicknesses are known. Acquisition at variable angles can
help in determining thicknesses and optical constants
simultaneously,12 but this requires the special conditions of
low absorption,t layer at least on the order oflprobe, and a
substrate with very different optical constants. For these
strained samples which are optically thin and have relatively
low optical contrast with the substrate and cap, variable
angle data are primarily useful as independent measurements
to reduce experimental noise at each wavelength. Further-
more, the thin cap layers may not be well represented by
bulk optical constants as has been observed for thin GaAs
caps on AlAs.13 Therefore, more than one set of optical con-
stants may need to be determined.~For ex situellipsometry,
cap layers are needed to protect the layers of interest from
oxidation.!

~2! Two sets of optical constants and layers thicknesses
cannot be determined from data acquired from a single
sample; therefore, for this work, multi-sample analyses were
used. For each of the four groupings already described, the
data from the samples were simultaneously analyzed to de-
termine layers thicknesses and a common set of optical con-
stants for the strained layers. A multi-sample analysis can be
used to reduce correlation between optical constants and
layer thicknesses, but is most powerful when the layer of
interest creates its own well-defined interference pattern.12,13

For the optically thin strained layers considered here, the
multi-sample analysis will not determine all the model pa-
rameters uniquely; however, it will reduce the correlation to
a manageable level, such that a few simple approximations
will allow the analysis to proceed.

~3! The optical constants we determine for the thin lay-
ers are best interpreted as apparent optical constants. The
term apparent is used to imply that the optical constants may
be dependent on thickness and surrounding material, and
may therefore be applicable only for layers found in the same
context. In fact, there is no obvious reason to assume that
optical constants should be the same for the slightly different
thicknesses considered here, but that assumption is made to
permit multi-sample analyses. Thus, the optical constants are
average values for the available measured thicknesses. Fur-
thermore, the data fitting procedure assumes that each layer

FIG. 1. Layered models used to analyze ellipsometric data for samples~a! 1
and 2~b! 3–8, and~c! 9–12.

TABLE I. Materials and nominal thicknesses for sample studied.

Sample Material Thickness~Å! Cladding t-cap ~Å! t-buffer ~Å! Grower I.D.

1 InAs 20 In0.53Ga0.47As 60 2000 TI 7492
2 InAs 30 In0.53Ga0.47As 60 2000 TI 7495
3 AlAs 20 In0.53Ga0.47As 20 4000 TI 7441
4 AlAs 15 In0.53Ga0.47As 60 2000 TI 7502
5 AlAs 20 In0.53Ga0.47As 60 2000 TI 7504
6 AlAs 25 In0.53Ga0.47As 60 2000 TI 7505
7 AlAs 50 In0.53Ga0.47As 20 4000 TI 7434
8 AlAs 50 In0.53Ga0.47As 60 2000 TI 7503
9 AlSb 15 InAs 30 10 000 HRL 407
10 AlSb 25 InAs 30 10 000 HRL 408
11 AlSb 15 InAs 30 10 000 HRL 480
12 AlSb 25 InAs 30 10 000 HRL 482
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can be described as a homogeneous layer with perfect inter-
faces. In fact, for the very thin layers considered here, the
wave functions for the involved optical transitions can easily
extend outside the model layer thickness. Therefore, the op-
tical constants are context sensitive because they are a func-
tion of the surrounding material and surrounding layer thick-
nesses~e.g., a 50 Å layer of GaAs can have very different
apparent optical constants depending on whether it is sur-
rounded by AlAs or GaAs!. For the simple, purely optical
models used for ellipsometric analysis, this context sensitiv-
ity is not explicitly modeled, but it is incorporated into the
resulting fitted optical constants. The final optical constants
are apparent values because they are constrained to fit the
measured data within the modeling procedure~homogenous
within a bounded layer! and they represent an average over
thickness and contexts~surrounding layers!.

~4! Mathematical correlation between layer thicknesses
and optical constants is reduced but not eliminated by a
multi-sample analysis; therefore, it is necessary to ‘‘fix’’ one
of the strained layer thicknesses in each group. One of the
samples within a group will be considered to have
tstrained5tnom. This defines the optical and nominal thick-
nesses for one of the samples to be identical. Although some-
what arbitrary, it is reasonable since we have already noted
in Sec. II that very thin layers may not have a unique defi-
nition of thickness. By fitting the thicknesses for the other
samples in the group, the proper relative thicknesses will be
determined.

~5! To simplify the analysis further, oscillator ensembles
were used to describe the cap and strained-layer optical con-
stants as an intermediate procedure to determine layer
thicknesses.13 Oscillator ensembles have been used to model
semiconductor critical point~CP! structures for energies
above the direct band gap.14–16This modeling technique em-
ploys oscillators at the major critical points, with extra ‘‘fic-
titious’’ oscillators to fill in the absorption between critical
points,

e~\v!5e1
offset1(

j

Aj

Ej
22~\v!22 iB j\v

. ~5!

Bulk optical constants for the cap and strained layer materi-
als were modeled using oscillators as in Eq.~5!. Then, the
energy and broadening parameters, but not the amplitudes, of
these models were allowed to vary while fitting the layer
thicknesses. This provided a method to allow the optical con-
stants to vary from bulk values into the thin cap and thin
strained layer values while fitting a very limited number of
parameters. Because the amplitudes were not allowed to
vary, the overall absorption strength of a layer was preserved
while allowing it to be redistributed. Oscillators cannot de-
scribe the sharp change in absorption at the lowest-energy
direct gaps, however, and an oscillator ensemble is usually a
very poor model below and just above such a CP.~In Ref. 16
a variable phase factor was included, which improved the
ability to modelM0 transitions.! However, for this work os-
cillators were still used as an intermediate step for both AlAs
and AlSb which have direct gaps in the region of interest.
The oscillators were satisfactory because the AlAs and AlSb
layers were thin, producing no interference pattern and there

is limited sensitivity to the absolute level of absorption
around the band gap. Bulk InAs and In0.53Ga0.47As optical
constants were modeled quite well by oscillators for this
work.

~6! Within a group~InAs, AlAs, or AlSb!, the samples
were measured consecutively and in the same manner with
respect to integration time, monochromator bandpass, and
ambient light conditions. This was done for the multi-sample
analysis to keep the data from each sample correctly
weighted with respect to the other samples within that group.
The standard ellipsometric parameters,c andD, were mea-
sured spectroscopically covering the bulk materialE1 andE2
~CP! regions for both cladding and strained layers.

A. InAs

The InAs sample group consisted of samples 1 and 2.
These samples were measured and analyzed in the spectral
range from 1.6 to 5.0 eV for incident angles of 74° and 76°.
Three successive analysis procedures were performed using
models with increasing degrees of freedom. The resulting fits
of D at one incident angle for sample 2 are shown in Fig. 2.
Table II summarizes the fit quality and thickness results for
both samples. The first modeling procedure assumed that all
layers had optical constants appropriate for bulk material,
and that only the layer thicknesses needed to be fit. This
approach produced poor fits@Fig. 2~a!# with thicknesses
quite different from nominal.

For the second analysis, the InAs optical constants were
modeled using an oscillator ensemble@Eq. ~5!# with starting
parameters obtained by fitting to bulk InAs values. The
strained InAs layer thickness for sample 2 was fixed at 30 Å
forcing the nominal and optical thicknesses to be the same.
Furthermore, because of anticipated correlation between

FIG. 2. Data fits at 76° angle of incidence for strained InAs sample 2 using
successively refined models.~Table II summarizes thickness results for
multi-sample analyses of samples 1 and 2.! ~a! Assuming bulk optical con-
stants and fitting only thicknesses yields a poor fit. Allowing the InAs os-
cillator parameters to vary improves the fit@~b!, shown offset by 20°#. Final
fit was obtained by fitting strained InAs dielectric constants at each wave-
length @~c!, shown offset by 40°#.
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thicknesses and optical constants for a fit involving only two
samples, the cap thickness was also fixed. It was fixed at 50
Å allowing for 10 Å of the nominal thickness to be con-
sumed by oxidation. The broadening and energies~10 param-
eters! for the InAs oscillators were fit along with six layer
thicknesses. The fits improved@Fig. 2~b!#, especially in the
E2 CP region at 4.4 eV. Attempts at fitting the cap optical
constants as well as the InAs optical constants did not pro-
duce better fits in the final analysis. This is due in part to the
overlap of the CP structures for InAs and In0.53Ga0.47As. This
is discussed further in Sec. V.

The final analysis for these samples allowed the InAs
optical constants at all measured wavelengths to be simulta-
neously fit with five layer thicknesses. For sample 2, the
oxide, cap, and InAs thicknesses from the previous proce-
dure were used as fixed values. Once the fit minimization
was completed, the wavelength-by-wavelength optical con-
stant table for the strained InAs was saved and fixed in the
model. Finally, the stability of the fits using these optical
constants was demonstrated by resetting the layer thick-
nesses to their nominal values and refitting. The results of
this thickness-only fit~which are identical to those before the
refit! are given in the last column of Table II. The final fit is
very good@Fig. 2~c!# and therefore the assumed cap thick-
ness for sample 2 was not a severe constraint. In actuality,
what has happened is that the correlation between cap thick-
ness and strained layer optical constants has been transferred
into the solved optical constants. Thus, if the actual cap
thickness should have been 60 Å, then future fits using these
optical constants will produce cap thicknesses approximately
10 Å too small. The final apparent strained InAs optical con-
stants are compared with bulk values in Fig. 3. Interpretation
of these results is given in Sec. V.

Table II includes both thicknesses and confidence FOMs
for the three data modeling procedures. As discussed in Sec.
III, the FOM @Eq. ~4!# we use to describe confidence in a fit
parameter is best used in a relative sense, not in absolute
magnitude.~For this work, the assumptions needed to assign
independent significance to the FOM magnitude are not
clearly met.! The FOM magnitudes for the oxide thicknesses
seem unphysically small, but they should only be compared
with other FOMs from a particular fit or with FOMs for
oxide thicknesses from different analyses of the same mea-

sured data. For instance, it is quite general to say that the
oxide layer thickness is more precisely determined than is
the buffer layer thickness. It is also general to note that the
oxide and strained layer thicknesses are more precisely de-
termined than are the cap layer thicknesses. This is because
the cap and buffer layers are the same material and the fitting
algorithm has less sensitivity determining the relative reflec-
tion contributions from these two layers due to their nearly
identical optical properties. Similar observations are valid for
all four sample groupings.

B. AlAs

The AlAs samples are broken into two groups: the thin
group ~samples 3–6,t-AlAs ,30 Å! and the thick group
~samples 7 and 8,t-AlAs ;50 Å!. The nominal 50 Å thick-
nesses for the thick group are above the critical limit for
strain relaxation as determined by laser light scattering,17 so
these layers are at least partially relaxed. The samples from
both groups were measured from 1.5 to 5.0 eV at incident
angles of 74° and 76°. For the analysis results presented in
Table III, only data from 2.4 to 5.0 eV were used. The re-
sultingD fits for one sample~5! are shown in Fig. 4 using the

FIG. 3. Comparison of bulk InAs and apparent thin strained InAs dielectric
functions~imaginary part!.

TABLE II. Fitting results for strained InAs samples. Thicknesses in Å, FOM@Eq. ~4!# in parentheses.~a!–~c!
correspond to model fits in Fig. 2.

Sample
Fit

parameter
Nominal
thickness

~a! InAs—bulk
cap—bulk

~b! InAs—fit, osc.
cap—bulk

~c! InAs—fit, table
cap—bulk

1 t-ox 0 19.2 ~0.20! 19.2 ~0.13! 19.3 ~0.02!
t-cap 60 75.2~3.5! 45.9 ~1.8! 46.3 ~0.4!
t-InAs 20 39.0 ~1.9! 21.5 ~0.5! 21.1 ~0.1!
t-buffer 2000 2211.0~8.3! 2259.2 ~3.8! 2257.6 ~1.0!

2 t-ox 0 17.3 ~0.18! 18.0 ~0.13! 18.0 ~0.02!
t-cap 60 72.8~2.2! 50 50.0 ~0.2!
t-InAs 30 56.4 ~1.8! 30 30.0 ~0.1!
t-buffer 2000 2266.1~6.9! 2315.1 ~2.8! 2266.1 ~6.9!

x2/2N 1052.4 219.2 15.5
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same format as Fig. 2.~Fits for the thick AlAs group are
similar but not shown.! The first procedure for the thin AlAs
group assumed bulk optical constants for all layers and fit
only 12 thicknesses. The buffer layer thicknesses were esti-
mated from a preliminary analysis including the data below
2.4 eV. The resulting poor fit quality is shown in Fig. 4~a!.
Note theE1 CP structure from AlAs is present in the model
but not in the data.

Next, the AlAs bulk optical constants were replaced by
an oscillator group that closely fit the bulk values above 3.0
eV. The spectral analysis region was limited because the os-
cillators cannot adequately model a semiconductor below the
direct band gap. However, theE1 CP structure for the
In0.53Ga0.47As needed to be included, so a compromise range,
2.4–5.0 eV, was used. The AlAs thickness for sample 5 was
fixed at the nominal 20 Å value. The remaining oxide, cap,
and AlAs thicknesses~11 parameters! were fit along with the
AlAs broadenings and energies~10 parameters!. The fit @Fig.
4~b!# improved, but problems around the In0.53Ga0.47As E1

CP remained.
In the next fit, the cap optical constants~oscillator pa-

rameters! were also allowed to vary. In fact, because the
samples had different nominal cap thicknesses, two different
cap optical spectra were fit for sample 3 and for samples
4–6. These cap optical constants were not allowed to be
totally independent, however. Only theE1 andE11D1 CP
oscillator parameters were fit separately. The parameters con-
stituting theE2 CP structure were coupled together for the
cap layers, and these parameters were also fit. The much
improved fit is shown in Fig. 4~c!. The resulting cap optical
constants are shown compared with bulk In0.53Ga0.47As in
Fig. 5. Note theE2 structure is quite similar to bulk, but that
theE1 CP structure is quite different especially for the thin-
ner 20 Å nominal cap of sample 3.

These new cap optical constants were then saved and
fixed into the model for the final determination of the AlAs
optical constants at all the measured wavelengths. The oxide,
cap, and AlAs thickness for sample 5 were fixed at their
values from the previous fit. Then the remaining samples’
oxide, cap, and AlAs thicknesses were fit simultaneously
with the AlAs optical constants. Next, the oxide, cap, and
AlAs thicknesses for all four samples were fixed and the
spectral range was increased from 1.5 to 5.0 eV. For this new

FIG. 4. Data fits at 76° angle of incidence for AlAs sample 5.~Table III
summarizes thickness results for multi-sample analyses of samples 3–6.! ~a!
Assuming bulk optical constants and fitting only thicknesses yields a poor
fit. Allowing AlAs oscillator parameters to vary improves the fit@~b!, shown
offset by 20°#. Allowing some of the cap In0.53Ga0.47As oscillator parameters
to vary improves the fit further@~c!, shown offset by 40°#. Using previously
fit cap optical constants and fitting strained AlAs dielectric values at each
wavelength yields the final, best fit@~d!, shown offset by 60°#.

TABLE III. Fitting results for thinnest strained AlAs samples. Thicknesses in Å, FOM@Eq. ~4!# in parentheses.
~a!–~c! correspond to model fits in Fig. 4.

Sample
Fit

parameter
Nominal
thickness

~a! InAs—bulk
cap—bulk

~b! InAs—fit, osc.
cap—bulk

~c! InAs—fit, table
cap—bulk

~d! AlAs—fit, table
cap—previous fit

3 t-ox 0 20.9 ~0.31! 20.6 ~0.18! 19.8 ~0.10! 19.9 ~0.03!
t-cap 20 64.8~1.4! 18.3 ~1.2! 29.7 ~1.6! 29.7 ~0.13!
t-AlAs 20 23.7 ~0.50! 27.4 ~0.28! 20.4 ~0.29! 20.4 ~0.05!
t-buffer 4000 4186.0 4186.0 4186.0 4169.5~5.6!

4 t-ox 0 16.5 ~0.32! 16.6 ~0.12! 16.4 ~0.14! 16.4 ~0.03!
t-cap 60 116.7~2.6! 72.2 ~1.3! 72.9 ~2.7! 72.4 ~0.2!
t-AlAs 15 17.2 ~0.83! 16.2 ~0.12! 15.4 ~0.15! 15.4 ~0.05!
t-buffer 2000 2217.0 2217.0 2217.0 2218.3~0.7!

5 t-ox 0 17.4 ~0.33! 16.2 ~0.12! 17.1 ~0.14! 17.0 ~0.03!
t-cap 60 109.3~2.1! 58.4 ~1.2! 70.3 ~2.6! 70.8 ~0.2!
t-AlAs 20 21.9 ~0.82! 20 20 20.2~0.06!
t-buffer 2000 2175.3 2175.3 2175.3 2172.5~0.7!

6 t-ox 0 15.3 ~0.33! 15.1 ~0.14! 14.9 ~0.14! 14.8 ~0.03!
t-cap 60 112.5~1.7! 66.7 ~1.1! 75.1 ~2.2! 76.7 ~0.17!
t-AlAs 25 27.1 ~0.82! 31.3 ~0.42! 24.4 ~0.16! 25.3 ~0.06!
t-buffer 2000 2181.8 2181.8 2181.8 2180.0~0.7!

x2/2N 2393.2 280.0 41.9 24.2
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range, the AlAs optical constants and buffer layer thick-
nesses were fit. As with the final InAs analysis, these optical
constants were saved, fixed in the model, and the thicknesses
refit after being set to their nominal values. The results of
this thickness-only fit, and those of the previous fits, are
summarized in Table III. The final apparent strained AlAs
optical constants from the thin AlAs group are compared
with bulk values and with the results of the thick AlAs group
in Fig. 6. Note that the imaginary part of the dielectric con-
stant goes to zero~e2 was not allowed to be negative during
fitting! and that an oscillator model could not describe such a
function over the full measurement range.

For the thicker AlAs group, bulk AlAs optical constants
also gave unsatisfactory fits; however, a complete analysis
was not possible because only two samples were available.
Therefore, to simplify the analysis, cap optical constants
were taken from samples from the thin AlAs group with the
same nominal cap thickness. Thus sample 7 used the cap
results from sample 3, and sample 8 used values from

samples 4–6. The remaining analysis exactly paralleled that
of the thin AlAs group. The thickness fit results are given in
Table IV and the final optical constants are shown in Fig. 6.

C. AlSb

The AlSb group comprised four samples, 9–12. These
samples were measured from 1.5 to 5.0 eV. However, like the
thin AlAs group, a reduced range~2.45–4.7 eV! was used for
the primary analysis. The optical constants were extended
over the full measured range in the final step. In other re-
spects the analysis procedure was exactly the same as for the
thin AlAs group. For sample 12, the fit results for each of the
model refinements is shown in Fig. 7~a!–7~d!. Table V lists
the fit parameters for samples 9–12.

Sample 12 had its AlSb thickness fixed at the nominal
value. Two different cap optical constants were also em-
ployed in the same manner: Allow differentE1 structures,

FIG. 5. Comparison of bulk In0.53Ga0.47As and apparent cap In0.53Ga0.47As
dielectric functions used to model samples 3–6.

FIG. 6. Comparison of bulk tabulated AlAs, thinnest~;20 Å! strained
AlAs, and nominally 50 Å strained AlAs dielectric functions~imaginary
part!.

FIG. 7. Data fits at 75° incidence for AlSb sample 12.~Table V summarizes
thickness results for multi-sample analyses of samples 9–12.! ~a! Assuming
bulk optical constants and fitting thicknesses only yields a poor fit. Allowing
AlSb oscillator parameters to vary improves the fit@~b!, shown offset by
20°#. Allowing some of the cap InAs oscillator parameters to vary improves
the fit further@~c!, shown offset by 40°#. Final fit was obtained using previ-
ously determined cap optical constants and fitting strained AlSb dielectric
constants at each wavelength@~d!, shown offset by 60°#.

TABLE IV. Fitting results for thicker AlAs samples. Thicknesses in Å, FOM
@Eq. ~4!# in parentheses.

Sample
Fit

parameter Nominal
AlAs—fit, osc.
cap—previous fit

AlAs—fit, table
cap—previous fit

7 t-ox 0 20.1 ~0.24! 20.2 ~0.07!
t-cap 20 46.6~0.5! 46.8 ~0.1!
t-AlAs 50 58.1 ~0.29! 59.0 ~0.10!
t-buffer 4000 4186 4069.5~7.5!

8 t-ox 0 15.6 ~0.18! 15.5 ~0.05!
t-cap 60 87.6~2.2! 87.7 ~0.2!
t-AlAs 50 46.2 ~1.8! 46.5 ~0.09!
t-buffer 2000 2217 2189.0~1.3!

x2/2N 1052.4 219.2
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couple theE2 structures, and fit both.~The decision to em-
ploy different cap optical constants was arrived at because
the cap thicknesses for samples 9 and 10 consistently fit to
thinner values than for samples 11 and 12, even though they
all had the same nominal 30 Å cap. If in fact the cap thick-
nesses of samples 11–12 had solved out to be the same as for
samples 9–10, then the duplicate samples would have pro-
vided no additional information.! The two sets of cap optical
constants are shown compared to bulk values in Fig. 8. The
final apparent strained AlSb optical constants are shown
compared to bulk in Fig. 9.

For all the optical constant spectra just described, a level
of correlation between thicknesses and other layer optical
constants is probably present due to a lack of sensitivity even
with multi-sample analyses. However, this correlation is pri-
marily related to the overall amplitudes; the location and
shape of CP structures in the resulting optical constants are
more adequately determined.

V. INTERPRETATION OF RESULTS

The thin cap and strained layer optical constants pre-
sented in the previous section can be explained qualitatively
by three primary effects: strain, confinement-induced energy
increases, and isolated thin-barrier CP broadening. The
strained layer in each of these samples is under a~001! bi-
axial strain due to the lattice mismatch. Biaxial strain can
produce both hydrostatic shifts and increased splitting of CP
structures. Confinement induced energy increases are well
known for both E0 and E1 CPs in quantum-well~QW!
structures.18,19 In this work, we noted energy blue shifts of
theE1 structure for some of the cap layers which are similar
to those noted for GaAs caps on thick AlAs layers.13 The
most dramatic effect we observe is the almost complete
washout of theE1 CP structures for isolated thin AlAs and
AlSb barrier layers. We attribute this primarily to a leakage
of wave functions from the barrier layers into the surround-
ing material, not strain effects. This leakage would reduce

FIG. 8. Comparison of bulk InAs and apparent cap InAs dielectric functions
used to model samples 9–12.

FIG. 9. Comparison of bulk AlSb and apparent thin strained AlSb dielectric
functions~imaginary part!.

TABLE V. Fitting results for strained AlSb samples. Thicknesses in Å, FOM@Eq. ~4!# in parentheses.~a!–~d!
correspond to model fits in Fig. 7.

Sample
Fit

parameter
Nominal
thickness

~a! InAs—bulk
cap—bulk

~b! InAs—fit, osc.
cap—bulk

~c! InAs—fit, table
cap—bulk

~d! AlSb—fit, table
cap—previous fit

9 t-ox 0 13.2 ~0.91! 14.0 ~0.53! 14.1 ~0.23! 14.2 ~0.07!
t-cap 30 0 ~5.5! 18.9 ~5.3! 18.1 ~1.3! 18.0 ~0.2!
t-AlSb 15 9.1 ~0.85! 14.9 ~0.40! 14.1 ~0.28! 14.5 ~0.10!

10 t-ox 0 11.8 ~0.70! 12.8 ~0.69! 12.7 ~0.29! 12.8 ~0.05!
t-cap 30 0 ~3.2! 11.4 ~5.0! 18.5 ~1.7! 18.5 ~0.15!
t-AlSb 25 12.3 ~0.62! 20.8 ~0.40! 24.1 ~0.66! 24.3 ~0.09!

11 t-ox 0 13.5 ~0.85! 13.9 ~0.51! 13.8 ~0.29! 14.5 ~0.07!
t-cap 30 0 ~4.7! 27.7 ~5.2! 24.7 ~1.6! 24.2 ~0.2!
t-AlSb 15 9.8 ~0.71! 15.6 ~0.40! 12.6 ~0.35! 14.3 ~0.10!

12 t-ox 0 13.3 ~0.87! 13.7 ~0.75! 14.0 ~0.39! 14.0 ~0.06!
t-cap 30 0 ~3.2! 25.3 ~4.9! 33.8 ~1.7! 33.0 ~0.2!
t-AlSb 25 15.8 ~0.78! 25 25 25.0~0.11!

x2/2N 4010.4 410.2 25.1 20.1
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state lifetimes and increase CP broadenings. TheE1 CP
structure may be particularly susceptible to this kind of
broadening due to its believed excitonic nature.20,21

Quantitative estimates for strain effects can be made us-
ing a perturbation analysis developed forE0 and E1 CPs
under biaxial~001! strain by Pollak.21,23 This approach has
been used by Pickeringet al. to explain strain induced in-
creases~observed by SE! in the E1 , E11D1 splitting for
InxGa12xAs layers on GaAs,25 and SixGe12x layers on
Si.26–28 The perturbation approximation may be less valid
here due to the very large strain for these material systems,
but the calculation can give some insight into the direction
and relative magnitudes expected for the energy shifts. Strain
should primarily change the band structure and thus the CP
energies, but it should not significantly affect the CP broad-
ening. Also, the calculations should be independent of thick-
ness, provided that the layer is fully strained. Neglecting the
excitonic-induced splitting, theoretical strain-induced energy
shifts can be calculated using the following equations:21,23

E0,hh~e!2E0~e50!52aS 12
c12
c11

D e1bS 112
c12
c11

D e, ~6!

E1~e!2E1~e50!5
D1

2
1EH2

1

2
~D1

214ES
2!1/2 ~7!

E1D1~e!2E1D1~e50!5
2D1

2
1EH1

1

2
~D1

214ES
2!1/2, ~8!

where

EH52E1S 12
c12
c11

D e, ES5S 23D
1/2

D3
3S 112

c12
c11

D e. ~9!

The biaxial strain ise5(ae2a0)/a0 , wherea0 and ae are
the in-plane lattice constants for the material when un-
strained and strained, respectively. The elastic constants for
the material arec12 andc11. The remaining terms in Eq.~6!,
a andb, are deformation potentials for the lowestG point
transitions for hydrostatic and uniaxial~001! strain. The in-
terband (E1) and intraband (D3

3) deformation potentials in
Eq. ~9! are forL3–L1 transitions. Table VI summarizes the
deformation potentials and elastic constants used for the ma-
terials considered here. In principle, similar calculations

could be performed for theE2 CPs; however, our interest lies
primarily in the E1 CP region which is most useful for
growth control schemes.

Calculations of confinement effects in QWs have been
performed by others; however, we do not know of a simple
method to calculate confinement induced shifts for cap lay-
ers. One complication is that half of the confinement is cre-
ated by the oxide and vacuum levels and another problem is
the imperfect oxide–cap interface which may be the source
of some of the apparent broadening effects observed. We
have made no quantitative calculations of cap energy shifts,
but we expect and observe the general trend that thinner caps
yield greater blue shifts in the extracted optical constants. We
believe the washout of theE1 CP structure for isolated bar-
riers is a recent observation.13 A similar broadening of AlAs
E1 structure was mentioned for thin barrier layers in a
GaAs–AlAs superlattice structure.29 We know of no quanti-
tative calculations for this effect. This calculation is likely to
be more complicated than a QW confinement problem be-
cause the decrease in state lifetimes within the barrier will
involve coupling to a continuum of states in the surrounding
material.

Examining the strained InAs results~Fig. 3!, one first
notes the increased splitting of theE1 and E11D1 CPs.
Strain-induced splitting has also been observed for strained
InxGa12xAs (x,0.25) on GaAs.25 The energy shifts relative
to bulk optical constants were determined by fitting the sec-
ond derivative of the dielectric functions to the standard os-
cillator model with phase factor.30 These shifts, along with
calculated values using Eqs.~6!–~8!, are given in Table VII.
Note that calculated shifts forE0 are also given, but that
quantitative experimental results were not determined. For
InAs, the E0 CP is well outside our measurable spectral
range. The calculated and experimentally determined shifts
for theE1 CPs are in good qualitative agreement, as in Refs.
25–28. ForE1 , the hydrostatic and uniaxial components of
the strain effect have opposite signs and compensate each
other predicting a small energy change as is observed experi-
mentally. ForE11D1 , the two components are calculated to
be additive, creating a larger shift and increased splitting
which are both confirmed experimentally. The cap layers for
the InAs samples were treated as bulklike for the analyses
presented in Sec. IV, and fits allowing the cap optical con-
stants to vary did not produce better results. The explanation
and justification for using bulklike In0.53Ga0.47As cap optical

TABLE VI. Parameters used for calculating strain model energy shifts.

Quantity InAs/In0.53Ga0.47As AlAs/In0.53Ga0.47As AlSb/InAs

e 20.0313 10.0369 20.0127
c12/c11 0.5437a 0.4267a 0.4956a

a 26.0 eVa 29.8 eVb 25.9 eVa

b 21.8 eVa 21.70eVb 21.35eVa

E1 24.3 eVc 24.3 eVc 24.3 eVc

D3
3 13.45eVc 13.45eVc 13.45eVc

D1 0.25eVd 0.20eVd 0.43eVd

aReference 22.
bTaken from the GaAs values in Ref. 22.
cThe required deformation potentials have been collected for only a few
binaries, GaAs being the closest. These values were taken for GaAs from
Ref. 23.
dReference 24.

TABLE VII. Calculated and experimentally determined CP energy shifts.

Material Critical point Calc. Expt.

InAs E0,hh~e!2E0(e50) 10.05 •••
E1(e)2E1(e50) 10.03 20.00
E1D1(e)2E1D1(e50) 10.22 10.18

AlAs ~;50 Å! E0,hh~e!2E0(e50) 20.30 •••
E1(e)2E1(e50) 20.30 20.39
E1D1(e)2E1D1(e50) 20.06 20.11

AlSb E0,hh~e!2E0(e50) 10.04 •••
E1(e)2E1(e50) 10.04 •••
E1D1(e)2E1D1(e50) 10.07 •••
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constants and for not including a confinement energy shift
for the E1 CPs are that theE1 energies for InAs and
In0.53Ga0.47As nearly overlap. ~InAs embedded in
In0.53Ga0.47As is definitely a QW for theG point.! In fact,
after the strain is included, the InAsE1 andE11D1 CPs may
bracket the In0.53Ga0.47As CP energies. Whether the InAs va-
lence or conduction bands atL are confined in the InAs is
dependent on the exact band alignment, but clearly both
states can not be strongly confined. One tentative explanation
for the apparently large change in broadening for the strained
InAs E11D1 CP is that it is partially unconfined and is ex-
hibiting the behavior of an isolated barrier while theE1 CP is
weakly confined maintaining broadening similar to bulk and
no obvious confinement shift. We cannot derive great detail
about the CPs because the overlap creates analysis difficul-
ties ~fit parameter correlations!; however, some CP structure
has moved to a higher energy near 3 eV. This is consistent
with strain in the InAs, and there is no obvious physical
reason why the In0.53Ga0.47As CP should be shifted for these
two samples.

For the AlAs samples, however, there is good reason to
believe that the cap In0.53Ga0.47As CPs might be shifted due
to confinement by the AlAs which has much largerE1 and
E11D1 CP energies. The cap optical constants shown in Fig.
5 exhibit such a shift, which is larger for the thinner cap
layer. The apparent increase in broadening may be accounted
for by the greater importance of the rough oxide–cap inter-
face for thinner layers. The strained AlAs optical constants
for the thin group~Fig. 6! have no distinctE1 CP structure;
we believe this is due to a thin barrier effect as described
previously. The optical constants for the thicker~;50 Å!
AlAs layers exhibit a more pronounced peak at 4 eV and a
shoulder just below 3.5 eV. Even though these layers are
above the critical thickness and partially relaxed, our inter-
pretation is that these layers still contain strong residual
strain and that these two features are the strain-shiftedE1

andE11D1 CPs. We believe these structures are more vis-
ible in the thicker AlAs because the thin-barrier broadening
effect has been reduced and optically there is more material
to probe. The experimental shifts given in Table VII are for
the thicker AlAs optical constants. The same basic agreement
between calculation and experiment is seen for AlAs as was
seen for the InAs. For AlAs theE1 CP shifts the larger
amount while theE11D1 CP is relatively stationary. It is
tempting to look at Fig. 6 and also quantify a shift in the
G-point band gap; however, below 3.2 eV, the AlAs optical
constants begin to include a ‘‘bleed through’’ of imperfec-
tions from the cap optical constants and imperfect modeling
of data oscillations due to the buffer layer. Thus, precise
determination of the band gap is not possible. The strain
model does predict, however, a fairly large shift to lower
energies for the heavy-hole band gap.

To further illustrate that the washing out of the CP struc-
ture for the strained AlAs is not just a strain effect, another
sample with the nominal structure of GaAs/AlAs/GaAs~20
Å/20 Å/substrate! was measured and analyzed with results
shown in Fig. 10.~These measurements were also presented
in Ref. 13.! The fitting models shown were identical except
for the AlAs optical constants used. In both cases the oxide

thickness, cap thickness, and oscillator parameters for the
cap optical constants were fit. The cap oscillator parameters
were started, in both cases, as a good fit to bulk GaAs and
only the broadening and energy parameters were allowed to
vary. The resulting layered models, data fits, and cap optical
constants are shown in Figs. 10~a!–10~d!. When bulk AlAs
values were used, noticeable AlAs CP features remained in
the model@Fig. 10~c!, 3.8 eV#. This procedure produced a
poor fit with a very thick cap and lowered capE1 CP ampli-
tudes@Fig. 10~d!#. The very large fitted cap thickness repre-
sented the minimization algorithm’s attempt to reduce the
importance of the AlAs features while maintaining the

FIG. 10. Layered structures and fitted thicknesses used for modeling a
sample with a thin~;20 Å! AlAs capped by nominally 20 Å of GaAs on a
GaAs substrate. Each model had the same structure and fitting parameters,
except that bulk AlAs optical constants were used in the first case~a!, and
strained AlAs optical constants were used in the second~b!. ~c! Experimen-
tal data and modeled data curves.~d! The resulting fitted GaAs cap optical
constants.
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proper model amplitudes in the GaAsE1 region. A much
better fit was obtained using the thin strained AlAs optical
constants shown in Fig. 6. The resulting thicknesses@Fig.
10~b!# and cap optical constants@Fig. 10~d!# are much more
reasonable~note that the capE1 features are blue shifted,
while retaining their bulk amplitudes! even though the AlAs
has very little strain~AlAs is almost lattice matched to
GaAs!. This is strong evidence that the thin-barrier~CP
broadening! and strain~CP shifts, splitting! effects are dis-
tinct, and that the thin-barrier effect may be dominant for
some material combinations.

The AlSb results closely mirror the AlAs results in the
primary observation that theE1 andE11D1 CP structures
are washed out~Fig. 9!. Also, the InAs cap~unstrained for
the AlSb samples! optical constants exhibit a blue shift of
theirE1 CP energies~Fig. 8!. The major difference is that the
E2 CP structure for the InAs cap seems to also be washed
out. This, however, can be accounted for by observing that
the E2 energy for AlSb is lower than that for InAs. Thus,
while the InAs cap experiences a confinement of theE1
wave functions, it behaves more barrierlike for theE2 wave
functions which are coupled to the corresponding lower-
energy states in the AlSb. The constraints of oscillator mod-
eled caps and the unknown thin AlSb optical constants make
a unique fit in theE2 region impossible. The apparent shift of
the AlSbE2 structure to 4.4 eV~Fig. 9! may not be totally
correct for that reason. However, whatever ambiguities may
exist in theE2 region, the absence of CP structure around 3.2
eV in the data~Fig. 7! strongly confirms that theE11D1 CP
is totally washed out for these strained AlSb layers.

VI. IMPLICATIONS FOR IN SITU GROWTH CONTROL

Controlling molecular-beam-epitaxy~MBE! growth us-
ing real-time spectroscopic ellipsometry requires the ability
to fit parameters~typically thicknesses! of a dynamic model
to the incoming data, and these fitted layer thicknesses are
only meaningful if good fits are obtained. Even carefully
obtained thin layer optical constants may not be sufficient
when multiple layers are involved and quantum-mechanical
effects become significant. During growth, the appropriate
optical constants for previously grown layers may change as
new layers are deposited. However, at high growth tempera-
tures the CP structures~those not already washed out due to
layer thinness! will be broadened. A spectroscopic control
scheme can be made more sensitive to amplitudes away from
the CPs and thus can be made less sensitive to subtle effects
such as energy shifts in cap layers or quantum wells.~A
single wavelength operating near anE1 CP might be quite
sensitive to quantum effects.! By passively examining many
sample growths and correlating the real-time ellipsometric
optical data with the electrical characterization of the de-
vices, it should be possible to determine appropriate optical
constants for thickness control. This might include changing
optical constants in the model for buried layers before each
new layer is grown. Any ellipsometric control scheme for
thin layers will likely be complicated to set up, but this tech-
nique can provide some true feedback about what is actually
being deposited on the sample surface over the widest range
of sample conditions.

VII. CONCLUSIONS

Multi-sample analyses of spectroscopic ellipsometric
data can be used to determine apparent optical constants for
single, thin strained layers. For such samples, three principle
effects have been identified as responsible for the change in
optical constants away from their bulk values: strain, quan-
tum confinement, and thin-barrier critical point broadening.
Of the three, the thin-barrier effect is the newest and most
pronounced. Optical constants for thin strained AlAs have
also been shown to be compatible with data for thin un-
strained AlAs layers on GaAs, thus demonstrating that the
barrier broadening effect is not strain induced. The interplay
of thin layer optical constants with their surroundings has
definite implications for in situ growth control of thin,
strained, and unstrained, layers. The sensitivity of dynamic
ellipsometric measurements to growing samples is already
well established, but the practicality of ellipsometric based
thickness control schemes are based on the ability to extract
meaningful, quantitative parameters. Thisex situwork has
neither proved nor disproved thatin situ growth control of
thin strained layers is possible, but it has demonstrated some
optical effects which will be important and the need for spec-
troscopic measurements to account for them.
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